JPH04250898A - Batch-wise waste water treating device - Google Patents

Batch-wise waste water treating device

Info

Publication number
JPH04250898A
JPH04250898A JP2417214A JP41721490A JPH04250898A JP H04250898 A JPH04250898 A JP H04250898A JP 2417214 A JP2417214 A JP 2417214A JP 41721490 A JP41721490 A JP 41721490A JP H04250898 A JPH04250898 A JP H04250898A
Authority
JP
Japan
Prior art keywords
contact material
contact
aeration
contact materials
air diffuser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2417214A
Other languages
Japanese (ja)
Inventor
Takeo Kato
武男 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Diesel Engine Co Ltd filed Critical Yanmar Diesel Engine Co Ltd
Priority to JP2417214A priority Critical patent/JPH04250898A/en
Publication of JPH04250898A publication Critical patent/JPH04250898A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To prevent the enlargement of the microorganism layers on contact materials by improving the aeration system of the batch-wise waste water treating device packed with the contact materials 3 in a treating tank 1. CONSTITUTION:A 1st air diffuser 4 which is so constituted that the ascending flow by bubbles for aeration comes into contact with the contact materials 3 and a 2nd air diffuser 5 which is so constituted that the descending flow by the bubble for aeration comes into contact with the contact materials 3 are provided. The air diffuser 4 and the air diffuser 5 are alternately operated. Since the ascending flow and the descending flow come into contact alternately with the contact materials 3, the surfaces of the contact materials 3 are washed and the aerobic and anaerobic microorganisms coexisting on the contact materials 3 affect each other to adequately suppress the activity. The dislodgment of the microorganism layers by the enlargement is, therefore, prevented.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、接触材を用いる回分
式廃水処理装置の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a batch-type wastewater treatment apparatus using a contact material.

【0002】0002

【従来の技術】回分式廃水処理装置には、微生物担持用
の接触材を処理槽内に充填したものがある。この接触材
は嫌気性の微生物と好気性の微生物を接触材上に混在繁
殖させることにより微生物の活性を適度に抑え、微生物
の過剰繁殖を防いで多量な活性汚泥の発生を防止すると
共に、装置の処理性能を向上することを目的としている
(例えば、本出願人の出願に係る特願平2−86176
号参照)。また処理槽内には散気手段が設けられており
、曝気工程では散気手段から微細な気泡を放出して反応
を促進することが行われている。
BACKGROUND OF THE INVENTION Some batch wastewater treatment apparatuses include a treatment tank filled with a contact material for supporting microorganisms. This contact material moderately suppresses the activity of microorganisms by allowing anaerobic microorganisms and aerobic microorganisms to co-propagate on the contact material, prevents overgrowth of microorganisms, and prevents the generation of large amounts of activated sludge. (For example, Japanese Patent Application No. 2-86176 filed by the present applicant)
(see issue). Further, an aeration means is provided in the processing tank, and in the aeration step, fine bubbles are discharged from the aeration means to promote the reaction.

【0003】0003

【発明が解決しようとする課題】このように接触材を用
いた装置においては、曝気工程が繰り返されると接触材
に付着した微生物の層が次第に厚くなり、内部の嫌気性
膜が増加して反応を遅延させるという問題が生ずる。ま
た厚くなった微生物層が脱落しやすくなり、脱落すると
処理能力が低下するので面倒な交換が必要となるという
問題点もあり、これを防ぐために適当な周期で洗浄を行
う等の予防処置を実施する必要があった。
[Problem to be Solved by the Invention] In devices using a contact material as described above, when the aeration process is repeated, the layer of microorganisms attached to the contact material gradually becomes thicker, and the internal anaerobic membrane increases, causing a reaction. The problem arises that the process is delayed. There is also the problem that the thickened microbial layer tends to fall off, and when it falls off, the processing capacity decreases, requiring troublesome replacement.To prevent this, preventive measures such as cleaning at appropriate intervals are taken. I needed to.

【0004】この発明はこのような点に着目し、曝気方
式の改善によって接触材上の微生物層の肥大化を防止す
ることを目的としてなされたものである。
[0004] The present invention has focused on these points, and has been made for the purpose of preventing the microbial layer on the contact material from enlarging by improving the aeration method.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、この発明の回分式廃水処理装置は、接触材に上昇
流が当たるように配置された第1の散気手段と、接触材
に下降流が当たるように配置された第2の散気手段、と
を設け、第1の散気手段と第2の散気手段を交互に作動
させるようにしている。
[Means for Solving the Problems] In order to achieve the above object, the batch type wastewater treatment device of the present invention includes a first aeration means disposed so that an upward flow hits the contact material, and a contact material. and a second aeration means arranged so that the downward flow hits the air, and the first aeration means and the second aeration means are operated alternately.

【0006】[0006]

【作用】第1の散気手段と第2の散気手段を交互に作動
させると、接触材に上昇流と下降流が交互に当たるので
接触材が洗浄され、好気性か嫌気性のいずれかの微生物
が一方的に増加することがなくなり、微生物層が脱落す
るほど過度に肥大化することも防止される。
[Operation] When the first aeration means and the second aeration means are operated alternately, the contact material is alternately hit by an upward flow and a downward flow, so that the contact material is washed and the contact material is either aerobic or anaerobic. Microorganisms are prevented from increasing unilaterally, and the microorganism layer is also prevented from becoming so large that it becomes detached.

【0007】[0007]

【実施例】図1及び図2はこの発明の装置の一実施例の
概略断面図であり、1は処理槽、2は廃水、3は複数個
の接触材、4は第1の散気装置、5は第2の散気装置、
6はブロワー等の給気用高圧空気源であって、散気装置
4は電磁弁7を介して、また散気装置5は電磁弁8を介
してそれぞれ高圧空気源6に接続されている。各接触材
3は例えばフロートと繊維質材料からなる微生物担持部
とが一体となった構造のもので、少なくとも曝気工程で
は廃水2内に水没する状態で設けられており、この実施
例では繊維質材料からなる微生物担持部の充填率が10
%乃至30%程度の数値になるようにその寸法が選定さ
れている。また、接触材3は複数個が比較的密に配置さ
れて接触材群10を構成し、各接触材群10の間の間隔
は少し広くなっている。
[Embodiment] FIGS. 1 and 2 are schematic sectional views of an embodiment of the apparatus of the present invention, in which 1 is a treatment tank, 2 is waste water, 3 is a plurality of contact materials, and 4 is a first air diffuser. , 5 is a second air diffuser,
6 is a high-pressure air source for air supply such as a blower, and the air diffuser 4 is connected to the high-pressure air source 6 via a solenoid valve 7, and the air diffuser 5 is connected to the high-pressure air source 6 through a solenoid valve 8. Each contact material 3 has a structure in which, for example, a float and a microorganism support portion made of a fibrous material are integrated, and are provided in a state where they are submerged in the wastewater 2 at least during the aeration process. The filling rate of the microorganism support part made of material is 10
The dimensions are selected so as to have a numerical value of approximately 30% to 30%. Further, a plurality of contact materials 3 are arranged relatively densely to form a contact material group 10, and the intervals between each contact material group 10 are slightly wide.

【0008】散気装置4は接触材群10の下部に配置さ
れており、散気装置5は接触材3が配置されていない部
分、すなわち各接触材群10の間の下部に配置されてい
る。また、電磁弁7及び8は図示しない制御部によって
数分乃至数十分程度の周期で交互にオンされるようにな
っており、これに従って散気装置4と散気装置5から交
互に曝気用気泡が放出される。なお、接触材3の支持構
造、廃水供給管、上澄水引き抜き装置等の他の構造物は
図示を省略してある。
The air diffuser 4 is arranged at the lower part of the contact material group 10, and the air diffuser 5 is arranged at the part where the contact material 3 is not arranged, that is, at the lower part between each contact material group 10. . Further, the solenoid valves 7 and 8 are turned on alternately at intervals of several minutes to several tens of minutes by a control unit (not shown), and accordingly, the aeration device 4 and the aeration device 5 are alternately turned on. Air bubbles are released. Note that other structures such as a support structure for the contact material 3, a waste water supply pipe, and a supernatant water drawing device are not shown.

【0009】実施例の装置は上述のように構成されてお
り、散気装置4の作動時には、図1に矢印で示すように
散気装置4から放出された曝気用気泡によって生じた上
昇流が接触材3に当たりながら上昇し、下降流が各接触
材群10の間を通って下降する。また散気装置5の作動
時には、図2に矢印で示すように散気装置5から放出さ
れた曝気用気泡による上昇流は接触材3に当たらずに上
昇し、下降流が接触材3に当たりながら下降する。
The device of the embodiment is constructed as described above, and when the aeration device 4 is operated, an upward flow generated by the aeration bubbles released from the aeration device 4 is generated as shown by the arrow in FIG. It rises while hitting the contact material 3, and the downward flow passes between each contact material group 10 and descends. Furthermore, when the aeration device 5 is in operation, as shown by the arrow in FIG. descend.

【0010】このように、接触材3は上昇流と下降流が
交互に当たってその表面が洗浄される結果となり、また
酸素を多量に含む上昇流と酸素量の比較的少ない下降流
が交互に当たるため、好気性と嫌気性の微生物が接触材
3上に混在して繁殖し、互いに影響を及ぼして活性が適
度に抑えられる。このため、脱落するほど微生物層が肥
大化することがなく、また好気性か嫌気性のいずれかの
微生物が一方的に増加することもなくなるのである。
[0010] In this way, the surface of the contact material 3 is washed by the alternating upward flow and downward flow, and the upward flow containing a large amount of oxygen and the downward flow containing a relatively small amount of oxygen alternately impinge on the contact material 3. Aerobic and anaerobic microorganisms coexist and propagate on the contact material 3, influence each other, and suppress their activity appropriately. For this reason, the microbial layer will not become so large that it will fall off, and either aerobic or anaerobic microorganisms will not increase unilaterally.

【0011】ここで、この実施例では接触材3の充填率
を10%乃至30%程度に選定している。なお、接触材
の充填率とは処理槽内の廃水容積に対する接触材の容積
比を意味している。一般に、接触材の量が少ない場合に
は好気性の反応が進み、接触材の量が多いと微生物の酸
素との接触が少なくなって嫌気状態となることが知られ
ているが、生物化学的酸素要求量(BOD)を低下させ
るには好気性の反応が必要であり、接触材の量が少ない
場合に好気性反応が促進されるので、BOD対策として
は接触材の充填率を低く抑えることが望ましい。一方、
全窒素(T−N)を低下させるには、好気状態での硝化
反応と嫌気状態での脱窒反応という相反する反応をバラ
ンスさせる必要があり、T−N対策としては接触材の充
填率をある程度高くすることが望ましい。
In this embodiment, the filling rate of the contact material 3 is selected to be approximately 10% to 30%. Note that the filling rate of the contact material means the volume ratio of the contact material to the volume of waste water in the treatment tank. In general, it is known that when the amount of contact material is small, an aerobic reaction progresses, and when the amount of contact material is large, microorganisms have less contact with oxygen, resulting in an anaerobic state. Aerobic reactions are necessary to lower oxygen demand (BOD), and aerobic reactions are promoted when the amount of contact material is small, so keeping the filling rate of contact material low is a countermeasure against BOD. is desirable. on the other hand,
In order to reduce total nitrogen (T-N), it is necessary to balance the contradictory reactions of nitrification reaction in aerobic conditions and denitrification reaction in anaerobic conditions. It is desirable to raise the value to some extent.

【0012】図3は本発明者がこの点について研究した
結果の代表的な例を示したものである。すなわち、グル
コース、ポリペプトン、燐酸カリウムからなる合成廃水
を用いて、1日1サイクルの回分方式により接触材の充
填率を変化させて、充填率とBOD及びT−Nの低下率
(あるいは除去率)の関係を調査したところ、図のよう
に、BODは充填率が0から20%程度までは最高の値
を示し、20%を超えると次第に低下する傾向が認めら
れた。またT−Nについては充填率が0%では極めて低
く、20%前後までは上昇傾向を示したが、20%前後
を超えると次第に低下する傾向が認められた。このこと
は、充填率が20%付近を境としてこれより低い場合に
は嫌気性反応が不十分となり、これより高いと好気性反
応が不十分となることを示し、T−Nについては20%
付近で好気性と嫌気性の反応のバランスが良好で最も除
去率が高くなることを示していると考えられるのである
FIG. 3 shows a typical example of the results of research on this point by the present inventor. That is, using synthetic wastewater consisting of glucose, polypeptone, and potassium phosphate, the filling rate of the contact material was changed in a batch system with one cycle per day, and the filling rate and the reduction rate (or removal rate) of BOD and TN were determined. As shown in the figure, it was found that the BOD shows the highest value when the filling rate ranges from 0 to about 20%, and tends to gradually decrease when the filling rate exceeds 20%. Regarding TN, it was extremely low when the filling rate was 0%, and showed an increasing tendency up to around 20%, but a tendency to gradually decrease was observed when it exceeded around 20%. This indicates that if the filling rate is around 20% and lower than this, the anaerobic reaction will be insufficient, and if it is higher than this, the aerobic reaction will be insufficient.
This is thought to indicate that there is a good balance between aerobic and anaerobic reactions in the vicinity, resulting in the highest removal rate.

【0013】従って、接触材の充填率を10%乃至30
%程度に、好ましくは15%乃至25%程度に選定する
ことにより、BODとT−Nの両方について良好な処理
結果が得られるのであり、上記の散気方式の改善との相
乗効果もあって良好な処理反応が行われ、BODとT−
N値を十分に低下させることが可能であった。なお、処
理条件や廃水の種類によって接触材の充填率の最適な数
値は変動するので、図3に示したように10%乃至30
%よりやや広い範囲が選定可能な範囲と考えられる。
[0013] Therefore, the filling rate of the contact material is 10% to 30%.
%, preferably about 15% to 25%, good treatment results can be obtained for both BOD and TN, and there is also a synergistic effect with the improvement of the aeration method mentioned above. A good treatment reaction was carried out, and BOD and T-
It was possible to sufficiently reduce the N value. Note that the optimal value for the filling rate of the contact material varies depending on the treatment conditions and the type of wastewater, so as shown in Figure 3, it is 10% to 30%.
A range slightly wider than % is considered to be a selectable range.

【0014】[0014]

【発明の効果】以上の説明から明らかなように、この発
明の回分式廃水処理装置は、散気手段による上昇流と下
降流が接触材に交互に当たるようにしているので、微生
物層の肥大化が防止されてその厚さが自動的に適正値に
制御され、肥大化することによる微生物層の脱落もなく
なるので、洗浄等が不要となって管理が容易となるので
ある。また、実施例のように接触材の充填率を10%乃
至30%程度に選定することにより、窒素除去に必要な
好気性と嫌気性の反応のバランスが良好となり、窒素除
去率を向上することも可能となる。
[Effects of the Invention] As is clear from the above explanation, the batch-type wastewater treatment apparatus of the present invention allows the upward flow and downward flow caused by the aeration means to alternately hit the contact material, thereby preventing the growth of the microbial layer. The thickness is automatically controlled to an appropriate value, and the microbial layer does not fall off due to enlargement, so there is no need for cleaning, etc., making management easier. In addition, by selecting the filling rate of the contact material to be approximately 10% to 30% as in the example, a good balance between aerobic and anaerobic reactions necessary for nitrogen removal is achieved, and the nitrogen removal rate is improved. is also possible.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の一実施例の構成を示す概略断面図で
ある。
FIG. 1 is a schematic cross-sectional view showing the configuration of an embodiment of the present invention.

【図2】同じく実施例の概略断面図である。FIG. 2 is a schematic cross-sectional view of the embodiment.

【図3】接触材の充填率と生物化学的酸素要求量(BO
D)及び全窒素(T−N)の低下率の関係を示したグラ
フである。
[Figure 3] Filling rate of contact material and biochemical oxygen demand (BO
It is a graph showing the relationship between the rate of decrease in D) and total nitrogen (TN).

【符号の説明】[Explanation of symbols]

1  処理槽 2  廃水 3  接触材 4  第1の散気装置 5  第2の散気装置 6  高圧空気源 7  電磁弁 8  電磁弁 10  接触材群 1 Processing tank 2 Wastewater 3 Contact material 4 First air diffuser 5 Second air diffuser 6 High pressure air source 7 Solenoid valve 8 Solenoid valve 10 Contact material group

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  処理槽に接触材を充填した回分式廃水
処理装置であって、接触材に上昇流が当たるように配置
された第1の散気手段と、接触材に下降流が当たるよう
に配置された第2の散気手段、とを設け、第1の散気手
段と第2の散気手段を交互に作動させるようにしたこと
を特徴とする回分式廃水処理装置。
Claim 1: A batch wastewater treatment device in which a treatment tank is filled with a contact material, the first aeration means being arranged so that an upward flow hits the contact material, and a first aeration means arranged so that a downward flow hits the contact material. 1. A batch type wastewater treatment apparatus, comprising: a second aeration means disposed in the second aeration means, and the first aeration means and the second aeration means are operated alternately.
JP2417214A 1990-12-28 1990-12-28 Batch-wise waste water treating device Pending JPH04250898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2417214A JPH04250898A (en) 1990-12-28 1990-12-28 Batch-wise waste water treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2417214A JPH04250898A (en) 1990-12-28 1990-12-28 Batch-wise waste water treating device

Publications (1)

Publication Number Publication Date
JPH04250898A true JPH04250898A (en) 1992-09-07

Family

ID=18525339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2417214A Pending JPH04250898A (en) 1990-12-28 1990-12-28 Batch-wise waste water treating device

Country Status (1)

Country Link
JP (1) JPH04250898A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6708957B2 (en) 1998-10-09 2004-03-23 Zenon Environmental Inc. Moving aerator for immersed membranes
US6863817B2 (en) 2002-12-05 2005-03-08 Zenon Environmental Inc. Membrane bioreactor, process and aerator
US6881343B2 (en) 1998-10-09 2005-04-19 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
US6964741B2 (en) 1995-08-11 2005-11-15 Zenon Environmental Inc. Apparatus for withdrawing permeate using an immersed vertical skein of hollow fiber membranes
US7087173B2 (en) 1995-08-11 2006-08-08 Zenon Environmental Inc. Inverted cavity aerator for membrane module
USRE39294E1 (en) 1995-08-11 2006-09-19 Zenon Environmental Inc. Vertical skein of hollow fiber membranes and method of maintaining clean fiber surfaces while filtering a substrate to withdraw a permeate
US7160463B2 (en) 2002-06-18 2007-01-09 U.S. Filter Wastewater Group, Inc. Methods of minimizing the effect of integrity loss in hollow fibre membrane modules
US7361274B2 (en) 2002-08-21 2008-04-22 Siemens Water Technologies Corp. Aeration method
JP2010119980A (en) * 2008-11-21 2010-06-03 Jfe Steel Corp Wastewater treatment apparatus and method
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US8852438B2 (en) 1995-08-11 2014-10-07 Zenon Technology Partnership Membrane filtration module with adjustable header spacing
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9868834B2 (en) 2012-09-14 2018-01-16 Evoqua Water Technologies Llc Polymer blend for membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7615157B2 (en) 1995-08-11 2009-11-10 Zenon Technology Partnership Apparatus for withdrawing permeate using an immersed vertical skein of hollow fibre membranes
US7534353B2 (en) 1995-08-11 2009-05-19 Zenon Technology Partnership Apparatus for withdrawing permeate using an immersed vertical skein of hollow fibre membranes
US8075776B2 (en) 1995-08-11 2011-12-13 Zenon Technology Partnership Apparatus for withdrawing permeate using an immersed vertical skein of hollow fibre membranes
US6964741B2 (en) 1995-08-11 2005-11-15 Zenon Environmental Inc. Apparatus for withdrawing permeate using an immersed vertical skein of hollow fiber membranes
USRE42669E1 (en) 1995-08-11 2011-09-06 Zenon Technology Partnership Vertical cylindrical skein of hollow fiber membranes and method of maintaining clean fiber surfaces
US7063788B2 (en) 1995-08-11 2006-06-20 Zenon Environmental Inc. Apparatus for withdrawing permeate using an immersed vertical skein of hollow fibre membranes
US7087173B2 (en) 1995-08-11 2006-08-08 Zenon Environmental Inc. Inverted cavity aerator for membrane module
USRE39294E1 (en) 1995-08-11 2006-09-19 Zenon Environmental Inc. Vertical skein of hollow fiber membranes and method of maintaining clean fiber surfaces while filtering a substrate to withdraw a permeate
US8852438B2 (en) 1995-08-11 2014-10-07 Zenon Technology Partnership Membrane filtration module with adjustable header spacing
US6708957B2 (en) 1998-10-09 2004-03-23 Zenon Environmental Inc. Moving aerator for immersed membranes
US7922910B2 (en) 1998-10-09 2011-04-12 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
US7198721B2 (en) 1998-10-09 2007-04-03 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
US7186343B2 (en) 1998-10-09 2007-03-06 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
US6881343B2 (en) 1998-10-09 2005-04-19 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
US7347942B2 (en) 1998-10-09 2008-03-25 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
US7820050B2 (en) 1998-10-09 2010-10-26 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
US7625491B2 (en) 1998-10-09 2009-12-01 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
US7160463B2 (en) 2002-06-18 2007-01-09 U.S. Filter Wastewater Group, Inc. Methods of minimizing the effect of integrity loss in hollow fibre membrane modules
US7344645B2 (en) 2002-06-18 2008-03-18 Siemens Water Technologies Corp. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US7361274B2 (en) 2002-08-21 2008-04-22 Siemens Water Technologies Corp. Aeration method
US7022236B2 (en) 2002-12-05 2006-04-04 Zenon Environmental Inc. Membrane bioreactor, process and aerator
US6863817B2 (en) 2002-12-05 2005-03-08 Zenon Environmental Inc. Membrane bioreactor, process and aerator
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
JP2010119980A (en) * 2008-11-21 2010-06-03 Jfe Steel Corp Wastewater treatment apparatus and method
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US11065569B2 (en) 2011-09-30 2021-07-20 Rohm And Haas Electronic Materials Singapore Pte. Ltd. Manifold arrangement
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9868834B2 (en) 2012-09-14 2018-01-16 Evoqua Water Technologies Llc Polymer blend for membranes
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system

Similar Documents

Publication Publication Date Title
JPH04250898A (en) Batch-wise waste water treating device
EP2215021B1 (en) Wastewater treatment process and plant comprising controlling the dissolved oxygen concentration
US7189323B2 (en) Method for biological purification of water using a carrier material
JPH0160316B2 (en)
AU700542B2 (en) Method and apparatus for sewage water treatment
US5951860A (en) Apparatus and method for treating wastewater
JPH0143200Y2 (en)
JP2005066432A (en) Sewage treatment apparatus
Chen et al. Removal of rate-limiting organic substances in a hybrid biological reactor
KR100756292B1 (en) Aerobic/anaerobic co-treatment method to high concentrated organic waste water by self-closed air releasing control and bubble reducing layer, and micro air bubble injection
JPS5835760B2 (en) How to purify sewage
Yu et al. Medium-strength ammonium removal using a two-stage moving bed biofilm reactor system
CN110655177B (en) Composite self-aeration artificial wetland and method
CN211255414U (en) Denitrification biological filter of PVA filter material
JP3666236B2 (en) Immersion filter bed cleaning method for biological wastewater treatment equipment
JPH0342099A (en) High degree treatment of organic sewage
JP2686464B2 (en) Wastewater treatment equipment
JPH0299194A (en) Up-flow type biological treatment and its apparatus
JPS5938838B2 (en) Wastewater denitrification equipment
JP4242025B2 (en) Air diffuser for cleaning filter layer, aerobic filter bed tank and septic tank
JP3131658B2 (en) Wastewater biological treatment method
JP3424798B2 (en) Wastewater treatment method and apparatus
EP0134271A1 (en) Process and plant for the biological depuration of effluents
JPS62102895A (en) Treating device for sanitary sewage
JP5597948B2 (en) Organic wastewater treatment method and equipment