JPH04265536A - Optical waveguide recording medium reproducing device - Google Patents

Optical waveguide recording medium reproducing device

Info

Publication number
JPH04265536A
JPH04265536A JP3024755A JP2475591A JPH04265536A JP H04265536 A JPH04265536 A JP H04265536A JP 3024755 A JP3024755 A JP 3024755A JP 2475591 A JP2475591 A JP 2475591A JP H04265536 A JPH04265536 A JP H04265536A
Authority
JP
Japan
Prior art keywords
light
optical waveguide
optical
recording medium
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3024755A
Other languages
Japanese (ja)
Inventor
Naohiro Tanno
直弘 丹野
Teruo Toma
照夫 當摩
Kiyobumi Chikuma
清文 竹間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP3024755A priority Critical patent/JPH04265536A/en
Priority to US07/800,089 priority patent/US5233582A/en
Priority to EP92301257A priority patent/EP0500286A1/en
Publication of JPH04265536A publication Critical patent/JPH04265536A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the size of a reference light generation optical system by adopting an acoustooptical modulation element, in an optical waveguide recording medium reproducing device provided with a heterodyne detection optical system. CONSTITUTION:An ultrasonic wave generation element 101 is an electrostriction element or a piezoelectric element provided with an opening 101a through which a laser beam entering via a beam splitter is made incident, an acoustooptical medium block is the crystal of quarts, TeO2, etc., and the ultrasonic generation element 101 is formed on the incident end face with the electrostriction element composed of barium titanate or the piezoelectric element composed of crystal, etc. By applying intermittent high frequency electricity to the element 101, grid stripes whose refractive index changes according to the wavelength of the ultrasonic wave are generated within the block 100. The laser beam going through the block 100 is given phase delay and frequency displacement due to the Doppler effect of the ultrasonic wave, a part of it is reflected to return, and the reflection light is used as the reference light.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【技術分野】本発明は、光記憶媒体、特にレーザビーム
(低コヒーレント光も含めて総称する)の導波によって
複数の異なる振幅と位相遅れを持つ反射導波光を生じる
屈折率不連続部を設けた光導波路を有する光導波路記憶
媒体を用い、これにレーザビームを導波し、その一部の
反射導波光とドップラー周波数変移したレーザビームと
を光ヘテロダイン検波し、記録された情報を時系列信号
波形として再生する光導波路記憶媒体再生装置に関する
[Technical Field] The present invention provides an optical storage medium, in particular, a refractive index discontinuity portion that generates reflected guided light having a plurality of different amplitudes and phase lags by guiding a laser beam (generally referred to including low-coherence light). Using an optical waveguide storage medium having an optical waveguide, a laser beam is guided through the medium, and a part of the reflected guided light and the laser beam with shifted Doppler frequency are optically heterodyne detected, and the recorded information is converted into a time-series signal. The present invention relates to an optical waveguide storage medium reproducing device that reproduces waveforms.

【0002】0002

【背景技術】従来の光記憶媒体としては、記録膜として
円盤基板面に形成された高光反射率の平坦反射膜に複数
の低光反射率凹部を記録情報として線上に配列した光デ
ィスクがある。この光記憶媒体では、凹部列にレーザビ
ームを集束照射し、反射膜及び凹部からの反射光量の差
を記録情報として検出する。他の光記憶媒体としては、
一軸磁気異方性記録膜に複数の微小磁化反転領域を配列
形成して情報を記録する光磁気ディスクもある。この光
記憶媒体では、磁化反転領域列からの反射光の偏光面の
回転角度差を記録情報として検出する。
BACKGROUND OF THE INVENTION Conventional optical storage media include optical discs in which a plurality of low light reflectance recesses are arranged in a line as recorded information on a flat reflective film with high light reflectance formed on the surface of a disk substrate as a recording film. In this optical storage medium, a laser beam is focused and irradiated onto a row of recesses, and the difference in the amount of light reflected from the reflective film and the recesses is detected as recorded information. Other optical storage media include
There is also a magneto-optical disk in which information is recorded by forming a plurality of minute magnetization reversal regions in an array on a uniaxial magnetic anisotropic recording film. In this optical storage medium, the difference in rotation angle of the plane of polarization of the reflected light from the magnetization reversal region array is detected as recorded information.

【0003】これら光記憶媒体においては、記録部とし
ての凹部又は磁化反転領域の列からの反射光によって再
生するため、かかる記録部の面密度には限度がある。こ
れら光記憶媒体の再生時には、レーザビームの合焦点を
光記憶媒体の面振れに追随させるために合焦点を光軸方
向に移動させているが、一点の記録部毎に合焦を必要と
し、さらに反射光の光反射率及び偏光面の回転角度が非
常に小さいので検出される光信号の信号対雑音比は低い
。また、記録部の列の移動によってのみ時系列信号が再
生されるので、光記憶媒体の移動速度によって再生及び
記録のアクセス時間が制限される。
[0003] In these optical storage media, since reproduction is performed using reflected light from a recessed portion or a row of magnetization reversal regions serving as a recording portion, there is a limit to the areal density of such recording portions. When reproducing these optical storage media, the focal point of the laser beam is moved in the optical axis direction in order to follow the surface deflection of the optical storage medium, but this requires focusing for each recording section. Furthermore, since the optical reflectance of the reflected light and the rotation angle of the polarization plane are very small, the signal-to-noise ratio of the detected optical signal is low. Furthermore, since the time-series signal is reproduced only by moving the column of recording units, the access time for reproduction and recording is limited by the moving speed of the optical storage medium.

【0004】特開平第2−210627号に開示された
光導波路記憶媒体及びその再生装置は、これらの問題点
を解消するため開発されている。さらに、光導波路記憶
媒体用の再生装置としてマイケルソン干渉計型光ヘテロ
ダイン検出光学系を有するものが提案されている。かか
る再生装置は、光源からの放射レーザビームを平行光束
にするコリメーションレンズと、光導波記憶媒体上へ導
かれるレーザビームを分岐するハーフミラーと、光導波
記憶導波路に分割レーザビームの一方をカップリングさ
せる為の対物レンズと、分割レーザビームの他方に位相
シフトと周波数シフトを与えて参照光とするための可動
ミラーと、光導波路上に作られた屈折率不連続部で反射
し再び戻ってきた信号光と参照光を干渉させその光出力
をヘテロダイン検出する光検知器とで構成されている。
The optical waveguide storage medium and its reproducing apparatus disclosed in Japanese Patent Laid-Open No. 2-210627 have been developed to solve these problems. Furthermore, as a reproducing device for an optical waveguide storage medium, one having a Michelson interferometer type optical heterodyne detection optical system has been proposed. Such a reproducing device includes a collimation lens that converts the emitted laser beam from a light source into a parallel beam, a half mirror that splits the laser beam guided onto the optical waveguide storage medium, and a cup of one of the split laser beams on the optical waveguide storage waveguide. An objective lens is used to make the laser beam ring, a movable mirror is used to give a phase shift and a frequency shift to the other part of the split laser beam and use it as a reference beam, and the beam is reflected by the refractive index discontinuity created on the optical waveguide and returns again. The sensor is composed of a photodetector that interferes with the signal light and the reference light and heterodyne detects the optical output.

【0005】かかる光導波路記憶媒体再生装置において
は、ヘテロダイン検出のために分割レーザビームに位相
シフトと周波数変調を与える手段として可動ミラーを利
用していたので、変調周波数に制限があり、情報密度の
向上が妨げられてきた。更に、ミラー駆動部の存在のた
め、再生光学系の小型化、信頼性に難があった。
In such an optical waveguide storage medium reproducing device, a movable mirror is used as a means for imparting a phase shift and frequency modulation to the split laser beam for heterodyne detection, so there is a limit to the modulation frequency and the information density is limited. Improvement has been hindered. Furthermore, due to the presence of the mirror drive section, it is difficult to miniaturize and reliability of the reproduction optical system.

【0006】[0006]

【発明の目的】本発明は、この難点に鑑みなされたもの
で、参照光の変調周波数を広帯域化し得る小型化された
光導波路記憶媒体再生装置を提供することを目的とする
OBJECTS OF THE INVENTION The present invention has been made in view of this difficulty, and it is an object of the present invention to provide a miniaturized optical waveguide storage medium reproducing device that can widen the modulation frequency of reference light.

【0007】[0007]

【発明の構成】本発明の光導波路記録媒体再生装置は、
レーザビームを導入する光結合部を有した光導波路と前
記光導波路に配列された複数の屈折率不連続部とを有し
かつ前記屈折率不連続部の形状及び相対位置が記録すべ
き情報の変数となる光導波路記録媒体から記録情報を再
生する装置であって、レーザビームを発生する発光手段
と、該レーザビームを2分割して第1及び第2光ビーム
を生ぜしめる分割手段と、第1光ビームを受光しこれに
周波数変移を与えて変調し参照光を発生する参照光発生
手段と、第2光ビームを前記光結合部へ導出する照射手
段と、前記屈折率不連続部により反射され振幅と位相が
変調され前記光結合部を経て戻る反射信号光と前記参照
光とを重畳して干渉光となす光重畳手段と、前記干渉光
を光電変換し電気的出力を生ぜしめる光検出手段とを有
し、前記参照光発生手段は、前記第1光ビームの光軸上
に沿って伸長する透明な音響光学媒体ブロックと前記音
響光学媒体ブロックの第1光ビームの入射側端面に配置
されかつ前記音響光学媒体ブロックの光伝搬方向に音響
波を発生させる超音波発生素子とを有する音響光学光遅
延反射素子を有し、前記超音波発生素子に間歇的な高周
波電力を供給することを特徴とする。
[Structure of the Invention] The optical waveguide recording medium reproducing device of the present invention includes:
It has an optical waveguide having an optical coupling part for introducing a laser beam, and a plurality of refractive index discontinuities arranged in the optical waveguide, and the shape and relative position of the refractive index discontinuities are information to be recorded. An apparatus for reproducing recorded information from a variable optical waveguide recording medium, the apparatus comprising: a light emitting means for generating a laser beam; a dividing means for dividing the laser beam into two to generate first and second light beams; a reference light generating means that receives one light beam and modulates it by applying a frequency shift to generate a reference light; an irradiation means that guides a second light beam to the optical coupling section; and a second light beam that is reflected by the refractive index discontinuity section. a light superimposing means for superimposing the reference light on the reflected signal light whose amplitude and phase are modulated and returns through the optical coupling section to form interference light; and a light detection means for photoelectrically converting the interference light to generate an electrical output. and a transparent acousto-optic medium block extending along the optical axis of the first light beam, and the reference light generating means disposed on an end surface of the acousto-optic medium block on the incident side of the first light beam. and an acousto-optic optical delay reflection element having an ultrasonic wave generating element that generates an acoustic wave in the light propagation direction of the acousto-optic medium block, and supplying intermittent high-frequency power to the ultrasonic wave generating element. Features.

【0008】[0008]

【発明の作用】本発明によれば、参照光の変調周波数を
広帯域化したヘテロダイン検出光学系を有する光導波路
記憶媒体再生装置が得られる。
According to the present invention, there can be obtained an optical waveguide storage medium reproducing device having a heterodyne detection optical system in which the modulation frequency of the reference light is widened.

【0009】[0009]

【実施例】以下、本発明による実施例を図面を参照しつ
つ説明する。図1は本発明を説明する原理図である。ま
ず、図1(a)において、光導波路記憶媒体1は、光が
導波するコアの光導波路31がコアより屈折率の低いク
ラッドをなす基板32上に形成された構造を有している
。コア31の上部境界面上には空気又は他のクラッドが
存在する。コア31の端面はレーザビームをコア内部に
導入する光結合部30である。コア内面の上部境界面に
は複数の屈折率不連続部34が伸長方向に配列され記録
されている。屈折率不連続部34は、レーザビームの入
射導波光に対し端面の光結合部30からの相対位置及び
形状に基づく複素反射率によって種々の振幅及び位相を
持つ反射導波光(即ち、振幅と位相が変調された信号光
)を生ずる微小な凹部である。屈折率不連続部34の形
状と位置は、記憶されるべき情報に応じて所定の複素反
射率を得るよう記録される。屈折率不連続部34の凹部
は埋め込み部としてもよく、その埋め込み部の屈折率が
コアの屈折率より小さい空気またはクラッドが用いられ
るの場合、屈折率不連続部34の形状は例えば半円ある
いは反楕円埋め込み型で大きさは光波長の数分の1〜数
倍である。構成材料は例えばコア31には光に透明なポ
リカーボネイトを用い、クラッドにはより屈折率の低い
ポリメタクリル酸メチル等の高分子材料が用いられる。 光導波路記憶媒体1はこの様に、少なくとも光結合部3
0,コア31,基板32,屈折率不連続部34より構成
される。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating the principle of the present invention. First, in FIG. 1(a), the optical waveguide storage medium 1 has a structure in which a core optical waveguide 31 through which light is guided is formed on a substrate 32 forming a cladding having a refractive index lower than that of the core. Air or other cladding is present on the upper boundary surface of the core 31. The end face of the core 31 is an optical coupling part 30 that introduces the laser beam into the core. A plurality of refractive index discontinuities 34 are arranged and recorded in the elongation direction on the upper boundary surface of the inner surface of the core. The refractive index discontinuity portion 34 generates reflected guided light having various amplitudes and phases (i.e., amplitude and phase) based on a complex reflectance based on the relative position and shape from the optical coupling portion 30 on the end face with respect to the incident guided light of the laser beam. This is a minute recess that generates a modulated signal light. The shape and position of the refractive index discontinuities 34 are recorded to obtain a predetermined complex reflectance depending on the information to be stored. The concave portion of the refractive index discontinuity portion 34 may be an embedded portion. If air or cladding is used, the refractive index of the embedded portion being smaller than the refractive index of the core, the shape of the refractive index discontinuity portion 34 may be, for example, a semicircle or a cladding. It is an anti-elliptical embedded type, and its size is a fraction of the wavelength of light to several times the wavelength of light. As for the constituent materials, for example, the core 31 is made of polycarbonate which is transparent to light, and the cladding is made of a polymeric material such as polymethyl methacrylate having a lower refractive index. In this way, the optical waveguide storage medium 1 has at least the optical coupling part 3
0, a core 31, a substrate 32, and a refractive index discontinuous portion 34.

【0010】具体的に図2に示すように光導波路記憶媒
体1には、各々が光結合部30端面をもつ複数のチャネ
ル型リッジ光導波路31を基板32上に並設し、該光導
波路のコア内において複数の異なる振幅と位相の反射導
波光が生じる微小な屈折率不連続部34を、記録すべき
情報に応じて複数個配列したものもある。この実施例で
はリッジ型導波路として説明しているが、ストリップ型
、埋込型等のチャネル型導波路であれば、この様な屈折
率不連続部34は光導波路のコアあるいはクラッドに設
けても同じ効果が得られる。
Specifically, as shown in FIG. 2, in the optical waveguide storage medium 1, a plurality of channel type ridge optical waveguides 31 each having an end face of an optical coupling part 30 are arranged in parallel on a substrate 32, and the optical waveguides are arranged in parallel on a substrate 32. There is also one in which a plurality of minute refractive index discontinuities 34, in which a plurality of reflected guided light beams with different amplitudes and phases are generated within the core, are arranged in accordance with the information to be recorded. Although this embodiment is explained as a ridge type waveguide, in the case of a channel type waveguide such as a strip type or a buried type, such a refractive index discontinuity portion 34 may be provided in the core or cladding of the optical waveguide. The same effect can be obtained.

【0011】図1(a)に示すように、本発明の光導波
路記憶媒体再生装置は、レーザビームを発生する発光手
段としてのSLD(Super Luminescen
t Diode)又は広帯域波長発振レーザダイオード
などの発光素子35と、レーザビームを2分割して第1
及び第2光ビームを生ぜしめる分割手段としてのハーフ
ミラー(ビームスプリッター)36と、第1レーザビー
ムを受光しこれにドップラー周波数変移を与えて変調し
参照光を発生する参照光発生手段としての音響光学光遅
延反射素子37と、第2レーザビームを光結合部30へ
導出する照射手段としての対物レンズ42と、屈折率不
連続部34により戻る反射信号光と参照光とを重畳して
干渉光となす光重畳手段としてのハーフミラー36と、
干渉光を光電変換し電気的出力を生ぜしめる光検出手段
としての光検出器39とを有している。
As shown in FIG. 1(a), the optical waveguide storage medium reproducing apparatus of the present invention uses an SLD (Super Luminescensor) as a light emitting means for generating a laser beam.
A light emitting element 35 such as a broadband wavelength oscillation laser diode or a broadband wavelength oscillation laser diode is used to divide the laser beam into two parts.
and a half mirror (beam splitter) 36 as a splitting means for generating a second light beam, and an acoustic mirror as a reference light generating means for receiving the first laser beam and modulating it by applying a Doppler frequency shift to generate a reference light. The optical delay reflection element 37, the objective lens 42 as an irradiation means for guiding the second laser beam to the optical coupling section 30, and the reflected signal light and reference light returned by the refractive index discontinuity section 34 are superimposed to produce interference light. a half mirror 36 as a light superimposing means,
It has a photodetector 39 as a photodetection means that photoelectrically converts the interference light and generates an electrical output.

【0012】光導波路記憶媒体1の光結合部30に対向
して配置した発光素子35から発射されたレーザビーム
は、コリメーションレンズ41で概ね平行光束にし、ハ
ーフミラー36により2分割される。直進する一方の第
1レーザビームは、対物レンズ42で集光され光結合部
30より導波し、その一部は複数の屈折率不連続部34
により複数の異なる振幅と位相を持った反射導波光とな
り、これが光結合部30より戻る信号光となる。図1(
a)に示すように、屈折率不連続部34がa,b,c,
dの位置に記録すべき情報として記録された場合、各々
の屈折率不連続部34の形状と相対位置が記録すべき情
報(図では、アナログ情報で説明されている)に応じて
、光導波路31中に屈折率不連続部34を複数個配置す
ることにより、その形状と伝播距離の関数として異なる
振幅と位相情報を持った変調信号光を作ることが出来る
。ハーフミラー36で分割、反射された他方の第2レー
ザビームは、レンズ43で音響光学光遅延反射素子37
の光結合部へ集光されドップラー周波数変移を受けて戻
る参照光となる。これら信号光及び参照光は、ハーフミ
ラー36で合波され、レンズ44で集光されて光検出器
39に光ヘテロダイン干渉入力される。該入力光は光電
変換され、電気信号となり周波数フィルター40を経て
、図1(b)及び(c)に示すように発光素子35から
のレーザビームの一定強度の光入力Iinに対して、時
系列信号波形の電気的出力I(t)が得られる。
A laser beam emitted from a light emitting element 35 disposed opposite to the optical coupling section 30 of the optical waveguide storage medium 1 is converted into a substantially parallel beam by a collimation lens 41 and divided into two by a half mirror 36 . One of the first laser beams traveling straight is focused by the objective lens 42 and guided from the optical coupling section 30, and a part of it is transmitted through the plurality of refractive index discontinuities 34.
This results in a plurality of reflected waveguide lights having different amplitudes and phases, which become signal lights returning from the optical coupling section 30. Figure 1 (
As shown in a), the refractive index discontinuities 34 are a, b, c,
When the information to be recorded is recorded at the position d, the shape and relative position of each refractive index discontinuity portion 34 are determined according to the information to be recorded (explained as analog information in the figure). By arranging a plurality of refractive index discontinuities 34 in the refractive index discontinuous portion 31, it is possible to create modulated signal light having different amplitude and phase information as a function of its shape and propagation distance. The other second laser beam split and reflected by the half mirror 36 is passed through the acousto-optic delay reflection element 37 by the lens 43.
The light becomes a reference light that is focused into the optical coupling part of the light beam, undergoes a Doppler frequency shift, and returns. These signal beams and reference beams are multiplexed by a half mirror 36, condensed by a lens 44, and input into a photodetector 39 through optical heterodyne interference. The input light is photoelectrically converted and becomes an electric signal through a frequency filter 40, and as shown in FIGS. An electrical output I(t) of the signal waveform is obtained.

【0013】図3に示すように音響光学光遅延反射素子
37は、ハーフミラー36で第1光ビームの光軸上に沿
って伸長する透明な音響光学媒体ブロック100と、該
音響光学媒体ブロックのレーザビーム入射端面上に配置
されかつ音響光学媒体ブロックの光伝搬方向に超音波を
発生させる超音波発生素子101とを有する。超音波発
生素子101は、図4(a)及び(b)に示すように、
超音波発生素子101はレーザビームを入射させる開口
101aを有する電歪素子又は圧電素子が良く、入射レ
ーザビームに対し透明な電歪素子又は圧電素子から形成
されても良い。音響光学光遅延反射素子37は例えば音
響光学媒体ブロック100を石英、ガラス、TeO2等
のバルク結晶で作成し、その入射端面上にチタン酸バリ
ウム若しくはジルコン酸チタン酸鉛系の誘電体等からな
る電歪素子、又は水晶等からなる圧電素子が超音波発生
素子101として作成される。これら超音波発生素子に
間歇的な高周波電力を供給すると、超音波(媒体中の粗
密進行波)の伝搬によって音響光学媒体ブロック中には
超音波の波長の間隔で変化する屈折率の格子状縞が生じ
さらにこの波束は媒体中を進行するので、音響光学媒体
ブロック中のレーザビームは、超音波のドップラー効果
によって位相遅れ及び周波数変移を与えられ、その一部
が音響光学媒体ブロックに沿って反射され戻る。この反
射光が参照光として用いられる。
As shown in FIG. 3, the acousto-optic delay reflection element 37 includes a transparent acousto-optic medium block 100 which extends along the optical axis of the first light beam using a half mirror 36, and a transparent acousto-optic medium block 100 that extends along the optical axis of the first light beam. The ultrasonic generating element 101 is disposed on the laser beam incident end face and generates ultrasonic waves in the light propagation direction of the acousto-optic medium block. The ultrasonic wave generating element 101, as shown in FIGS. 4(a) and 4(b),
The ultrasonic wave generating element 101 is preferably an electrostrictive element or a piezoelectric element having an opening 101a through which a laser beam is incident, and may be formed from an electrostrictive element or a piezoelectric element that is transparent to the incident laser beam. For example, the acousto-optic delay reflection element 37 is made of an acousto-optic medium block 100 made of bulk crystal such as quartz, glass, or TeO2, and has an electric current made of barium titanate or lead zirconate titanate-based dielectric material on the incident end surface. A strain element or a piezoelectric element made of crystal or the like is created as the ultrasonic wave generating element 101. When intermittent high-frequency power is supplied to these ultrasonic generation elements, the propagation of ultrasonic waves (concentration traveling waves in the medium) creates lattice-like stripes with a refractive index that changes at intervals of the wavelength of the ultrasonic waves in the acousto-optic medium block. As this wave packet further propagates through the medium, the laser beam in the acousto-optic media block is given a phase delay and frequency shift due to the Doppler effect of the ultrasound, and a part of it is reflected along the acousto-optic media block. and return. This reflected light is used as reference light.

【0014】このように、本実施例では従来の参照光発
生用の可動ミラーを廃止し、その代わり光波遅延反射装
置としてバースト状の変調信号で駆動される音響光学変
調素子である超音波発生素子を利用している。この音響
光学変調素子は、その超音波発生素子の面にレーザビー
ム入射用窓を設け、レーザビームの入射方向と音響光学
変調素子内にて生ずる弾性波の伝播方向とを平行になし
た構造を有している。バースト状の変調信号で駆動され
た音響光学変調素子内においては伝播する粗密波が形成
されている。入射レーザビームは、この進行粗密波を通
過する際、粗密波の作る回折格子と作用して反射光を生
じ、この反射光はドップラー効果により周波数変調を受
け、更にこの粗密波の配位する場所が移動しているため
位相シフトを受ける。故に、このレーザビームを参照光
として用い得ることになる。結局、これは従来の可動ミ
ラーをある速度で移動しレーザビームを反射させ参照波
としていたことに等しくなるのである。
As described above, in this embodiment, the conventional movable mirror for generating reference light is abolished, and instead, an ultrasonic wave generating element, which is an acousto-optic modulating element driven by a burst-shaped modulation signal, is used as a light wave delay reflection device. is used. This acousto-optic modulation element has a structure in which a laser beam entrance window is provided on the surface of the ultrasonic generation element, and the direction of incidence of the laser beam is parallel to the propagation direction of the elastic waves generated within the acousto-optic modulation element. have. A propagating compressional wave is formed within the acousto-optic modulation element driven by the burst modulation signal. When the incident laser beam passes through this traveling compression wave, it interacts with the diffraction grating created by the compression wave to produce reflected light, which is frequency modulated by the Doppler effect, and furthermore, the location where this compression wave is coordinated is Since it is moving, it undergoes a phase shift. Therefore, this laser beam can be used as a reference beam. After all, this is equivalent to moving a conventional movable mirror at a certain speed and reflecting the laser beam as a reference wave.

【0015】このように、音響光学光波遅延反射素子を
用いれば、従来の可動ミラーによる光遅延反射装置と同
様に小型化が可能となり、従来の可動ミラーによる光遅
延反射装置よりも光導波路記録媒体の数mmもの長い導
波路からの情報の読み出しも可能となる。以下に再生装
置の原理を説明する。発光素子35からのレーザビーム
の各周波数成分が一つの屈折率不連続部で同時に反射さ
れ一定の振幅と伝播距離に比例した位相遅れを受け、そ
の位相遅れに相応するドップラー周波数変移した参照光
と干渉する。その時各周波数成分が同相となり、各周波
数成分の振幅の合計の振幅を持った一つのパルスを形成
する。さらに位相が遅れる次の屈折率不連続部からの反
射成分については、時間的に遅れてドップラー周波数変
移された参照光と干渉し、つぎのパルスを形成する。こ
こで、図1(a)に示す直交座標xyzにおいて、光導
波路31の伸長z方向を縦とし、これに直角なy方向を
横とすると、各パルス幅は屈折率不連続部のz軸方向の
長短に、各振幅は屈折率不連続部のx軸及びy軸方向の
大きさにそれぞれ依存する。
[0015] As described above, by using an acousto-optic light wave delay reflection element, it is possible to downsize the optical delay reflection device using a conventional movable mirror, and it is possible to reduce the size of the optical waveguide recording medium more than the conventional optical delay reflection device using a movable mirror. It is also possible to read information from waveguides as long as several millimeters. The principle of the playback device will be explained below. Each frequency component of the laser beam from the light-emitting element 35 is simultaneously reflected by one refractive index discontinuity and receives a constant amplitude and a phase delay proportional to the propagation distance, and the reference beam and Doppler frequency shifted corresponding to the phase delay are generated. have a finger in the pie. At that time, each frequency component becomes in phase, forming one pulse having an amplitude that is the sum of the amplitudes of each frequency component. The reflected component from the next refractive index discontinuity whose phase is further delayed interferes with the reference light whose Doppler frequency has been shifted with a time delay, and forms the next pulse. Here, in the orthogonal coordinate xyz shown in FIG. 1(a), if the z-direction of extension of the optical waveguide 31 is vertical and the y-direction perpendicular to this is horizontal, each pulse width is equal to the z-axis direction of the refractive index discontinuity. Each amplitude depends on the size of the refractive index discontinuity in the x-axis and y-axis directions, respectively.

【0016】例えば、発光素子のSDLの中心周波数ν
οとし、この光源の実効スペクトル幅をδνと、光導波
路の伝搬定数をβοと、高次のそれをβ1として音響光
学光波遅延反射素子の実効ドップラー速度をvとする場
合を考える。参考光の電界をErefとしp番目の屈折
率不連続部からの反射光電界をEpとすれば、光検出器
における検出信号の強度I(z,t)は下記数式1、
For example, the center frequency ν of the SDL of the light emitting element
Let us consider the case where the effective spectral width of this light source is δν, the propagation constant of the optical waveguide is βο, the higher-order one is β1, and the effective Doppler velocity of the acousto-optic light wave delay reflection element is v. If the electric field of the reference light is Eref and the electric field of the reflected light from the p-th refractive index discontinuity is Ep, then the intensity I(z, t) of the detection signal at the photodetector is expressed by the following formula 1.


0017】
[
0017

【数1】[Math 1]

【0018】で記述出来る。この数式1より表わされる
検出信号が光検出器で検出される。この数式1から明ら
かなように、ビート出力信号は広域なスペクトルのイン
コヒーレントな重ね合わせであり、指数形の振幅変調を
受けたパルス列として検出される。かくして、光導波路
記録媒体再生装置の構成により、該光導波路記憶媒体に
記録された複数の屈折率不連続部(図1(a)ではa,
b,c,dで示してある)が、時系列信号性の電気的出
力に対応し(図1(c)では、a’,b’,c’,d’
がそれぞれ対応する)、再生される。各パルスは si
n(F)/Fのナイキストのサンプリング形をしており
、信号波形はこれらの連なりである。Fは発光素子35
の発光スペクトル幅、音響変調周波数あるいは可動ミラ
ーの速度、光導波路の屈折率分散及び光導波路媒体中の
屈折率不連続部の長短及び位置などの関数である。これ
らの値を適宜選択することにより、数KHzから数十M
Hzまでも、信号変調周波数を設定出来る。各パルス幅
も数十ミリ秒から数十ナノ秒まで設定可能である。発光
素子35には、必ずしもスペクトル幅の狭い半導体レー
ザを必要とせず、むしろスペクトル幅の広いインコヒー
レント光に近い半導体発光素子の方が、該変調周波数を
高く設定できる。また、光ヘテロダイン干渉法により、
これら時系列信号波形は102〜104の高い信号対雑
音比で再生できる。
It can be described as follows. A detection signal expressed by Equation 1 is detected by a photodetector. As is clear from Equation 1, the beat output signal is an incoherent superposition of a wide spectrum, and is detected as a pulse train subjected to exponential amplitude modulation. In this way, the configuration of the optical waveguide recording medium reproducing apparatus allows a plurality of refractive index discontinuities (a in FIG. 1(a),
b, c, d) correspond to time-series signal electrical outputs (in Fig. 1(c), a', b', c', d'
corresponding to each other), are played. Each pulse is si
It has a Nyquist sampling type of n(F)/F, and the signal waveform is a series of these. F is a light emitting element 35
It is a function of the emission spectrum width of the optical waveguide, the acoustic modulation frequency or the speed of the movable mirror, the refractive index dispersion of the optical waveguide, and the length and position of the refractive index discontinuity in the optical waveguide medium. By selecting these values appropriately, the range from several KHz to several tens of M
Signal modulation frequencies can be set up to Hz. The width of each pulse can also be set from several tens of milliseconds to several tens of nanoseconds. The light emitting element 35 does not necessarily require a semiconductor laser with a narrow spectrum width; rather, a semiconductor light emitting element with a wide spectrum width close to incoherent light can set the modulation frequency higher. In addition, by optical heterodyne interferometry,
These time-series signal waveforms can be reproduced with a high signal-to-noise ratio of 102 to 104.

【0019】図5において具体的に光導波路記憶媒体及
び再生装置を示す。光導波路記憶媒体50は、上記した
チャネル型のリッジ光導波路記憶媒体1の板状体51を
多数並置してドラム状に巻いてなる積層ドラム型の立体
光ディスクである。光導波路記憶媒体再生装置は、上記
した構成要素のほかにさらにフォーカスアクチュエータ
に設置された光導波路への結合用集光レンズ42、トラ
ッキングのために反射光ビームの一部を取り出すビーム
スプリッター52、トラッキング用レーザビームを分離
する凹レンズ53、並びにトラッキング用光検出器54
,55を有している。発光素子35からのレーザビーム
の楕円状断面の長軸方向両端部を、コア端面光結合部を
挾んでクラッッド端面に当て、その反射光をトラッキン
グ用レーザビームとする。光検出器54,55は光ヘテ
ロダイン検出により高感度かつ高信号対雑音比でトラッ
キング用レーザビームを捕捉する。さらに両者の誤差検
出に従って集光用マイクロレンズ42等を光軸方向に移
動させて光導波路の光結合部に合焦し、かつ立体光ディ
スク50の面振れに光再生装置ヘッド56を追従させて
いる。
FIG. 5 specifically shows an optical waveguide storage medium and a reproducing device. The optical waveguide storage medium 50 is a laminated drum-type three-dimensional optical disk made by arranging a large number of plate-like bodies 51 of the channel-type ridge optical waveguide storage medium 1 described above and winding them into a drum shape. In addition to the above-mentioned components, the optical waveguide storage medium reproducing device further includes a condenser lens 42 for coupling to the optical waveguide installed in the focus actuator, a beam splitter 52 for taking out a part of the reflected light beam for tracking, and a tracking lens. a concave lens 53 that separates the laser beam for use, and a photodetector 54 for tracking.
, 55. Both ends in the long axis direction of the elliptical cross section of the laser beam from the light emitting element 35 are applied to the clad end face with the core end face optical coupling part in between, and the reflected light is used as a tracking laser beam. The photodetectors 54 and 55 capture the tracking laser beam with high sensitivity and high signal-to-noise ratio by optical heterodyne detection. Further, in accordance with error detection between the two, the focusing microlens 42 and the like are moved in the optical axis direction to focus on the optical coupling portion of the optical waveguide, and the optical reproducing device head 56 is caused to follow the surface deflection of the three-dimensional optical disk 50. .

【0020】本実施例では、矩形横断面2×2μmを備
える導波路長10mmの光導波路を、2μm間隔で厚み
3.2μmのクラッッドに埋め込み並置した板状体を、
ドラム状に巻き積層し、トラッキングピッチ幅3.2μ
mの立体光ディスク50が形成されている。記録された
屈折率不連続部のz軸方向の長さは10〜30μm、x
軸方向の深さは0.1〜0.5μmで、y軸方向の幅は
約0.7μmで、各光導波路毎に平均500個の該不連
続部が記録されている。各該屈折率不連続部の光反射率
は高々10−6〜10−8としてあるので、それらの反
射損失があっても最後の戻りレーザビームの減衰率は1
0%程度である。図では立体光ディスク50の下側の端
面に各光導波路の断面が開口しており、光結合部となっ
ている。光結合部の面は厚み2mmのポリカーボネイト
保護膜がついており、光導波路の屈折率と整合させ光結
合度を高くしてある。 また、該光導波路の終端の端面も同様に保護してあり、
同時に該光導波路中を伝播して来た光が逃げるようにし
てある。この様な立体光ディスク50は直径8インチで
、コンパクトディスク(CD)と同様に回転しつつ記憶
情報が再生される。
In this example, a plate-like body in which optical waveguides each having a rectangular cross section of 2×2 μm and a waveguide length of 10 mm are embedded and juxtaposed in a 3.2 μm thick cladding at 2 μm intervals is used.
Rolled and laminated into a drum shape, tracking pitch width 3.2μ
m three-dimensional optical disks 50 are formed. The length of the recorded refractive index discontinuity in the z-axis direction is 10 to 30 μm, x
The depth in the axial direction is 0.1-0.5 μm, the width in the y-axis direction is approximately 0.7 μm, and an average of 500 such discontinuities are recorded for each optical waveguide. Since the optical reflectance of each of the refractive index discontinuities is at most 10-6 to 10-8, even with these reflection losses, the attenuation rate of the final returning laser beam is 1.
It is about 0%. In the figure, the cross section of each optical waveguide is opened at the lower end surface of the three-dimensional optical disk 50, and serves as an optical coupling section. A polycarbonate protective film with a thickness of 2 mm is attached to the surface of the optical coupling portion, and the degree of optical coupling is increased by matching the refractive index of the optical waveguide. In addition, the end face of the optical waveguide is similarly protected,
At the same time, the light propagating through the optical waveguide is allowed to escape. Such a three-dimensional optical disc 50 has a diameter of 8 inches, and the stored information is reproduced while rotating like a compact disc (CD).

【0021】光導波路記憶媒体再生装置は、[発明の構
成]の欄で説明したように、構成されている。発光素子
35からのレーザビームが、該光導波路記憶媒体51へ
導波され、その一部が振幅と位相が変調された信号反射
レーザビームとなり戻り、他のレーザビームは音響光学
光遅延反射素子37を往復し戻り、ハーフミラー36で
合波され、信号光のみを通過させるアイリス58を経て
、光検出器39で光ヘテロダイン検波し、周波数フィル
タ40を経て、電気出力端子57より、図1(c)のI
(t)で示した時系列信号波形の電気的出力を得る。1
つの光導波路記憶媒体からの再生信号は、バッファメモ
リに一時蓄積し、任意のクロックタイムで転送する。1
つの光導波路の記憶している情報を読みだした後、立体
光ディスク50の回転と光再生装置ヘッド56のトラッ
キングにより、次のチャネルの光導波路の記憶情報を逐
次読み出す。
The optical waveguide storage medium reproducing device is constructed as explained in the section [Structure of the Invention]. The laser beam from the light emitting element 35 is guided to the optical waveguide storage medium 51, a part of which returns as a signal reflection laser beam whose amplitude and phase are modulated, and the other laser beam is transmitted to the acousto-optic optical delay reflection element 37. 1 (c ) of I
An electrical output of the time-series signal waveform shown in (t) is obtained. 1
The reproduced signals from the two optical waveguide storage media are temporarily stored in a buffer memory and transferred at an arbitrary clock time. 1
After reading out the information stored in one optical waveguide, the information stored in the optical waveguide of the next channel is sequentially read out by rotating the stereoscopic optical disk 50 and tracking the optical reproducing device head 56.

【0022】本実施例の諸元は、例えば典型的には、発
光中心波長1.3μmで発光スペクトル幅約2×101
2HzのSLDを発光素子35に用い、音響変調周波数
2.75GHzを用い、さらに、屈折率分散0.14の
光導波路に屈折率不連続部の長短と相対位置を平均20
μmで記録した本実施例の光導波路記憶媒体の場合、記
憶再生周波数およそ30MHzが実現できる。このとき
最小パルス幅は約35ナノ秒である。発光素子35の光
出力は約1mWで、各該屈折率不連続部からの反射光と
参照光に基づく光ヘテロダイン干渉出力の信号対雑音比
は104と大きくとれる。総記憶容量をデジタル量で換
算すると現在のコンパクトディスク(1Gbyt:ギガ
バイト)の 500倍でビット当りの機械的アクセスタ
イムは 500分の1、ビットサイクルタイムは約14
倍が実現できる。
The specifications of this embodiment are, for example, typically, an emission center wavelength of 1.3 μm and an emission spectrum width of approximately 2×10 1
A 2 Hz SLD was used as the light emitting element 35, an acoustic modulation frequency of 2.75 GHz was used, and an optical waveguide with a refractive index dispersion of 0.14 was provided with an average length and relative position of 20
In the case of the optical waveguide storage medium of this embodiment in which data is recorded in μm, a storage/reproduction frequency of about 30 MHz can be achieved. At this time, the minimum pulse width is about 35 nanoseconds. The light output of the light emitting element 35 is about 1 mW, and the signal-to-noise ratio of the optical heterodyne interference output based on the reflected light from each of the refractive index discontinuities and the reference light is as large as 104. The total storage capacity in terms of digital amount is 500 times that of the current compact disk (1 Gbyte: gigabyte), the mechanical access time per bit is 1/500, and the bit cycle time is approximately 14
It can be doubled.

【0023】本実施例では、光導波路記憶媒体のメモリ
ー部を長短大小の屈折率不連続部で構成し、アナログ信
号を記憶再生する例について説明したが、屈折率不連続
部を同じ大きさでかつ等間隔にそれらの屈折率不連続部
の有無を記録すれば、デジタル信号の記憶再生も可能な
ことは明らかである。また、光導波路記憶媒体を立体デ
ィスクに形成する実施例を説明したが、テープに並置し
たり、カード型に並置し積層したものも実現できる。さ
らに、本実施例では光導波路長を10mmとしたが、記
憶媒体である光導波路長は必要なメモリー容量に応じて
長くも短くも作成できる。
In this embodiment, an example was explained in which the memory section of the optical waveguide storage medium is composed of long and short refractive index discontinuous parts, and an analog signal is stored and reproduced. It is clear that if the presence or absence of these refractive index discontinuities is recorded at regular intervals, it is possible to store and reproduce digital signals. Furthermore, although an embodiment has been described in which the optical waveguide storage medium is formed into a three-dimensional disk, it is also possible to realize a structure in which the optical waveguide storage medium is arranged side by side on a tape or in a card type and stacked. Further, in this embodiment, the optical waveguide length was set to 10 mm, but the optical waveguide length as a storage medium can be made longer or shorter depending on the required memory capacity.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
ヘテロダイン検出光学系を有する光導波路記憶媒体再生
装置における参照光発生手段として音響光学光遅延反射
素子を用い、音響光学光遅延反射素子が入射するレーザ
ビームの光軸上に沿って伸長する透明な音響光学媒体ブ
ロックと該音響光学媒体ブロックのレーザビーム入射側
端面に配置されかつ音響光学媒体ブロックの光伝搬方向
に超音波を発生させる超音波発生素子とを有し、超音波
発生素子に間歇的な高周波電力を供給するので、参照光
の変調周波数を広帯域化した光導波路記憶媒体再生装置
が得られる。
[Effects of the Invention] As explained above, according to the present invention,
An acousto-optic optical delay reflection element is used as a reference light generating means in an optical waveguide storage medium reproducing device having a heterodyne detection optical system, and the acousto-optic optical delay reflection element produces a transparent acoustic wave that extends along the optical axis of the incident laser beam. It has an optical medium block and an ultrasonic generation element disposed on the end face of the acousto-optic medium block on the laser beam incident side and generates ultrasonic waves in the light propagation direction of the acousto-optic medium block, and the ultrasonic wave generating element has an intermittent Since high-frequency power is supplied, it is possible to obtain an optical waveguide storage medium reproducing device in which the modulation frequency of the reference light is widened.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の光導波路記憶媒体再生装置の原理を説
明する概略図である。
FIG. 1 is a schematic diagram illustrating the principle of an optical waveguide storage medium reproducing device of the present invention.

【図2】本発明にかかる光導波路記憶媒体の斜視図であ
る。
FIG. 2 is a perspective view of an optical waveguide storage medium according to the present invention.

【図3】本発明にかかる音響光学光遅延反射素子の平面
図である。
FIG. 3 is a plan view of an acousto-optic delay reflection element according to the present invention.

【図4】本発明にかかる音響光学光遅延反射素子の斜視
図である。
FIG. 4 is a perspective view of an acousto-optic delay reflection element according to the present invention.

【図5】本発明による実施例の光導波路記憶媒体再生装
置の概略図である。
FIG. 5 is a schematic diagram of an optical waveguide storage medium reproducing apparatus according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

30……光導波路の結合部 31……光導波路のコア 32……光導波路のクラッド(基板) 34……屈折率不連続部 35……発光素子 36……ハーフミラー 37……音響光学光遅延反射素子 39……光検出器 40……周波数フィルタ 41〜44……レンズ 50……積層ドラム型の立体光ディスク51……光導波
路記憶媒体 52……ビームスプリッタ 53……凹レンズ 54,55……トラッキング用光検出器56……光再生
装置ヘッド 57……電気出力端子 58……アイリス 100……音響光学媒体ブロック 101……超音波発生素子 101a,101b,101c……櫛形状電極102…
…基板
30... Coupling portion of optical waveguide 31... Core of optical waveguide 32... Clad (substrate) of optical waveguide 34... Refractive index discontinuity portion 35... Light emitting element 36... Half mirror 37... Acousto-optic optical delay Reflection element 39... Photodetector 40... Frequency filters 41 to 44... Lens 50... Laminated drum type three-dimensional optical disk 51... Optical waveguide storage medium 52... Beam splitter 53... Concave lenses 54, 55... Tracking Photodetector 56... Optical reproducing device head 57... Electrical output terminal 58... Iris 100... Acousto-optic medium block 101... Ultrasonic wave generating elements 101a, 101b, 101c... Comb-shaped electrode 102...
…substrate

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】  レーザビームを導入する光結合部を有
した光導波路と前記光導波路に配列された複数の屈折率
不連続部とを有しかつ前記屈折率不連続部の形状及び相
対位置が記録すべき情報の変数となる光導波路記録媒体
から記録情報を再生する装置であって、レーザビームを
発生する発光手段と、該レーザビームを2分割して第1
及び第2光ビームを生ぜしめる分割手段と、第1光ビー
ムを受光しこれに周波数変移を与えて変調し参照光を発
生する参照光発生手段と、第2光ビームを前記光結合部
へ導出する照射手段と、前記屈折率不連続部により反射
され振幅と位相が変調され前記光結合部を経て戻る反射
信号光と前記参照光とを重畳して干渉光となす光重畳手
段と、前記干渉光を光電変換し電気的出力を生ぜしめる
光検出手段とを有し、前記参照光発生手段は、前記第1
光ビームの光軸上に沿って伸長する透明な音響光学媒体
ブロックと前記音響光学媒体ブロックの第1光ビームの
入射側端面に配置されかつ前記音響光学媒体ブロックの
光伝搬方向に音響波を発生させる超音波発生素子とを有
する音響光学光遅延反射素子を有し、前記超音波発生素
子に間歇的な高周波電力を供給することを特徴とする光
導波路記録媒体再生装置。
1. An optical waveguide having an optical coupling part for introducing a laser beam, and a plurality of refractive index discontinuities arranged in the optical waveguide, and the shape and relative position of the refractive index discontinuities are different. A device for reproducing recorded information from an optical waveguide recording medium serving as a variable of information to be recorded, comprising a light emitting means for generating a laser beam, and a first for dividing the laser beam into two.
and a splitting means for generating a second light beam, a reference light generation means for receiving the first light beam and modulating it by applying a frequency shift to generate a reference light, and guiding the second light beam to the optical coupling section. a light superimposing means for superimposing the reference light on the reflected signal light that is reflected by the refractive index discontinuity portion, modulated in amplitude and phase, and returned via the optical coupling portion to form interference light; and a light detection means for photoelectrically converting light to produce an electrical output, the reference light generation means being
a transparent acousto-optic medium block extending along the optical axis of the light beam; and a transparent acousto-optic medium block disposed on the end surface of the acousto-optic medium block on the incident side of the first light beam, and generating an acoustic wave in the light propagation direction of the acousto-optic medium block. 1. An optical waveguide recording medium reproducing device comprising: an acousto-optic optical delay reflection element having an ultrasonic wave generating element, and intermittent high frequency power is supplied to the ultrasonic wave generating element.
【請求項2】  前記光検出手段からのビート出力成分
を検出することにより、前記反射信号光の振幅と遅延時
間を時系列電気信号として検出することを特徴とする請
求項1記載の光導波路記録媒体再生装置。
2. The optical waveguide recording according to claim 1, wherein the amplitude and delay time of the reflected signal light are detected as a time-series electric signal by detecting a beat output component from the light detection means. Media playback device.
【請求項3】  前記超音波発生素子は前記レーザビー
ムを入射させる開口を有する電歪素子又は圧電素子から
なることを特徴とする請求項1又は2記載の光導波路記
録媒体再生装置。
3. The optical waveguide recording medium reproducing apparatus according to claim 1, wherein the ultrasonic wave generating element comprises an electrostrictive element or a piezoelectric element having an aperture through which the laser beam is incident.
【請求項4】  前記超音波発生素子は透明な電歪素子
又は圧電素子からなることを特徴とする請求項1又は2
記載の光導波路記録媒体再生装置。
4. Claim 1 or 2, wherein the ultrasonic wave generating element is made of a transparent electrostrictive element or a piezoelectric element.
The optical waveguide recording medium reproducing device described above.
【請求項5】  前記発光手段はスーパールミネッセン
トダイオード又は広帯域波長発振レーザダイオードを有
することを特徴とする請求項1記載の光導波路記録媒体
再生装置。
5. The optical waveguide recording medium reproducing apparatus according to claim 1, wherein the light emitting means includes a superluminescent diode or a broadband wavelength oscillation laser diode.
【請求項6】  前記分割手段はハーフミラー又はビー
ムスプリッターを有することを特徴とする請求項1記載
の光導波路記録媒体再生装置。
6. The optical waveguide recording medium reproducing apparatus according to claim 1, wherein the dividing means includes a half mirror or a beam splitter.
【請求項7】  前記照射手段は対物レンズを有するこ
とを特徴とする請求項1記載の光導波路記録媒体再生装
置。
7. The optical waveguide recording medium reproducing apparatus according to claim 1, wherein the irradiation means has an objective lens.
【請求項8】  前記光重畳手段はハーフミラー又はビ
ームスプリッターを有することを特徴とする請求項1記
載の光導波路記録媒体再生装置。
8. The optical waveguide recording medium reproducing apparatus according to claim 1, wherein the light superimposing means includes a half mirror or a beam splitter.
【請求項9】  前記光検出手段は光検出器を有するこ
とを特徴とする請求項1記載の光導波路記録媒体再生装
置。
9. The optical waveguide recording medium reproducing apparatus according to claim 1, wherein the photodetecting means includes a photodetector.
JP3024755A 1991-02-19 1991-02-19 Optical waveguide recording medium reproducing device Pending JPH04265536A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3024755A JPH04265536A (en) 1991-02-19 1991-02-19 Optical waveguide recording medium reproducing device
US07/800,089 US5233582A (en) 1991-02-19 1991-11-29 Optical waveguide recording medium playing apparatus
EP92301257A EP0500286A1 (en) 1991-02-19 1992-02-17 Optical waveguide recording medium playing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3024755A JPH04265536A (en) 1991-02-19 1991-02-19 Optical waveguide recording medium reproducing device

Publications (1)

Publication Number Publication Date
JPH04265536A true JPH04265536A (en) 1992-09-21

Family

ID=12146965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3024755A Pending JPH04265536A (en) 1991-02-19 1991-02-19 Optical waveguide recording medium reproducing device

Country Status (1)

Country Link
JP (1) JPH04265536A (en)

Similar Documents

Publication Publication Date Title
US5218594A (en) Recording medium with an optical waveguide and player for playing the same
JP2769393B2 (en) 3D optical recording device
US5285274A (en) Optical waveguide recording medium and apparatus for playing the same
JPS6332730A (en) Scanner for light recording carrier
US5233582A (en) Optical waveguide recording medium playing apparatus
JP3229475B2 (en) Near-field optical scanning recording / reproducing device
US5214633A (en) Optical waveguide recording medium playing apparatus
US6269066B1 (en) Electronically translocatable optical stylet
JPH0547897B2 (en)
JPH0792916B2 (en) Optical recording signal reproduction method
JPS61216128A (en) Optical disk device
JPH04265536A (en) Optical waveguide recording medium reproducing device
US6064785A (en) Optical wave guide path recording medium and optical reproducing apparatus
JPH04265535A (en) Optical waveguide recording medium reproducing device
JPH04265533A (en) Optical waveguide recording medium reproducing device
JPS63183636A (en) Thin film optical waveguide type optical head
JPH05250677A (en) Optical waveguide recording medium and its performance device and information recording and reproducing method
KR0136843B1 (en) Optical pick-up head of the magneto optical disk reproducing system
JPS61237246A (en) Optical pickup device
JPH0668849B2 (en) Optical playback method
JPH01182947A (en) Method and head for reading magneto-optical disk
JP2513237B2 (en) Optical head device
JP3062064B2 (en) Optical disk motion characteristics measuring device
JPH01241027A (en) Optical pickup
JPS6185641A (en) Optical head device