JPH04256425A - Back washing device for filtration - Google Patents

Back washing device for filtration

Info

Publication number
JPH04256425A
JPH04256425A JP3519191A JP3519191A JPH04256425A JP H04256425 A JPH04256425 A JP H04256425A JP 3519191 A JP3519191 A JP 3519191A JP 3519191 A JP3519191 A JP 3519191A JP H04256425 A JPH04256425 A JP H04256425A
Authority
JP
Japan
Prior art keywords
backwashing
filtration
reservoir
compressed gas
backwash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3519191A
Other languages
Japanese (ja)
Inventor
Kyoichi Tamaoki
玉置 恭一
Toru Yunoki
徹 柚木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Millipore KK
Original Assignee
Nihon Millipore KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Millipore KK filed Critical Nihon Millipore KK
Priority to JP3519191A priority Critical patent/JPH04256425A/en
Publication of JPH04256425A publication Critical patent/JPH04256425A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To attain the execution of back washing within short time and at short interval and to enable maintenance for a long time with excellent back washing effect by connecting compressed gas supplying source to the reservoir provided in the way to passage of permeated liq and backwashing with filtrate in the reservoir by using the compressed gas as a power source of back washing. CONSTITUTION:At the time of backwashing, closing values 10, 14, a value 12 and a by-pass valve 8 are opened and the compressed gas for backwashing is applied to the backwashing reservoir 9, and a permeated liq, 16 in the reservoir 9 is made to flow to the separating membrane 3 and the suspended matter of solute stuck to the surface of the separation mambrane 3 and clad, etc., are washed away and discharged into an original liquid tank 1. Simultaneously, as the by-pass valve 8 is opened, original liquid 15 supplied by pump 2 is recovered into the original liquid tank 1 together with the liquid flowing by backwashing through the by-pass pipe 7. Also, original liquid side pressure of the separating membrane module 3 is reduced and pump 2 is continued operation in spite of backwashing.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はろ過膜またはろ過フィル
タを再生する逆洗装置に関する。更に詳述すると、本発
明は特に限定されるものではないが、ウルトラフィルト
レーション(限外ろ過:UFとも言われる)装置やマイ
クロフィルトレーション(精密ろ過:MFとも言われる
)装置等の液体の濃縮あるいはろ過を実施する装置に用
いて好適な逆洗装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a backwashing device for regenerating a filtration membrane or a filtration filter. More specifically, the present invention is not particularly limited to liquids such as ultrafiltration (also referred to as UF) devices and microfiltration (also referred to as MF) devices. The present invention relates to a backwashing device suitable for use in a device that performs concentration or filtration.

【0002】0002

【従来の技術】ろ過膜またはろ過フィルタの目詰りを取
除いてろ過膜またはろ過フィルタを再生する手段として
は、透過液を逆流させてろ過膜またはろ過フィルタ表面
の溶質や懸濁物質等を原液(被処理液)側に押し流し、
濃縮液として回収するか、ブロー水として排棄する逆洗
装置が使用されている。この従来の逆洗装置としては、
例えば図5に示すように、原液タンク101と、供給ポ
ンプ102と、ろ過手段としての分離膜モジュール10
3と、これらを順次接続する原液供給系104と、分離
膜モジュール103から排出される濃縮液を原液タンク
101に戻す濃縮液回収系105と、分離膜モジュール
103から透過液113をろ液タンク108に導く透過
液供給系106と、この透過液供給系106を開閉する
ろ過用バルブ107と、透過液113を貯める透過液タ
ンク108と、この透過液タンク108から逆洗用とし
て透過液113の一部を抜出して分離膜モジュール10
3に向けて逆流させる逆洗ポンプ109とその逆洗流路
111を開閉する逆洗用仕切弁110とから構成されて
いる。この逆洗装置は、ろ過用バルブ107を閉じて逆
洗用バルブ110を開き、逆洗ポンプ109を回転させ
て透過液タンク108内の透過液113を分離膜モジュ
ール103に逆流させるようにしている。この逆洗は、
通常数ケ月〜1日の比較的長いサイクル、短くても数十
分のサイクルで行なわれている。例えば、原子力発電所
等における冷却水からの放射性廃棄物の回収に用いられ
ている精密ろ過装置では4ケ月に1回の割合で逆洗は行
なわれている。
[Prior Art] As a means of removing clogging of a filtration membrane or filtration filter and regenerating the filtration membrane or filtration filter, the permeated liquid is reversed to remove solutes, suspended substances, etc. on the surface of the filtration membrane or filtration filter. (Liquid to be treated)
Backwash equipment is used that either collects the water as a concentrate or disposes it as blow water. This conventional backwashing device is
For example, as shown in FIG. 5, there is a stock solution tank 101, a supply pump 102, and a separation membrane module 10 as a filtration means.
3, a stock solution supply system 104 that sequentially connects these, a concentrate recovery system 105 that returns the concentrate discharged from the separation membrane module 103 to the stock solution tank 101, and a filtrate tank 108 that carries the permeate 113 from the separation membrane module 103. A permeate supply system 106 that leads to the permeate, a filtration valve 107 that opens and closes the permeate supply system 106, a permeate tank 108 that stores the permeate 113, and a part of the permeate 113 from the permeate tank 108 for backwashing. Separation membrane module 10
3, and a backwash gate valve 110 that opens and closes a backwash flow path 111 thereof. This backwashing device closes a filtration valve 107, opens a backwash valve 110, and rotates a backwash pump 109 to cause the permeate 113 in the permeate tank 108 to flow back to the separation membrane module 103. . This backwashing
It is usually performed in a relatively long cycle of several months to one day, or in a short cycle of several tens of minutes. For example, in microfiltration equipment used to recover radioactive waste from cooling water in nuclear power plants and the like, backwashing is performed once every four months.

【0003】0003

【発明が解決しようとする課題】しかしながら、比較的
長いサイクルで逆洗を行なう従来の逆洗装置によると、
次第に逆洗時のろ過速度の回復が悪くなって行き、逆洗
効果が落ちていく問題がある。
[Problems to be Solved by the Invention] However, according to the conventional backwashing device that performs backwashing in a relatively long cycle,
There is a problem that the recovery of the filtration rate during backwashing gradually becomes worse, and the backwashing effect decreases.

【0004】また、従来の逆洗装置によると、透過液を
逆流させるのにポンプを使用しているため、頻繁にモー
タをON,OFFさせかつそれを数秒のオーダーで駆動
させることは、モータ及びマグネットリレーの破壊を招
き好ましくない。しかも、ポンプのON,OFFは応答
が数秒遅れる。このことから、従来の逆洗装置では短時
間の逆洗は不可能でありハイサイクル逆洗は実用上困難
であった。また、逆洗用液体を循環させることによって
常時ポンプを稼動させることによって逆洗操作への応答
性を良くすることも考えられるが、ランニングコスト(
消費電力等)がかかり過ぎ不経済である上にその透過液
が変性を受ける可能性がある。
[0004] Furthermore, since conventional backwashing devices use a pump to backflow the permeate, frequently turning the motor on and off and driving it for several seconds is a problem for the motor and This is undesirable as it may lead to destruction of the magnetic relay. Moreover, the response when turning the pump ON and OFF is delayed by several seconds. For this reason, short-time backwashing is impossible with conventional backwashing equipment, and high-cycle backwashing is practically difficult. It is also possible to improve responsiveness to backwash operations by constantly operating the pump by circulating backwash liquid, but running costs (
In addition to being uneconomical due to excessive power consumption (power consumption, etc.), the permeate may be denatured.

【0005】本発明は逆洗効果が高くしかもそれを長期
間維持できるろ過用逆洗装置を提供することを目的とす
る。
An object of the present invention is to provide a backwashing device for filtration which has a high backwashing effect and can maintain it for a long period of time.

【0006】[0006]

【課題を解決するための手段】かかる目的を達成するた
め、本発明者等がUF装置及びMF装置のろ過速度と逆
洗時間及び逆洗量との相関関係について研究を重ねた結
果、ろ過時間と逆洗時間を短くする程即ち逆洗サイクル
を短くする程、透過速度が速くかつその累計の仕事量(
ろ過量/時間)に対しても効率的であることを知見する
に至った。即ち、図4に示すように、逆洗時間は短くな
る程例えば2秒よりも1秒の方が平均ろ過速度を上げる
。しかも、逆洗時間の短縮化に伴って逆洗間隔を従来に
比べてはるかに短くすることによってその逆洗効果は上
がる。
[Means for Solving the Problems] In order to achieve the above object, the present inventors have repeatedly studied the correlation between the filtration speed and backwash time and backwash amount of UF devices and MF devices, and have found that the filtration time The shorter the backwashing time, that is, the shorter the backwashing cycle, the faster the permeation rate and the cumulative amount of work (
It has been found that the method is also efficient in terms of filtration amount/time. That is, as shown in FIG. 4, the shorter the backwash time is, the higher the average filtration rate is for 1 second than for 2 seconds, for example. Moreover, the backwashing effect is improved by shortening the backwashing time and making the backwashing interval much shorter than in the past.

【0007】本発明はかかる知見に基づくものであって
、ろ過膜またはろ過フィルタに透過液を逆流させて前記
ろ過膜またはろ過フィルタを再生する逆洗装置において
、前記透過液を流す流路の途中にリザーバを設けると共
に該リザーバに圧縮ガス供給源を接続し、逆流の駆動源
として圧縮ガスを使用して前記リザーバ内の透過液で逆
洗するようにしている。
The present invention is based on this knowledge, and includes a backwashing device that regenerates a filtration membrane or a filtration filter by causing a permeate to flow back through the filtration membrane or a filtration filter. A reservoir is provided in the reservoir, and a compressed gas supply source is connected to the reservoir, and the compressed gas is used as a drive source for backflow to backwash with the permeate in the reservoir.

【0008】[0008]

【作用】したがって、リザーバ内に逆洗用圧縮ガスが供
給されると同時にリザーバ内の透過液が瞬時にフィルタ
へ逆流してフィルタ表面の溶質や懸濁物質等を供給液側
に流してフィルタを再生する。逆洗完了後は圧縮ガスが
リザーバから抜かれて再びリザーバ内を透過液が満して
からろ過出口へ向けて流出する。
[Operation] Therefore, at the same time that the compressed gas for backwashing is supplied into the reservoir, the permeated liquid in the reservoir instantly flows back to the filter, flushing solutes and suspended substances on the filter surface to the feed liquid side, and cleaning the filter. Reproduce. After backwashing is completed, the compressed gas is removed from the reservoir, and the reservoir is again filled with permeate, which then flows out toward the filtration outlet.

【0009】[0009]

【実施例】以下、本発明の構成を図面に示す実施例に基
づいて詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the structure of the present invention will be explained in detail based on embodiments shown in the drawings.

【0010】図1に本発明の逆洗装置をクロスフロー型
限外ろ過装置に応用した実施例を示す。この限外ろ過装
置は、原液を貯留するタンク1と、該タンク1から被処
理液即ち原液15を抜き出してろ過手段に供給するポン
プ2と、ろ過手段としての分離膜モジュール3と、これ
らを連結して原液タンク1の原液15を分離膜モジュー
ル3に供給する原液供給系4と、分離膜ジュール3から
排出される濃縮水を原液タンク1へ戻す濃縮液回収系5
と、分離膜モジュール3を透過した透過液(ろ過液)を
必要とする場所ないし装置等(以下ユースポイントとい
う)へ供給する透過液供給系6とから構成されている。 原液供給系4と濃縮液回収系5とはバイパス管7によっ
て連結され、その開閉をバルブ8によって行なうように
設けられている。透過液供給系6には逆洗リザーバ9が
接続され、その下流に透過液供給系6を開閉するバルブ
10が設けられている。また、逆洗リザーバ9の頂部に
は逆洗用の圧力ガスを供給する圧縮ガス供給源11が接
続され、この圧縮ガス供給源11と逆洗リザーバ9との
間に設けられた圧縮ガス入口バルブ12によって圧力ガ
スの供給が断続されるように設けられている。また、圧
縮ガス入口バルブ12と逆洗リザーバ9との間には分岐
管13と排気バルブ14を介して大気と連通されている
FIG. 1 shows an embodiment in which the backwashing device of the present invention is applied to a cross-flow type ultrafiltration device. This ultrafiltration device connects a tank 1 that stores a stock solution, a pump 2 that extracts a liquid to be treated, that is, a stock solution 15 from the tank 1 and supplies it to a filtration means, and a separation membrane module 3 as a filtration means. a concentrated solution supply system 4 that supplies the concentrated solution 15 in the concentrated solution tank 1 to the separation membrane module 3; and a concentrated solution recovery system 5 that returns concentrated water discharged from the separation membrane module 3 to the concentrated solution tank 1.
and a permeate supply system 6 that supplies the permeate (filtrate) that has passed through the separation membrane module 3 to a place or device that requires it (hereinafter referred to as a use point). The raw solution supply system 4 and the concentrated solution recovery system 5 are connected by a bypass pipe 7, and are provided so as to be opened and closed by a valve 8. A backwash reservoir 9 is connected to the permeate supply system 6, and a valve 10 for opening and closing the permeate supply system 6 is provided downstream thereof. Further, a compressed gas supply source 11 that supplies pressurized gas for backwashing is connected to the top of the backwash reservoir 9, and a compressed gas inlet valve is provided between the compressed gas supply source 11 and the backwash reservoir 9. 12 so that the supply of pressure gas is interrupted. Furthermore, the compressed gas inlet valve 12 and the backwash reservoir 9 are communicated with the atmosphere via a branch pipe 13 and an exhaust valve 14.

【0011】ここで、ろ過手段としては、本実施例の場
合、クロスフローろ過(タンジェンシャルフローろ過)
のフィルタ、例えばセラミックフィルタ(商品名:セラ
フロー  日本ミリポア  リミテッド製)が採用され
ているが、特にこれに限定されるて適用されるものでは
なく、ろ過方式及びろ過材に関係なく実施できる。また
、圧縮ガスとしては、透過液の成分等に悪影響を与えな
いガスであればどのようなものでも使用可能であるが、
好ましくは比較的安価なもの例えば空気の使用が経済的
であり好ましい。また、排気バルブ14としてはリザー
バ9内の高圧のガスを0.1〜5秒間程度で大気中へ排
出するバルブの使用が好ましい。更に、逆洗はタイマに
よって行うのが一般的であるが、逆洗用リザーバ9内に
液面スイッチ17を設け、一定液量によって逆洗を行う
ようにしても良い。尚、バルブ8は逆洗時に原液側の圧
力を下げるためのもので逆洗圧をろ過圧に対して高くす
れば不要となる。
[0011] In this example, the filtration means is cross flow filtration (tangential flow filtration).
For example, a ceramic filter (trade name: Ceraflow, manufactured by Nippon Millipore Limited) is used, but the application is not particularly limited to this, and can be carried out regardless of the filtration method and filter material. In addition, any compressed gas can be used as long as it does not adversely affect the components of the permeated liquid.
It is preferable to use a relatively inexpensive material such as air because it is economical. Further, as the exhaust valve 14, it is preferable to use a valve that exhausts the high pressure gas in the reservoir 9 into the atmosphere in about 0.1 to 5 seconds. Furthermore, although backwashing is generally performed using a timer, a liquid level switch 17 may be provided in the backwashing reservoir 9 to perform backwashing with a constant amount of liquid. Note that the valve 8 is for lowering the pressure on the stock solution side during backwashing, and becomes unnecessary if the backwash pressure is made higher than the filtration pressure.

【0012】以上のように構成された逆洗装置によると
、バルブ10が開かれるとポンプ2によって原液タンク
1から引き出された原液が分離膜モジュール3に供給さ
れてろ過され、透過液16は膜出口からリザーバ9に送
られた後にろ過液出口へ圧送される。一方、濃縮液17
は回収系5を経て原液タンク1へ回収される。また、逆
洗時には、バルブ10,14を閉じ、バルブ12とバイ
パスバルブ8を開いて逆洗用圧縮ガスを逆洗リザーバ9
にかけ、リザーバ9内の透過液16を分離膜3に逆流さ
せ、分離膜3の表面に付着している溶質懸濁物質、クラ
ッド等を押し流し原液タンク1側へ排出する。同時にバ
イパス弁8が開かれているためポンプ2から供給された
原液15はバイパス管7を通って逆洗によって流れてく
る液体と一緒に原液タンク1へ回収される。分離膜モジ
ュール3の原液側の圧力を下げるようにしている。ポン
プ2は逆洗に関係なく運転を続けている。
According to the backwashing device configured as described above, when the valve 10 is opened, the stock solution drawn from the stock solution tank 1 by the pump 2 is supplied to the separation membrane module 3 and filtered, and the permeate liquid 16 is passed through the membrane. After being sent to the reservoir 9 from the outlet, it is pumped to the filtrate outlet. On the other hand, concentrate 17
is recovered to the stock solution tank 1 via the recovery system 5. Also, during backwashing, valves 10 and 14 are closed, valve 12 and bypass valve 8 are opened, and the compressed gas for backwashing is transferred to the backwash reservoir 9.
The permeated liquid 16 in the reservoir 9 is caused to flow back to the separation membrane 3, and the solute suspended matter, crud, etc. adhering to the surface of the separation membrane 3 are washed away and discharged to the stock solution tank 1 side. At the same time, since the bypass valve 8 is opened, the stock solution 15 supplied from the pump 2 is collected into the stock solution tank 1 together with the liquid flowing through the bypass pipe 7 by backwashing. The pressure on the raw solution side of the separation membrane module 3 is lowered. Pump 2 continues to operate regardless of backwashing.

【0013】この動きを図2のタイムチャートによって
示す。ろ過ポンプ2の運転開始後、バルブ10が開放さ
れろ過が開始される。所定のろ過時間が経過するとバル
ブ10が閉じられてバルブ8,12が開放され逆洗が行
われる。所定の逆洗時間が経過するとバルブ8,12が
閉じられてからバルブ14が開けられ、リザーバ9に供
給された圧縮ガスが大気中に排気される。これを一サイ
クルとし順次繰返す。ここで、ろ過時間と逆洗サイクル
並びに逆洗時間は本発明者等の研究の結果、短くするほ
ど透過速度が早くその累計の仕事量に対しても効率的で
ある。例えば、分画分子量500〜500000の限外
ろ過膜あるいはポアサイズ0.01μm〜10μmの精
密ろ過膜を対象としている場合、ろ過時間を10〜10
00秒、逆洗を0.1〜100秒の範囲、より好ましく
はろ過を60〜180秒、逆洗を0.2〜3秒の範囲で
実施する。また、逆洗圧力は約0.1kgf/cm2 
〜50kgf/cm2 、より好ましくは約1kgf/
cm2 〜6kgf/cm2 、最も好ましくは約3k
gf/cm2 である。
This movement is shown in the time chart of FIG. After the filtration pump 2 starts operating, the valve 10 is opened and filtration is started. When a predetermined filtration time has elapsed, the valve 10 is closed and the valves 8 and 12 are opened to perform backwashing. When a predetermined backwashing time has elapsed, the valves 8 and 12 are closed, and then the valve 14 is opened, and the compressed gas supplied to the reservoir 9 is exhausted to the atmosphere. This is considered as one cycle and is repeated sequentially. Here, as a result of research by the present inventors, the filtration time, backwash cycle, and backwash time are shorter, the faster the permeation rate is, and the more efficient the total amount of work is. For example, when targeting an ultrafiltration membrane with a molecular weight cutoff of 500 to 500,000 or a microfiltration membrane with a pore size of 0.01 μm to 10 μm, the filtration time is 10 to 10 μm.
00 seconds, backwashing for 0.1 to 100 seconds, more preferably filtration for 60 to 180 seconds, and backwashing for 0.2 to 3 seconds. In addition, the backwash pressure is approximately 0.1 kgf/cm2
~50kgf/cm2, more preferably about 1kgf/
cm2 to 6kgf/cm2, most preferably about 3k
gf/cm2.

【0014】実験例1 図1のクロスフロー型限外ろ過装置において、分離膜と
してポアサイズ0.2μm,膜面積0.14m2 のセ
ラミックフィルタ(商品名:セラフロー  日本ミリポ
ア  リミテッド製)を採用し、これにリンゴジュース
を原液としてろ過を行った。原液量は20リットル、ろ
過圧約3kgf/cm2 、逆洗圧約6.5kgf/c
m2 によってろ過240秒、逆洗間隔244秒、逆洗
時間3秒を行った。この結果、図3に示すように、逆洗
を行わない場合の約2倍のろ過速度を得た。また、逆洗
を中止したところ、ろ過速度は急激に低下し、逆洗の効
果があることがわかる。
Experimental Example 1 In the cross-flow type ultrafiltration apparatus shown in Fig. 1, a ceramic filter (trade name: Ceraflow, manufactured by Nippon Millipore Limited) with a pore size of 0.2 μm and a membrane area of 0.14 m2 was adopted as the separation membrane. Filtration was performed using apple juice as a stock solution. Volume of stock solution is 20 liters, filtration pressure approximately 3 kgf/cm2, backwash pressure approximately 6.5 kgf/c
m2, filtration was performed for 240 seconds, backwash interval was 244 seconds, and backwash time was 3 seconds. As a result, as shown in FIG. 3, the filtration rate was approximately twice that of the case without backwashing. Furthermore, when backwashing was stopped, the filtration rate suddenly decreased, indicating that backwashing was effective.

【0015】実験例2 図5の従来の逆洗装置において、実験例1のものと同じ
分離膜及び原液を使用してろ過を行った。このときの逆
洗時間は30秒とし、逆洗間隔を30分(ろ過時間30
分)とした。また、ろ過圧は約3kgf/cm2 、逆
洗圧は約3kgf/cm2 とした。この実験の結果を
図3に仮想線で示す。この結果から明らかなように、従
来の逆洗装置を用いて比較的長いサイクルで行なった逆
洗の効果は、逆洗をしない場合よりは速いろ過速度が得
られるが、実験例1のものの半分程度のろ過速度にしか
達せず、しかも逆洗時のろ過速度の回復が次第に悪くな
っていくことが分かる。
Experimental Example 2 Filtration was carried out in the conventional backwashing apparatus shown in FIG. 5 using the same separation membrane and stock solution as in Experimental Example 1. The backwash time at this time is 30 seconds, and the backwash interval is 30 minutes (filtration time is 30 seconds).
minutes). Further, the filtration pressure was approximately 3 kgf/cm2, and the backwashing pressure was approximately 3 kgf/cm2. The results of this experiment are shown in phantom lines in FIG. As is clear from this result, the effect of backwashing performed in a relatively long cycle using a conventional backwashing device is that a faster filtration rate can be obtained than when no backwashing is performed, but it is half that of Experimental Example 1. It can be seen that only a moderate filtration speed was reached, and the recovery of the filtration speed during backwashing gradually worsened.

【0016】[0016]

【発明の効果】以上の説明より明らかなように、本発明
のろ過用逆洗装置は、透過液を流す流路の途中にリザー
バを設けると共に該リザーバに圧縮ガス供給源を接続し
、圧縮ガスを使用して前記リザーバ内の透過液で逆洗す
るようにしているので、圧縮ガスの供給と同時にリザー
バ内の透過液が瞬時にろ過膜あるいはろ過フィルタへ逆
流させ従来に比べて極めて短時間及び短い間隔で逆洗が
実施できる。そして、この逆洗のハイサイクル化によっ
て逆洗効果は、図3に示すように、従来の逆洗装置に比
べて高い効果を得ると共に逆洗を繰返すことによって透
過速度が落ちる傾向も少ない。
Effects of the Invention As is clear from the above explanation, the filtration backwashing device of the present invention provides a reservoir in the middle of a channel through which permeated liquid flows, connects a compressed gas supply source to the reservoir, and supplies compressed gas to the reservoir. Since the permeated liquid in the reservoir is used to perform backwashing with the permeated liquid in the reservoir, the permeated liquid in the reservoir instantly flows back to the filtration membrane or filtration filter at the same time as compressed gas is supplied. Backwashing can be performed at short intervals. As shown in FIG. 3, by increasing the cycle of backwashing, the backwashing effect is higher than that of conventional backwashing equipment, and there is less tendency for the permeation rate to drop due to repeated backwashing.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の逆洗装置の一例を示す概略図である。FIG. 1 is a schematic diagram showing an example of a backwashing device of the present invention.

【図2】図1の逆洗装置の運転操作を示すタイムチャー
トである。
FIG. 2 is a time chart showing the operation of the backwashing device in FIG. 1;

【図3】逆洗とろ過速度の変化との関係を示すグラフで
ある。
FIG. 3 is a graph showing the relationship between backwashing and changes in filtration rate.

【図4】逆洗間隔が平均ろ過速度に与える影響を逆洗時
間との関係において求めたグラフである。
FIG. 4 is a graph showing the influence of backwash interval on average filtration rate in relation to backwash time.

【図5】従来の逆洗装置を示す概略図である。FIG. 5 is a schematic diagram showing a conventional backwashing device.

【符号の説明】[Explanation of symbols]

3  ろ過手段(ろ過膜またはろ過フィルタ)6  透
過液を流す流路(透過液供給系)9  リザーバ 11  圧縮ガス供給源 12  圧縮ガス入口バルブ 14  排気バルブ 15  原液 16  リザーバ内の透過液
3 Filtration means (filtration membrane or filtration filter) 6 Channel for flowing permeate (permeate supply system) 9 Reservoir 11 Compressed gas supply source 12 Compressed gas inlet valve 14 Exhaust valve 15 Stock solution 16 Permeate in reservoir

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  ろ過膜またはろ過フィルタに透過液を
逆流させて前記ろ過膜またはろ過フィルタを再生する逆
洗装置において、前記透過液を流す流路の途中にリザー
バを設けると共に該リザーバに圧縮ガス供給源を接続し
、逆流の駆動源として圧縮ガスを使用して前記リザーバ
内の透過液で逆洗することを特徴とするろ過用逆洗装置
1. A backwashing device that regenerates the filtration membrane or filtration by causing permeate to flow back through the filtration membrane or filtration filter, wherein a reservoir is provided in the middle of a channel through which the permeate flows, and a compressed gas is supplied to the reservoir. A backwashing device for filtration, characterized in that the device is connected to a supply source and backwashes the permeate in the reservoir using compressed gas as a drive source for backflow.
【請求項2】  前記圧縮ガスは約0.1kgf/cm
2 〜50kgf/cm2 であることを特徴とする請
求項1記載のろ過用逆洗装置。
2. The compressed gas has a pressure of about 0.1 kgf/cm.
2. The backwashing device for filtration according to claim 1, wherein the pressure is 2 to 50 kgf/cm2.
【請求項3】  前記圧縮ガスは約1kgf/cm2 
〜6kgf/cm2 であることを特徴とする請求項1
記載のろ過用逆洗装置。
3. The compressed gas has a pressure of about 1 kgf/cm2.
Claim 1 characterized in that it is ~6 kgf/cm2.
Backwash device for filtration as described.
【請求項4】  前記圧縮ガスは約3kgf/cm2 
であることを特徴とする請求項1記載のろ過用逆洗装置
4. The compressed gas is approximately 3 kgf/cm2.
The filtration backwash device according to claim 1, characterized in that:
【請求項5】  10〜1000秒の間でろ過を、0.
1〜100秒の間で逆洗を交互に実施することを特徴と
する請求項1ないし4のいずれかに記載のろ過用逆洗装
置。
5. Filtration is carried out for 10 to 1000 seconds at a rate of 0.
The backwashing device for filtration according to any one of claims 1 to 4, wherein the backwashing is performed alternately for 1 to 100 seconds.
【請求項6】  60〜180秒間のろ過を、0.2〜
3秒の間で逆洗を交互に実施することを特徴とする請求
項1ないし4のいずれかに記載のろ過用逆洗装置。
Claim 6: Filtration for 60 to 180 seconds at 0.2 to 180 seconds.
The backwashing device for filtration according to any one of claims 1 to 4, wherein the backwashing is performed alternately for 3 seconds.
JP3519191A 1991-02-05 1991-02-05 Back washing device for filtration Pending JPH04256425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3519191A JPH04256425A (en) 1991-02-05 1991-02-05 Back washing device for filtration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3519191A JPH04256425A (en) 1991-02-05 1991-02-05 Back washing device for filtration

Publications (1)

Publication Number Publication Date
JPH04256425A true JPH04256425A (en) 1992-09-11

Family

ID=12434963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3519191A Pending JPH04256425A (en) 1991-02-05 1991-02-05 Back washing device for filtration

Country Status (1)

Country Link
JP (1) JPH04256425A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6245239B1 (en) 1998-10-09 2001-06-12 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
US6550747B2 (en) 1998-10-09 2003-04-22 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
US6706189B2 (en) 1998-10-09 2004-03-16 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
US7014173B2 (en) 1998-10-09 2006-03-21 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
US7022236B2 (en) 2002-12-05 2006-04-04 Zenon Environmental Inc. Membrane bioreactor, process and aerator
JP2009523062A (en) * 2006-01-12 2009-06-18 シーメンス・ウォーター・テクノロジーズ・コーポレーション Improved operating methods in the filtration process.
JP2012096194A (en) * 2010-11-04 2012-05-24 Benten:Kk Filter cleaning system
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
CN113476929A (en) * 2021-05-31 2021-10-08 成都思达能环保设备有限公司 Backflushing device and backflushing method for filter element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172761A (en) * 1981-04-17 1982-10-23 Hitachi Ltd Semiconductor integrated circuit
JPS5968891A (en) * 1982-10-12 1984-04-18 Toshiba Corp Semiconductor memory

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172761A (en) * 1981-04-17 1982-10-23 Hitachi Ltd Semiconductor integrated circuit
JPS5968891A (en) * 1982-10-12 1984-04-18 Toshiba Corp Semiconductor memory

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7347942B2 (en) 1998-10-09 2008-03-25 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
US7625491B2 (en) 1998-10-09 2009-12-01 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
US6706189B2 (en) 1998-10-09 2004-03-16 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
US6881343B2 (en) 1998-10-09 2005-04-19 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
US6245239B1 (en) 1998-10-09 2001-06-12 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
US7922910B2 (en) 1998-10-09 2011-04-12 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
US6550747B2 (en) 1998-10-09 2003-04-22 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
US7186343B2 (en) 1998-10-09 2007-03-06 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
US7014173B2 (en) 1998-10-09 2006-03-21 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
US7820050B2 (en) 1998-10-09 2010-10-26 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
US7198721B2 (en) 1998-10-09 2007-04-03 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
US7022236B2 (en) 2002-12-05 2006-04-04 Zenon Environmental Inc. Membrane bioreactor, process and aerator
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
JP2009523062A (en) * 2006-01-12 2009-06-18 シーメンス・ウォーター・テクノロジーズ・コーポレーション Improved operating methods in the filtration process.
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
JP2012096194A (en) * 2010-11-04 2012-05-24 Benten:Kk Filter cleaning system
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
CN113476929A (en) * 2021-05-31 2021-10-08 成都思达能环保设备有限公司 Backflushing device and backflushing method for filter element

Similar Documents

Publication Publication Date Title
JPH04256425A (en) Back washing device for filtration
US4935143A (en) Cleaning of filters
JPH06277664A (en) Method and apparatus for clarifying surface flowing water with membrane
JP2010207748A (en) Desalination apparatus and method of washing the same
JPS61230707A (en) Ultrafiltration method
JP2002248324A (en) Membrane separation apparatus and its backwashing method
JPH11244852A (en) Desalination device and back washing method of filter used for desalination device
JPS644802B2 (en)
JPH06238136A (en) Method for washing filter membrane module
JP3395846B2 (en) Water membrane purification method and method of operating the same
JPS6359312A (en) Washing method for reverse osmosis membrane module of reverse osmosis desalination device
JP2794304B2 (en) Cleaning method for hollow fiber membrane module
JP2005143379A (en) Method and apparatus for recovering microorganism
JP3440684B2 (en) Filtration device and method for cleaning filtration device
JP4454922B2 (en) Control method of filtration apparatus using hollow fiber type separation membrane
JP5005165B2 (en) Water treatment method
JP3579188B2 (en) Filtration device
JPH10192665A (en) Backward washing of membrane
JP3264794B2 (en) Solid-liquid separation device and its cleaning method
WO2007064831A1 (en) Membrane flushing system
JP3371767B2 (en) Operating method of membrane deaerator and membrane deaerator
JP2000246069A (en) Membrane filtration apparatus
JPH04225805A (en) Method for solid-liquid separation and apparatus therefor
JP2705708B2 (en) Filtration membrane separation method
JP2002126468A (en) Method of cleaning membrane module and membrane filter apparatus