JPH04265128A - Membrane separation equipment - Google Patents

Membrane separation equipment

Info

Publication number
JPH04265128A
JPH04265128A JP3026397A JP2639791A JPH04265128A JP H04265128 A JPH04265128 A JP H04265128A JP 3026397 A JP3026397 A JP 3026397A JP 2639791 A JP2639791 A JP 2639791A JP H04265128 A JPH04265128 A JP H04265128A
Authority
JP
Japan
Prior art keywords
membrane
filter
diffuser
present
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3026397A
Other languages
Japanese (ja)
Other versions
JPH084722B2 (en
Inventor
Katsuyuki Kataoka
克之 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP3026397A priority Critical patent/JPH084722B2/en
Publication of JPH04265128A publication Critical patent/JPH04265128A/en
Publication of JPH084722B2 publication Critical patent/JPH084722B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To maintain filter resistance low for a long time and to provide a maintenance-free membrane separation equipment. CONSTITUTION:The objective equipment consists of flat membrane modules 3 each of which is a filter medium consisting of a spacer 4 and a UF or MF membrane 5 (a planar separation membrane), a vessel 1 which is equipped with one or more flat membrane modules 3 and receives suspension liquid, and diffusing parts 9 of a diffuser arranged at the lower part of the flat membrane module 3 or at the lower side part of the filter medium. When the quantity of diffused air per hour from the diffuser is intermittently set large by a blower 11, a blower 13 and a valve 12, the movement of the suspension liquid is generated by gas 10, thus capable of maintaining the cleanness of the membrane surface.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、各種の任意の懸濁液(
例えば、微生物粒子、無機物粒子等のサスペンション)
を簡便に、効率的に膜分離し、清澄な分離液を得る膜分
離装置に関するものである。
[Industrial Application Field] The present invention is applicable to various arbitrary suspensions (
For example, suspensions of microbial particles, inorganic particles, etc.)
The present invention relates to a membrane separation device that easily and efficiently performs membrane separation to obtain a clear separated liquid.

【0002】0002

【従来の技術】従来より、曝気槽内に中空糸膜の束状モ
ジュールを浸漬し、透過液を得るようにした装置が公知
である(図4参照)。
2. Description of the Related Art Conventionally, an apparatus is known in which a bundle-like module of hollow fiber membranes is immersed in an aeration tank to obtain a permeated liquid (see FIG. 4).

【0003】図4に示した装置は、曝気槽21内に中空
糸膜モジュール22を浸漬し、散気管23から空気24
を供給して槽内を好気性に維持して微生物の繁殖を確保
すると共に中空糸膜の濾過機能を維持し、吸引ポンプ2
5により中空糸膜から微生物処理された槽内懸濁液の透
過水26を得るものである。
In the apparatus shown in FIG. 4, a hollow fiber membrane module 22 is immersed in an aeration tank 21, and air 24 is supplied from an aeration pipe 23.
The suction pump 2 maintains the inside of the tank aerobically to ensure the growth of microorganisms and maintain the filtration function of the hollow fiber membrane.
5, the permeated water 26 of the suspension in the tank that has been treated with microorganisms is obtained from the hollow fiber membrane.

【0004】しかしながら、本発明者がこの従来技術の
追試を行ったところ、次のような重大欠点が認められ、
実用性が欠けることが判った。即ち、図4に示したよう
な装置では、次の問題がある。
However, when the present inventor conducted a follow-up test on this prior art, the following serious drawbacks were found:
It turned out to be impractical. That is, the apparatus shown in FIG. 4 has the following problem.

【0005】■  活性汚泥、繊維分などのSS粒子が
、中空糸膜の束の内部に入り込んで付着あるいは固着し
、濾過抵抗が急増してしまう。■  中空糸膜の束の内
部に入り込んだSS分は洗浄除去が極めて困難であり、
中空糸膜モジュールを取り出して糸をほぐしながら高圧
水でスプレーしないと付着汚泥、繊維分を洗浄除去でき
ない。これは大変な手間であり、実用上このような作業
を行うことは不可能である。
[0005] SS particles such as activated sludge and fibers enter the inside of the bundle of hollow fiber membranes and become attached or fixed, resulting in a rapid increase in filtration resistance. ■ It is extremely difficult to wash and remove the SS that has entered the inside of the hollow fiber membrane bundle.
Adhering sludge and fibers cannot be removed by removing the hollow fiber membrane module and spraying it with high-pressure water while loosening the fibers. This requires a lot of effort and is practically impossible to perform.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記従来装置
の重大欠点を完全に解決することを課題とするものであ
り、濾過抵抗を長期間低く維持でき、かつメンテナンス
フリーの新技術を提供することを課題とする。
[Problems to be Solved by the Invention] It is an object of the present invention to completely solve the serious drawbacks of the above-mentioned conventional devices, and to provide a new technology that can maintain low filtration resistance for a long period of time and is maintenance-free. That is the issue.

【0007】[0007]

【課題を解決するための手段】本発明は従来の技術の欠
点を解決するために、種々検討した結果、次のような手
段によって従来の欠点が解決できることを見出し完成さ
れた。
[Means for Solving the Problems] The present invention was completed after conducting various studies in order to solve the drawbacks of the prior art, and it was discovered that the drawbacks of the prior art could be solved by the following means.

【0008】即ち、本発明はスペーサーと平面状分離膜
とからなる濾過体と、該濾過体を1以上配備し、かつ懸
濁液を受け入れる槽と、該濾過体の下方部または濾過体
下部側方に配備された散気部を有する散気装置とからな
り、該散気装置からの単位時間当たりの散気ガス量を間
欠的に大きく設定できる手段を備えたことを特徴とする
膜分離装置である。
That is, the present invention provides a filter consisting of a spacer and a planar separation membrane, a tank in which one or more of the filters are arranged and receives a suspension, and a lower part of the filter or a lower side of the filter. 1. A membrane separation device comprising a diffuser having a diffuser section disposed on one side, and comprising means for intermittently setting a large amount of diffused gas per unit time from the diffuser. It is.

【0009】本発明の新規思想は次の点にある。■  
中空糸膜の採用をやめ、SSが束の内部にくいこむこと
が、形状的に有り得ない平面状分離膜を有する濾過体を
適用する。
The novel idea of the present invention is as follows. ■
Instead of using hollow fiber membranes, we use a filter body with a planar separation membrane, which makes it impossible for SS to get stuck inside the bundle.

【0010】従来、平面状分離膜はフィルタプレス、脱
水機的な構造体内に設置する方法は知られていたが、曝
気槽体に、本発明のような方法で浸漬する概念は従来存
在しなかった。
[0010] Conventionally, it has been known to install a planar separation membrane in a structure such as a filter press or a dehydrator, but there has been no concept of immersing it in an aeration tank using the method of the present invention. Ta.

【0011】■  膜表面に乱れを与えるための散気量
を間欠的に増減させると膜汚染を効果的に防止できるこ
とを見出した。本発明に使用される濾過体は、少なくと
もスペーサーと平面状分離膜とから構成される濾過部を
有する。その濾過体の構造は、濾過部として少なくとも
平面状分離膜外部で懸濁液を濾過し、該濾過水を該膜の
内部へ移行する機能を有し、更に移行された濾過水を取
り出す手段を備えていれば、特に濾過部の構成は制限さ
れることはない。但し、濾過部の外部形状は濾過体を槽
内に配備した時に、平面状分離膜表面全面が散気装置か
ら供給される気泡および気泡による水流に接触し易い構
造であることが好ましい。
(2) It has been found that membrane contamination can be effectively prevented by intermittently increasing or decreasing the amount of air diffused to create disturbances on the membrane surface. The filter body used in the present invention has a filtration section composed of at least a spacer and a planar separation membrane. The structure of the filter body has the function of filtering the suspension at least on the outside of the planar separation membrane and transferring the filtered water to the inside of the membrane, and further includes a means for taking out the transferred filtered water. As long as it is provided, there are no particular restrictions on the configuration of the filtration section. However, the external shape of the filtration part is preferably such that when the filter body is placed in the tank, the entire surface of the planar separation membrane can easily come into contact with the air bubbles supplied from the air diffuser and the water flow caused by the air bubbles.

【0012】該濾過部の外表面は、平面状分離膜で形成
されるが、必ずしも該外表面全部を平面状分離膜で形成
する必要はなく、適宜所望の表面領域を選択して部分的
に形成することができる。
[0012] The outer surface of the filtration section is formed of a planar separation membrane, but it is not necessarily necessary to form the entire outer surface with a planar separation membrane. can be formed.

【0013】また、平面状分離膜の外表面の形状は、上
記条件を満足するのであれば、特に制限されず、平面の
みに限定されず、任意の曲面を包含できる。スペーサー
は、平面状分離膜を支持すると共に濾過水の内部への移
行を可能にするためのスペースを確保する機能を少なく
とも有するのであれば、その構造は任意であり、特に制
限されない。また、該移行された濾過水を外部へ取り出
す手段、例えば、流出管をこれに具備させることもでき
る。
Further, the shape of the outer surface of the planar separation membrane is not particularly limited as long as it satisfies the above conditions, and is not limited to only a flat surface, but can include any curved surface. The structure of the spacer is arbitrary and is not particularly limited as long as it supports the planar separation membrane and at least has the function of securing a space for allowing the filtrate to migrate into the interior. Further, it may be provided with a means for taking out the transferred filtered water to the outside, for example, an outflow pipe.

【0014】スペーサーの構成材料、具体的形状構造は
任意であり、内部が充実した単体でも内部に空間を設け
た単体でも、枠状でもあるいはこれらの組合せでもよい
。例示すれば、枠状、内部の充実した単なる板状、内部
に空間を設けた板状、格子状等が挙げられる。特に、構
成材料としては、濾過機能を有する多孔体が好ましく、
形状としては板状が特に好ましい。
The material and specific shape and structure of the spacer are arbitrary, and it may be a single piece with a solid interior, a single piece with a space inside, a frame shape, or a combination thereof. Examples include a frame shape, a simple plate shape with a solid interior, a plate shape with a space inside, and a lattice shape. In particular, as a constituent material, a porous body having a filtration function is preferable.
A plate-like shape is particularly preferable.

【0015】スペーサーへの平面状分離膜の支持手段と
しては、接着剤、ボルト・ナット、磁石等が適用できる
。従って、濾過体の濾過部の外部形状はスペーサーの形
状と平面状分離膜のスペーサーへの保持方法によって決
まるため任意であり、例示すれば、板状、棒状、逆円錐
状等が挙げられる。特に、本発明では、板状が好ましく
、両面を平面状分離膜で形成したものが好ましい。
Adhesives, bolts and nuts, magnets, etc. can be used as means for supporting the planar separation membrane on the spacer. Therefore, the external shape of the filtration part of the filter body is determined by the shape of the spacer and the method of holding the planar separation membrane to the spacer, and is therefore arbitrary. Examples include a plate shape, a rod shape, and an inverted conical shape. In particular, in the present invention, a plate shape is preferable, and one in which both surfaces are formed of planar separation membranes is preferable.

【0016】該平面状分離膜の材料は清澄な濾過水が得
られれば、特に制限がなく、公知の限外濾過膜、精密濾
過膜を使用でき、目的に応じて膜孔径を適宜選定すれば
よい。
The material of the planar separation membrane is not particularly limited as long as clear filtered water can be obtained, and known ultrafiltration membranes and precision filtration membranes can be used, and the membrane pore diameter can be appropriately selected according to the purpose. good.

【0017】本濾過体1体当たりの平面状分離膜の総面
積は、通常、4〜20m2 の範囲から選択される。該
濾過体は、本発明濾過装置内に配備されるが、その配備
の位置等は特に限定されないが、同じく濾過装置内に配
備される散気装置からの気泡および/または気泡による
水流が平面状分離膜表面に衝突し易くなるように配置す
ることが好ましい。特に、濾過体を複数個配備した場合
には、各濾過体の平面状分離膜表面が垂直方向に対して
平行になるようにかつ各平面状分離膜間の間隔が適切に
設定されることが好ましく、同時に散気装置を濾過体の
下方部または下部側方、例えば、各濾過体の間隙の下部
に配備することが好ましい。
[0017] The total area of the planar separation membrane per one filter body is usually selected from the range of 4 to 20 m2. The filter body is installed in the filtration device of the present invention, but its placement position is not particularly limited. It is preferable to arrange it so that it can easily collide with the surface of the separation membrane. In particular, when multiple filters are installed, it is important to ensure that the surfaces of the planar separation membranes of each filter are parallel to the vertical direction and that the spacing between the planar separation membranes is set appropriately. Preferably, at the same time, the air diffuser is disposed below or to the lower side of the filter, for example at the bottom of each filter gap.

【0018】本発明に使用される散気装置は、ブロワー
、管路、および散気部から概略構成されるが、通常使用
されている公知ものが適用でき、特にその構造に制限は
ないが、散気部としては、管状、板状等が一般的である
The air diffuser used in the present invention is generally composed of a blower, a pipe, and an air diffuser, but commonly used and known devices can be applied, and there are no particular restrictions on the structure. The diffuser generally has a tubular shape, a plate shape, etc.

【0019】本発明は、散気装置からの散気ガスにより
平面状分離膜の清浄性を維持するものであるが、その散
気ガスの槽内へ供給する方法に特に制限はなく、供給量
、供給時間、停止時間の設定等は懸濁液の種類、濾過体
の種類、濾過水の基準等に応じて適宜選定される。
Although the present invention maintains the cleanliness of the planar separation membrane using the diffused gas from the diffuser, there is no particular restriction on the method of supplying the diffused gas into the tank, and the amount of supply , supply time, stop time, etc. are appropriately selected depending on the type of suspension, the type of filter, the standard of filtrate, etc.

【0020】特に、本発明においては、単位時間当たり
の散気ガス量を間欠的に大きく設定することにより、膜
表面の清浄性をより高く維持できる特徴を有する。この
場合、好ましくは、該大きく設定した時間帯(Gt)は
その他の時間帯(Ct)よりも時間的に短くとることが
好ましい。単位時間当たりの供給量はGt時の方がCt
時に比べ大きく設定されるが、時間の経過に対して、通
常、各々一定レベルを維持するが、各時間帯において増
減あるいは供給停止も許容され得る。そして、散気管を
複数使用した場合には各散気管において独立に供給仕様
を設定してもよいし、各散気管を連絡して一律に設定し
てもよい。この設定の手段は任意であり、自動でも手動
でもよく、例えば、ブロワー自体の制御、ブロワーとバ
ルブの組合せ等が挙げられる。
In particular, the present invention has a feature that the cleanliness of the membrane surface can be maintained at a higher level by intermittently setting a large amount of diffused gas per unit time. In this case, it is preferable that the large time period (Gt) be set shorter than the other time periods (Ct). The supply amount per unit time is Ct when Gt is used.
Generally, each level is set to be higher than the other times, but each level is normally maintained at a constant level over time, but an increase/decrease or supply stoppage may be allowed in each time period. When a plurality of air diffusers are used, the supply specifications may be set independently for each air diffuser, or may be set uniformly by connecting the air diffusers. This setting means is arbitrary and may be automatic or manual, and includes, for example, control of the blower itself, a combination of the blower and a valve, and the like.

【0021】また、散気ガスの種類は、本発明が適用さ
れる懸濁液の性状により適宜選択され、好気性生物処理
液の場合は酸素含有ガス、例えば、空気が一般的であり
、嫌気性生物処理液の場合は窒素ガスが挙げられる。 これら処理液等の懸濁液は、外部から導入されたもので
あっても当初から本発明装置内で処理したものであって
構わない。即ち、本発明は膜分離機能以外に汚水等の処
理機能を有することは明白である。
[0021] The type of aeration gas is appropriately selected depending on the properties of the suspension to which the present invention is applied; in the case of an aerobic biological treatment liquid, an oxygen-containing gas such as air is generally used; In the case of a biological treatment liquid, nitrogen gas may be used. These suspensions such as processing liquids may be introduced from outside or may be processed in the apparatus of the present invention from the beginning. That is, it is clear that the present invention has a function of treating sewage and the like in addition to the membrane separation function.

【0022】本発明に適用される濾過方法は、平面状分
離膜の外部、即ち懸濁液に接触する側から膜内部へ濾過
水を移行する方法であるなら、任意の濾過圧発生手段が
使用できる。例えば、濾過体内部をポンプで陰圧にする
こと、槽を密閉して槽内を陽圧にすること、サイホンを
利用すること等が挙げられる。
[0022] The filtration method applied to the present invention can use any filtration pressure generating means as long as it is a method of transferring filtrate water from the outside of the planar separation membrane, that is, the side that contacts the suspension to the inside of the membrane. can. Examples include creating a negative pressure inside the filter body with a pump, creating a positive pressure inside the tank by sealing the tank, and using a siphon.

【0023】濾過体を複数設けた時の濾過水集水機構は
、各濾過体を個別に行っても各濾過体を連絡して行って
もよい。例えば、各スペーサーに濾過水流出管を設け、
これを連絡して1個のポンプで吸引濾過する方法が挙げ
られる。
When a plurality of filter bodies are provided, the filtrate water collecting mechanism may be implemented by each filter body individually or by connecting the filter bodies. For example, each spacer is provided with a filtered water outflow pipe,
An example of this method is to connect these and perform suction filtration using one pump.

【0024】[0024]

【実施例】以下、図1を参照しながら本発明の作用と一
実施例を説明する。図1において、1は任意の懸濁液が
貯留された槽、2は懸濁液の流入部である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The operation of the present invention and one embodiment will be explained below with reference to FIG. In FIG. 1, 1 is a tank in which an arbitrary suspension is stored, and 2 is an inlet for the suspension.

【0025】本発明の膜分離装置は、槽1、濾過体であ
る平膜モジュール3、および散気装置7から概略構成さ
れる。槽1内には、図2に示されるような板状多孔体の
スペーサー4の両面に平面状UFまたはMF膜5を設け
てなる平膜モジュール3が垂直方向に、間隙6を介して
複数個、平行状に浸漬設置されている。
The membrane separation apparatus of the present invention is generally composed of a tank 1, a flat membrane module 3 which is a filter, and an aeration device 7. In the tank 1, a plurality of flat membrane modules 3 each having a planar UF or MF membrane 5 on both sides of a plate-shaped porous spacer 4 as shown in FIG. , installed in a parallel manner.

【0026】各々の濾過モジュール3からは膜透過水の
流出管7が各々設けられている。該流出管5は、膜透過
水吸引ポンプ8と連絡している。平膜モジュール3の下
部には散気管または散気板からなる散気部9が設けられ
、空気、その他のガス10をブロワー11によって散気
させる。メタン発酵菌などの嫌気性微生物を膜分離する
場合にはガス10として窒素ガス、メタンガスなどの酸
素を含まないガスを使用する。
Each filtration module 3 is provided with an outflow pipe 7 for membrane permeated water. The outflow pipe 5 communicates with a membrane permeate water suction pump 8 . A diffuser section 9 consisting of a diffuser tube or a diffuser plate is provided at the bottom of the flat membrane module 3, and air or other gases 10 are diffused by a blower 11. When membrane-separating anaerobic microorganisms such as methane-fermenting bacteria, a gas that does not contain oxygen, such as nitrogen gas or methane gas, is used as the gas 10.

【0027】本発明において、ガス10の吐出量を間欠
的に大きくさせるという概念は重要であり、一定量のガ
スを散気させる場合よりも効果的に膜汚染を防止でき、
高い膜フラックスを長時間確保できることが実験的に確
認された。
In the present invention, the concept of intermittently increasing the discharge amount of gas 10 is important, and membrane contamination can be prevented more effectively than when a constant amount of gas is diffused.
It has been experimentally confirmed that high membrane flux can be maintained for a long time.

【0028】ガス10の流量を間欠的に大きくさせる手
段は容易であり、任意の手段を適用できるが、図1の例
ではブロワー13を設け、間欠的にバルブ12を開閉す
る方法を採用したものである。
The means for intermittently increasing the flow rate of the gas 10 is easy and any means can be applied; however, in the example shown in FIG. It is.

【0029】なぜガス10の散気流量を間欠的に大きく
させると膜の汚染が効果的に防止できるのか、そのメカ
ニズムの詳細は現時点で不明であるが、次のように推測
できる。
Although the details of the mechanism as to why membrane contamination can be effectively prevented by intermittently increasing the gas 10 diffused flow rate are currently unknown, it can be inferred as follows.

【0030】即ち、ガス10の散気流量を間欠的に大き
くすると平膜近傍の流れのフローパターンが激しく変化
し、その際に膜表面の汚染物質が除去され、膜表面が清
浄に保たれるのではないかと思われる。
That is, when the aeration flow rate of the gas 10 is intermittently increased, the flow pattern near the flat membrane changes drastically, and at this time, contaminants on the membrane surface are removed and the membrane surface is kept clean. It seems that it is.

【0031】ガス流量の大きさのパターンは種々変える
ことができるが、実験の結果では長時間の間隔をもたせ
てガス流量を大きくさせるよりも短時間のサイクルで大
きくさせる方法の方が効果的であった。
Although the pattern of the gas flow rate can be changed in various ways, experimental results show that increasing the gas flow rate in short cycles is more effective than increasing the gas flow rate over a long period of time. there were.

【0032】つまり、例えば、5hrに1回30分間大
きくさせるよりも、1hrに6分間大きくさせるサイク
ルのほうが効果的である。さらに、平膜モジュール3の
相隣接するモジュールの間隙6の距離は重要な因子であ
り、広すぎると膜汚染が進行し、狭すぎると夾雑物によ
って閉塞し易い。実験結果では10〜30mmが最も好
適であった。
That is, for example, it is more effective to increase the cycle time by 6 minutes every 1 hour than to increase the cycle time by 30 minutes every 5 hours. Further, the distance between the gaps 6 between adjacent modules in the flat membrane module 3 is an important factor; if it is too wide, membrane contamination will progress, and if it is too narrow, it will be easily blocked by foreign matter. According to experimental results, 10 to 30 mm was most suitable.

【0033】また、散気装置9の設置方法もかなり重要
な因子であり、図2のように平膜モジュールの横方向に
散気管または板からなる散気部9を各々の間隙部6にそ
れぞれ設置する方法が最も好ましい。
The installation method of the air diffuser 9 is also a very important factor, and as shown in FIG. The installation method is the most preferred.

【0034】この方法によれば、平膜モジュール3の各
々の膜表面に確実に気泡の上昇による激しい水流の乱れ
を与えることができ、膜汚染を効果的に防止できる。本
発明において使用する平膜分離膜の種類としては、UF
膜(即ち、限外濾過膜)、MF膜(即ち、精密濾過膜)
の各種のものを用いることができ、反応の種類、サスペ
ンジョンの種類に応じて選定すればよい。
[0034] According to this method, it is possible to reliably apply strong turbulence to the water flow due to the rise of air bubbles to the surface of each membrane of the flat membrane module 3, and it is possible to effectively prevent membrane contamination. The types of flat membrane separation membranes used in the present invention include UF
membrane (i.e. ultrafiltration membrane), MF membrane (i.e. microfiltration membrane)
Various types can be used, and the selection may be made depending on the type of reaction and the type of suspension.

【0035】例えば、廃水処理、上水処理に適用する場
合には、孔径0.01〜1μm程度のMF膜を、また高
度な処理を行う場合には、分画分子量が1000〜10
0000程度のUF膜を用いることができる。
For example, when applied to wastewater treatment and water treatment, MF membranes with a pore size of about 0.01 to 1 μm are used, and when performing advanced treatments, MF membranes with a molecular weight cutoff of 1000 to 10 are used.
A UF membrane of about 0,000 can be used.

【0036】本発明の装置は微生物サスペンジョンの分
離に好適であるが、河川水に硫酸アルミなどの凝集剤を
注入して、生成フロックを分離するにも好適である。実
験例 本発明を下水の活性汚泥処理を行う装置として、本発明
の性能の実証実験を行った。
The apparatus of the present invention is suitable for separating microbial suspensions, but it is also suitable for separating flocs produced by injecting a flocculant such as aluminum sulfate into river water. Experimental Example A demonstration experiment was conducted to demonstrate the performance of the present invention using the present invention as an apparatus for treating sewage with activated sludge.

【0037】横30cm、縦40cm、高さ70cmの
水槽にMLSS3500mg/lの活性汚泥スラリーを
満たし(水位50cm)、下記の平膜モジュールを垂直
方向に2枚浸漬した。
A water tank measuring 30 cm wide, 40 cm long, and 70 cm high was filled with activated sludge slurry containing MLSS of 3500 mg/l (water level 50 cm), and two flat membrane modules described below were vertically immersed therein.

【0038】平膜モジュール仕様: 大きさ;15×15cmの正方形のMF膜膜孔径;0.
5μm スペーサー;孔径150μmのプラスチック多孔体(板
状) 散気空気量:散気管から吐出させる空気量を次のサイク
ルで増減。
Flat membrane module specifications: Size: 15 x 15 cm square MF membrane Membrane pore diameter: 0.
5μm Spacer: Plastic porous body (plate-like) with pore diameter of 150μm Diffusing air amount: Increase or decrease the amount of air discharged from the diffuser pipe in the next cycle.

【0039】100リットル空気/分を30分その後、
300リットル空気/分を3分その後、100リットル
空気/分に減少させて30分というサイクルを繰り返す
100 liters of air/min for 30 minutes, then
Repeat the cycle at 300 liters of air/min for 3 minutes, then reduce to 100 liters of air/min for 30 minutes.

【0040】この条件で6ヶ月運転を続けたところ、膜
透過fluxは図3の線aのようになった。この実験の
間、薬品による膜の洗浄は一度も行わなかった。
When the operation was continued under these conditions for 6 months, the membrane permeation flux became as shown by line a in FIG. 3. During this experiment, the membrane was never cleaned with chemicals.

【0041】また、図の線bは、空気量の散気流量を1
00リットル/分一定で行った場合の結果を示す。明ら
かに空気の間欠的増減法がfluxを高く保つのに有効
である。
[0041] Line b in the figure indicates that the aeration flow rate of the air amount is 1.
The results are shown when the test was carried out at a constant rate of 00 liters/minute. Clearly, intermittent increases and decreases of air are effective in keeping flux high.

【0042】また、本発明の濾過体に使用される膜は平
面状であるため、中空糸膜束状モジュールのような内部
へのSSのくいこみ、固着は全く認められず、メンテナ
ンスフリーであった。
[0042] Furthermore, since the membrane used in the filter body of the present invention is planar, no SS was observed to be stuck inside the hollow fiber membrane bundle module, and it was maintenance-free. .

【0043】[0043]

【発明の効果】■  中空糸膜法のような膜面へのSS
、汚泥、繊維分の固着がなく、メンテナンスフリーの操
作が可能である。
[Effect of the invention] ■ SS on the membrane surface such as the hollow fiber membrane method
There is no sticking of sludge or fibers, and maintenance-free operation is possible.

【0044】■  膜の透過fluxを長期間、高い値
に安定して維持できる。■平膜をスペーサーにとりつけ
て、単にタンクに浸漬するだけなので、装置、製作が簡
単で製作費も安価である。
(2) The permeation flux of the membrane can be stably maintained at a high value for a long period of time. ■Since the flat membrane is simply attached to a spacer and immersed in a tank, the equipment and manufacturing are simple and the manufacturing cost is low.

【0045】■  万一、予測できないトラブルによる
膜汚染が発生し、透過fluxが低下した場合でも平膜
モジュールをつり上げて、高圧水でスプレーするだけで
、容易に洗浄できる。中空糸膜法では、中空糸を一本一
本ほぐさないと洗浄できないので、人手でないと実施で
きないし、大変な手間がかかる。
[0045] Even in the unlikely event that membrane contamination occurs due to unpredictable trouble and the permeation flux decreases, it can be easily cleaned by simply lifting the flat membrane module and spraying it with high-pressure water. In the hollow fiber membrane method, the hollow fibers cannot be cleaned unless they are loosened one by one, so it can only be carried out manually and requires a lot of effort.

【0046】■  膜面が平板状なので気泡による水流
の乱れを各々の膜面に対し、確実に与えることができる
。 中空糸膜では一本一本の中空糸膜の表面に均等に乱れを
与えることは不可能である。
(2) Since the membrane surface is flat, the turbulence of water flow caused by air bubbles can be reliably applied to each membrane surface. With hollow fiber membranes, it is impossible to uniformly disorder the surface of each hollow fiber membrane.

【0047】この結果、極めて膜汚染が発生しにくい。As a result, membrane contamination is extremely unlikely to occur.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の膜分離装置の一例を説明するための図
である。
FIG. 1 is a diagram for explaining an example of a membrane separation apparatus of the present invention.

【図2】本発明に使用される濾過体の一例を示す斜視図
である。
FIG. 2 is a perspective view showing an example of a filter body used in the present invention.

【図3】本発明の装置を用いた実験例の結果を示すグラ
フである。
FIG. 3 is a graph showing the results of an experimental example using the apparatus of the present invention.

【図4】従来の膜分離装置の一例を説明するための図で
ある。
FIG. 4 is a diagram for explaining an example of a conventional membrane separation device.

【符号の説明】[Explanation of symbols]

1  槽 2  流入部 3  平膜モジュール 4  スペーサー 5  平面状UF又はMF膜 6  間隙 7  流出管 8  膜透過水吸引ポンプ 9  散気部 10  ガス 11  ブロワー 12  バルブ 13  ブロワー 21  曝気槽 22  中空糸膜モジュール 23  散気管 24  空気 25  吸引ポンプ 1 tank 2 Inflow section 3 Flat membrane module 4 Spacer 5 Planar UF or MF membrane 6 Gap 7 Outflow pipe 8 Membrane permeate water suction pump 9 Aeration section 10 Gas 11 Blower 12 Valve 13 Blower 21 Aeration tank 22 Hollow fiber membrane module 23 Air diffuser pipe 24 Air 25 Suction pump

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  スペーサーと平面状分離膜とからなる
濾過体と、該濾過体を1以上配備し、かつ懸濁液を受け
入れる槽と、該濾過体の下方部または濾過体下部側方に
配備された散気部を有する散気装置とからなり、該散気
装置からの単位時間当たりの散気ガス量を間欠的に大き
く設定できる手段を備えたことを特徴とする膜分離装置
Claim 1: A filter consisting of a spacer and a planar separation membrane, a tank in which one or more of the filters are arranged and for receiving a suspension, and a tank disposed below the filter or on the side of the lower part of the filter. 1. A membrane separator comprising: an aeration device having an aeration section having a diffuser structure, and comprising means for intermittently setting a large amount of diffused gas per unit time from the aeration device.
JP3026397A 1991-02-20 1991-02-20 Membrane separation device Expired - Fee Related JPH084722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3026397A JPH084722B2 (en) 1991-02-20 1991-02-20 Membrane separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3026397A JPH084722B2 (en) 1991-02-20 1991-02-20 Membrane separation device

Publications (2)

Publication Number Publication Date
JPH04265128A true JPH04265128A (en) 1992-09-21
JPH084722B2 JPH084722B2 (en) 1996-01-24

Family

ID=12192424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3026397A Expired - Fee Related JPH084722B2 (en) 1991-02-20 1991-02-20 Membrane separation device

Country Status (1)

Country Link
JP (1) JPH084722B2 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996038386A1 (en) * 1995-05-24 1996-12-05 Unisearch Ltd. Concentration technique
WO2000021890A1 (en) * 1998-10-09 2000-04-20 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
JP2002136844A (en) * 2000-04-20 2002-05-14 Rochem Ro Wasserbehandlung Gmbh Filtration and separation apparatus for fluid medium
US6706189B2 (en) 1998-10-09 2004-03-16 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
US6708957B2 (en) 1998-10-09 2004-03-23 Zenon Environmental Inc. Moving aerator for immersed membranes
US6899811B2 (en) 2000-05-04 2005-05-31 Zenon Environmental Inc. Immersed membrane apparatus
US7014173B2 (en) 1998-10-09 2006-03-21 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
US7022236B2 (en) 2002-12-05 2006-04-04 Zenon Environmental Inc. Membrane bioreactor, process and aerator
US7160463B2 (en) 2002-06-18 2007-01-09 U.S. Filter Wastewater Group, Inc. Methods of minimizing the effect of integrity loss in hollow fibre membrane modules
US7361274B2 (en) 2002-08-21 2008-04-22 Siemens Water Technologies Corp. Aeration method
JP2010125367A (en) * 2008-11-26 2010-06-10 Daiki Ataka Engineering Co Ltd Membrane separation apparatus
JP4833353B2 (en) * 2007-05-29 2011-12-07 シーメンス ウォーター テクノロジース コーポレイション Membrane module with pulsed airlift pump
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8876089B2 (en) 2011-09-15 2014-11-04 Zenon Technology Partnership Method and apparatus to keep an aerator full of air
JP2014231033A (en) * 2013-05-28 2014-12-11 株式会社日立製作所 Cleaning method of membrane surface in flat membrane type membrane separation device and flat membrane type membrane separation device
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9358505B2 (en) 2009-09-03 2016-06-07 General Electric Company Gas sparger for an immersed membrane
US9364805B2 (en) 2010-10-15 2016-06-14 General Electric Company Integrated gas sparger for an immersed membrane
US9463419B2 (en) 2012-01-09 2016-10-11 General Electric Company Pulse aeration for immersed membranes
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9868834B2 (en) 2012-09-14 2018-01-16 Evoqua Water Technologies Llc Polymer blend for membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996038386A1 (en) * 1995-05-24 1996-12-05 Unisearch Ltd. Concentration technique
US7347942B2 (en) 1998-10-09 2008-03-25 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
US6881343B2 (en) 1998-10-09 2005-04-19 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
WO2000021890A1 (en) * 1998-10-09 2000-04-20 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
US7922910B2 (en) 1998-10-09 2011-04-12 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
US6708957B2 (en) 1998-10-09 2004-03-23 Zenon Environmental Inc. Moving aerator for immersed membranes
EP1445240A1 (en) * 1998-10-09 2004-08-11 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
EP1452493A1 (en) * 1998-10-09 2004-09-01 Zenon Environmental Inc. Aeration system for submerged membrane modules
CZ300382B6 (en) * 1998-10-09 2009-05-06 Zenon Environmental Inc. Method for cleaning or protecting membrane modules from siltation
US7820050B2 (en) 1998-10-09 2010-10-26 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
US7014173B2 (en) 1998-10-09 2006-03-21 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
EP2204353A3 (en) * 1998-10-09 2010-09-15 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
US7198721B2 (en) 1998-10-09 2007-04-03 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
US7186343B2 (en) 1998-10-09 2007-03-06 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
US7625491B2 (en) 1998-10-09 2009-12-01 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
US6245239B1 (en) 1998-10-09 2001-06-12 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
US6706189B2 (en) 1998-10-09 2004-03-16 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
JP2002136844A (en) * 2000-04-20 2002-05-14 Rochem Ro Wasserbehandlung Gmbh Filtration and separation apparatus for fluid medium
US6899811B2 (en) 2000-05-04 2005-05-31 Zenon Environmental Inc. Immersed membrane apparatus
US7160463B2 (en) 2002-06-18 2007-01-09 U.S. Filter Wastewater Group, Inc. Methods of minimizing the effect of integrity loss in hollow fibre membrane modules
US7344645B2 (en) 2002-06-18 2008-03-18 Siemens Water Technologies Corp. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US7361274B2 (en) 2002-08-21 2008-04-22 Siemens Water Technologies Corp. Aeration method
US7022236B2 (en) 2002-12-05 2006-04-04 Zenon Environmental Inc. Membrane bioreactor, process and aerator
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
JP4833353B2 (en) * 2007-05-29 2011-12-07 シーメンス ウォーター テクノロジース コーポレイション Membrane module with pulsed airlift pump
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
JP2010125367A (en) * 2008-11-26 2010-06-10 Daiki Ataka Engineering Co Ltd Membrane separation apparatus
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9433903B2 (en) 2009-09-03 2016-09-06 Zenon Technology Partnership Gas sparger for a filtering membrane
US11219866B2 (en) 2009-09-03 2022-01-11 Bl Technologies, Inc. Gas sparger for an immersed membrane
US10471393B2 (en) 2009-09-03 2019-11-12 Bl Technologies, Inc. Gas sparger for an immersed membrane
US9358505B2 (en) 2009-09-03 2016-06-07 General Electric Company Gas sparger for an immersed membrane
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9364805B2 (en) 2010-10-15 2016-06-14 General Electric Company Integrated gas sparger for an immersed membrane
US10173175B2 (en) 2010-10-15 2019-01-08 Bl Technologies, Inc. Integrated gas sparger for an immersed membrane
US8876089B2 (en) 2011-09-15 2014-11-04 Zenon Technology Partnership Method and apparatus to keep an aerator full of air
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US11065569B2 (en) 2011-09-30 2021-07-20 Rohm And Haas Electronic Materials Singapore Pte. Ltd. Manifold arrangement
US9463419B2 (en) 2012-01-09 2016-10-11 General Electric Company Pulse aeration for immersed membranes
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9868834B2 (en) 2012-09-14 2018-01-16 Evoqua Water Technologies Llc Polymer blend for membranes
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
JP2014231033A (en) * 2013-05-28 2014-12-11 株式会社日立製作所 Cleaning method of membrane surface in flat membrane type membrane separation device and flat membrane type membrane separation device
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system

Also Published As

Publication number Publication date
JPH084722B2 (en) 1996-01-24

Similar Documents

Publication Publication Date Title
JPH04265128A (en) Membrane separation equipment
JP2946072B2 (en) Filtration method
KR100500339B1 (en) Apparatus and Method for Treating Water
KR100645952B1 (en) Hollow-fibre membrane filtration device for purifying waste water, filtration module and a method for traeting water or waste water using thereof
US20030121852A1 (en) Method and apparatus for treating waste water
JPH07155758A (en) Waste water treating device
JPWO2009028435A1 (en) Immersion type membrane separation device, water purification treatment device, and water purification treatment method using the same
JP2010082597A (en) Immersion type membrane separation apparatus
CA2742251A1 (en) Method for the filtration of a bioreactor liquid from a bioreactor; cross-flow membrane module, and bioreactor membrane system
KR100949077B1 (en) Wastewater treatment apparatus and wastewater treatmentmethod using the single-head typed submerged hollow fiber membrane
JP2010089079A (en) Method for operating immersed membrane separator and immersed membrane separator
JP2007209949A (en) Filtrate recovery device of solid-liquid mixed/processed liquid
KR100538126B1 (en) Ds-mt system
JP2007152302A (en) Solid/liquid separator of solid/liquid mixture
KR100236921B1 (en) Immersion type hollow fiber membrane module and method for treating waste water by using the same
JP3508874B2 (en) Hollow fiber membrane module assembly
JP3773360B2 (en) Septic tank with membrane separation
JPH09174094A (en) Raw water treatment method
KR20030097075A (en) Hybrid Submerged Plate Type Membrane Bioreactor Using microfilter Combined With Biofilm-Activated Carbon for Advanced Treatment of Sewage and Wastewater
JPH11314026A (en) Apparatus and method for filtration
JPH04225805A (en) Method for solid-liquid separation and apparatus therefor
JP2002035750A (en) Sewage filtering method
JPH08229360A (en) Membrane module
JP2003305313A (en) Solid-liquid separation method and apparatus therefor
JPH0716591A (en) Diffusion type aerating tank

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees