JPH04250149A - Ultrasonic diagnostic device - Google Patents

Ultrasonic diagnostic device

Info

Publication number
JPH04250149A
JPH04250149A JP870791A JP870791A JPH04250149A JP H04250149 A JPH04250149 A JP H04250149A JP 870791 A JP870791 A JP 870791A JP 870791 A JP870791 A JP 870791A JP H04250149 A JPH04250149 A JP H04250149A
Authority
JP
Japan
Prior art keywords
signal
ultrasonic
mode
pass filters
pass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP870791A
Other languages
Japanese (ja)
Other versions
JP3272735B2 (en
Inventor
Koji Kumazawa
熊澤 孝司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP870791A priority Critical patent/JP3272735B2/en
Publication of JPH04250149A publication Critical patent/JPH04250149A/en
Application granted granted Critical
Publication of JP3272735B2 publication Critical patent/JP3272735B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE:To solve the dynamic range deficiency in an A/D converter caused by a stroke generated at the time of continuous wave Doppler mode. CONSTITUTION:When an ultrasonic beam is transmitted to a subject by an ultrasonic probe 1, the reflected wave is received from the subject, the receipt signal is detected in quadrature by multipliers 4A, 4B, and the detection signal is processed by A/D converters 8A, 8B, a phasing adder 9, and an image reconstituting arithmetic part 10 to obtain an ultrasonic image, high-pass filters 5A, 5B for passing the high frequency component of the detection signal and a means for operating the high-pass filters 5A, 5B at the time of continuous wave Doppler mode to pass the high frequency component of the detection signal, and non-operating the high-pass filters at the time of pulse Doppler B-mode to pass the whole area of the converted signal are provided.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、心臓内あるいは血管内
の血流などの運動する反射体の速度を検出する超音波診
断装置に関し、特に連続波ドプラモード時に発生するク
ロストークによるアナログ・ディジタル変換器のダイナ
ミックレンジ不足を解消する超音波診断装置に関する。
[Field of Industrial Application] The present invention relates to an ultrasonic diagnostic device that detects the speed of a moving reflector such as blood flow in the heart or blood vessels, and in particular, the present invention relates to an ultrasonic diagnostic device that detects the velocity of a moving reflector such as blood flow in the heart or blood vessels, and in particular, The present invention relates to an ultrasonic diagnostic device that solves the problem of insufficient dynamic range of a converter.

【0002】0002

【従来の技術】従来の超音波診断装置は、例えば図5に
示すような構成になっている。図5における超音波診断
装置において、複数の超音波振動子1−1〜1−Nを併
設した超音波探触子1は、図示しない送信回路によって
駆動されて超音波ビームを発生し、発生した超音波ビー
ムは超音波探触子1から図示しない被検体に送波される
。そして被検体から反射される超音波は、同一超音波振
動子1−1〜1−Nに各受信信号として取り込まれ、各
受信信号はプリアンプ3−1〜3−Nによって所定レベ
ルまで増幅される。
2. Description of the Related Art A conventional ultrasonic diagnostic apparatus has a configuration as shown in FIG. 5, for example. In the ultrasonic diagnostic apparatus shown in FIG. 5, an ultrasonic probe 1 equipped with a plurality of ultrasonic transducers 1-1 to 1-N is driven by a transmission circuit (not shown) to generate an ultrasonic beam. The ultrasonic beam is transmitted from the ultrasonic probe 1 to a subject (not shown). The ultrasonic waves reflected from the subject are then taken into the same ultrasonic transducers 1-1 to 1-N as respective received signals, and each received signal is amplified to a predetermined level by preamplifiers 3-1 to 3-N. .

【0003】さらに各受信信号は、クアドラチャ検波器
4によって検波されることで周波数変換されて血流によ
るドプラ信号が得られる。このドプラ信号はA/D(ア
ナログ・ディジタル変換器)8−1〜8−Nによってデ
ィジタル信号に変換される。そしてA/D8−1〜8−
Nからの各ディジタル信号は、整相加算器9によって適
当な時間補償が与えられ相互に加算されて整相加算信号
として画像再構成演算部10に取り込まれる。この整相
加算信号に基づき画像再構成演算部10によってFFT
像,カラーフローマッピング像(以下、CFM像という
。),Bモード像を得るための演算処理が行なわれて、
得られた超音波画像はTVモニタ12に表示される。
[0003] Furthermore, each received signal is detected by a quadrature detector 4, frequency-converted, and a Doppler signal due to blood flow is obtained. This Doppler signal is converted into a digital signal by A/D (analog/digital converters) 8-1 to 8-N. and A/D8-1~8-
Each digital signal from N is given appropriate time compensation by a phasing adder 9, added together, and taken into an image reconstruction calculation section 10 as a phasing addition signal. Based on this phasing and addition signal, the image reconstruction calculation unit 10 performs FFT.
Arithmetic processing is performed to obtain an image, a color flow mapping image (hereinafter referred to as a CFM image), and a B-mode image.
The obtained ultrasound image is displayed on the TV monitor 12.

【0004】0004

【発明が解決しようとする課題】しかしながら、連続波
(CW)ドプラモード時においては、前述したクアドラ
チャ検波器4によって検波された信号は、クラッタによ
る低周波成分がドプラ信号成分よりも約40dB程度大
きいため、このクラッタによってA/D8,整相加算器
9の出力信号が飽和してしまい、結果として良好な超音
波画像が得られなかった。また、送受信時に各振動子間
で及び各チャンネル間でクロストークが発生し、このク
ロストークのためにA/D8,整相加算器9におけるダ
イナミックレンジが不足するという問題があった。
However, in the continuous wave (CW) Doppler mode, the signal detected by the quadrature detector 4 has a low frequency component due to clutter that is approximately 40 dB larger than the Doppler signal component. Therefore, the output signals of the A/D 8 and the phasing adder 9 were saturated due to this clutter, and as a result, a good ultrasound image could not be obtained. Further, there is a problem in that crosstalk occurs between each vibrator and between each channel during transmission and reception, and the dynamic range in the A/D 8 and the phasing adder 9 is insufficient due to this crosstalk.

【0005】そこで本発明の目的は、連続波ドプラモー
ド時であってもA/Dのダイナミックレンジの不足を解
消し、良好な超音波画像を得ることのできる超音波診断
装置を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an ultrasonic diagnostic apparatus that can eliminate the lack of A/D dynamic range and obtain good ultrasonic images even in continuous wave Doppler mode. be.

【0006】[0006]

【課題を解決するための手段】本発明は上記の課題を解
決し目的を達成する為に次のような手段を講じた。本発
明は、複数の超音波振動子を併設した超音波探触子で超
音波ビームを被検体に対して走査しこれにより得られた
受信信号を変換手段で周波数変換し変換された信号を信
号処理手段で処理することにより超音波画像を得る超音
波診断装置において、前記変換された信号の高周波成分
を通過させる高域通過フィルタ手段と、連続波ドプラモ
ード時に前記高域通過フィルタ手段を動作させ、パルス
ドプラモ−ド,Bモード時に前記高域通過フィルタ手段
を非動作させる制御手段とを設けたことを特徴とする。
[Means for Solving the Problems] In order to solve the above-mentioned problems and achieve the objects, the present invention takes the following measures. The present invention scans a subject with an ultrasound beam using an ultrasound probe equipped with a plurality of ultrasound transducers, converts the frequency of the received signal obtained by this using a conversion means, and converts the converted signal into a signal. In an ultrasonic diagnostic apparatus that obtains an ultrasound image by processing with a processing means, a high-pass filter means for passing a high frequency component of the converted signal, and the high-pass filter means is operated in continuous wave Doppler mode. , a control means for inactivating the high-pass filter means in pulsed Doppler mode and B mode.

【0007】[0007]

【作用】このような手段を講じたことにより、次のよう
な作用を呈する。連続波ドプラモード時には高域通過フ
ィルタ手段が動作し、変換された信号の低周波数成分が
除去されるで、クロストーク(クラッタ等の低周波成分
及び直流成分を含む)が低減できるから、信号処理手段
の例えばA/Dのダイナミックレンジ不足を解消できる
。またパルスドプラモ−ド,Bモード時には高域通過フ
ィルタ手段が非動作し、変換された信号の全帯域が通過
するので、信号波形の尾引き現象等を低減することがで
き、よって良好な超音波画像を得ることができる。
[Effects] By taking such measures, the following effects are achieved. In the continuous wave Doppler mode, the high-pass filter means operates and removes the low frequency components of the converted signal, reducing crosstalk (including low frequency components such as clutter and DC components), thereby improving signal processing. For example, the lack of dynamic range of A/D can be solved. In addition, in the pulsed Doppler mode and B mode, the high-pass filter means is inactive and the entire band of the converted signal passes through, so it is possible to reduce the trailing phenomenon of the signal waveform, etc. You can get the image.

【0008】[0008]

【実施例】以下本発明の具体的な実施例について説明す
る。図1は本発明に係る超音波診断装置の第1の実施例
を示す概略ブロック図である。図1に示すように超音波
診断装置は、複数の超音波振動子を併設し超音波ビーム
を被検体に送波し該被検体からの反射超音波を受信信号
として取り込む超音波探触子1,各超音波振動子ごとの
連続波またはパルス波によって超音波振動子を駆動する
送信回路2,超音波探触子1から入力する受信信号を所
定のレベルまで増幅するプリアンプ3を有する。
[Examples] Specific examples of the present invention will be described below. FIG. 1 is a schematic block diagram showing a first embodiment of an ultrasonic diagnostic apparatus according to the present invention. As shown in FIG. 1, an ultrasonic diagnostic apparatus includes an ultrasonic probe 1 that is equipped with a plurality of ultrasonic transducers, transmits an ultrasonic beam to a subject, and captures reflected ultrasound from the subject as a received signal. , a transmitting circuit 2 for driving each ultrasonic transducer with a continuous wave or a pulse wave for each ultrasonic transducer, and a preamplifier 3 for amplifying the received signal input from the ultrasonic probe 1 to a predetermined level.

【0009】また装置は、正弦波からなる基準信号S1
 と余弦波からなる基準信号S2 とを発生する基準信
号発生器11と、プリアンプ3からの受信信号と基準信
号発生器11からの基準信号S1 とを乗算することで
受信信号を周波数変換して検波信号を得る乗算器4Aと
、プリアンプ3からの受信信号と基準信号発生器11か
らの基準信号S2 とを乗算することで受信信号を周波
数変換して検波信号を得る乗算器4Bとで構成されるク
ラドラチャ検出器を有する。
The device also receives a reference signal S1 consisting of a sine wave.
A reference signal generator 11 generates a reference signal S2 consisting of a cosine wave and a cosine wave, and the received signal is frequency-converted and detected by multiplying the received signal from the preamplifier 3 and the reference signal S1 from the reference signal generator 11. It is composed of a multiplier 4A that obtains a signal, and a multiplier 4B that converts the frequency of the received signal by multiplying the received signal from the preamplifier 3 and the reference signal S2 from the reference signal generator 11 to obtain a detected signal. It has a Cladracha detector.

【0010】さらに装置は、乗算器4A,4Bで周波数
変換された信号の高周波成分を通過させる高域通過フィ
ルタ5A,5Bと、連続波ドプラモード時に高域通過フ
ィルタ5A,5Bを動作させパルス波ドプラモード,B
モード時に高域通過フィルタ5A,5Bを非動作させて
周波数変換された信号の全帯域を通過させるスイッチS
W1 ,SW2 と、連続波ドプラモード時にはスイッ
チSW1 ,SW2 を共に非動作させパルス波ドプラ
モード,Bモード時にはスイッチSW1 ,SW2 を
共に動作させるための制御信号をSW1 ,SW2 に
与えるモード切換制御部6とを有する。
Furthermore, the device operates high-pass filters 5A, 5B that pass high-frequency components of the signal frequency-converted by the multipliers 4A, 4B, and operates the high-pass filters 5A, 5B in the continuous wave Doppler mode to generate pulse waves. Doppler mode, B
Switch S that deactivates the high-pass filters 5A and 5B in mode and passes the entire frequency-converted signal band.
W1, SW2, and a mode switching control unit 6 that provides a control signal to SW1, SW2 for inactivating both switches SW1 and SW2 in continuous wave Doppler mode and operating both switches SW1 and SW2 in pulsed wave Doppler mode and B mode. and has.

【0011】高域通過フィルタ5Aは、乗算器4AとL
PF7Aとの間に設けられるコンデンサC1 と、一端
がコンデンサC1 に接続され他端が接地される抵抗R
1 とからなり、高域通過フィルタ5Bは、乗算器4B
とLPF7Bとの間に設けられるコンデンサC2 と、
一端がコンデンサC2 に接続され他端が接地される抵
抗R2 とからなっている。スイッチSW1 はコンデ
ンサC1 に並列接続され、スイッチSW2 はコンデ
ンサC2 に並列接続されている。
[0011] The high-pass filter 5A includes multipliers 4A and L
A capacitor C1 is provided between the PF7A and a resistor R whose one end is connected to the capacitor C1 and the other end is grounded.
1, the high-pass filter 5B is composed of a multiplier 4B
and a capacitor C2 provided between the LPF7B and the LPF7B,
It consists of a resistor R2, one end of which is connected to the capacitor C2, and the other end of which is grounded. Switch SW1 is connected in parallel to capacitor C1, and switch SW2 is connected in parallel to capacitor C2.

【0012】さらに装置は、高周波数成分を除去するも
のであって、高域通過フィルタ5A,5Bまたはスイッ
チSW1 ,SW2 から取り込まれるドプラ信号の不
要帯域信号を除去する低域フィルタ7A,7Bと、この
低域フィルタ7A,7Bからの出力をディジタル信号に
変換するA/D8A,8Bと、ディジタル信号に適当な
時間補償を与えた後にこれらの信号を相互に加算して整
相加算信号を得る整相加算器9と、モード切換制御部6
からの制御信号に応じて、血流速度の時間的変化を示す
FFT像やCFM像,Bモード像を再構成するための演
算を行なう画像再構成演算部10と、得られた超音波画
像を表示するTVモニタ12とを有する。
The device further includes low-pass filters 7A, 7B for removing high frequency components, and removing unnecessary band signals of the Doppler signals taken in from the high-pass filters 5A, 5B or the switches SW1, SW2; A/Ds 8A and 8B that convert the outputs from the low-pass filters 7A and 7B into digital signals, and a phasing circuit that adds these signals together to obtain a phased sum signal after giving appropriate time compensation to the digital signals. Phase adder 9 and mode switching control section 6
An image reconstruction calculation unit 10 performs calculations to reconstruct FFT images, CFM images, and B-mode images showing temporal changes in blood flow velocity according to control signals from the It has a TV monitor 12 for displaying images.

【0013】次にこのように構成された第1の実施例の
作用を説明する。複数の超音波振動子を併設した超音波
探触子1は、送信回路2によって送信駆動され、図示し
ない被検体に対して超音波ビームを送波する。被検体か
ら反射される超音波は、超音波探触子1の各超音波振動
子によって受信され、各受信信号は各超音波振動子ごと
に設けられたプリアンプ3によって増幅される。
Next, the operation of the first embodiment configured as described above will be explained. An ultrasound probe 1 equipped with a plurality of ultrasound transducers is driven to transmit by a transmission circuit 2, and transmits an ultrasound beam to a subject (not shown). Ultrasonic waves reflected from the subject are received by each ultrasonic transducer of the ultrasound probe 1, and each received signal is amplified by a preamplifier 3 provided for each ultrasonic transducer.

【0014】そしてプリアンプ3によって増幅された各
受信信号は、乗算器4A,4Bに取り込まれ、また乗算
器4A,4Bには基準信号発生器11から正弦波からな
る基準信号S1 と余弦波からなる基準信号S2 とが
相互に位相を90°異なえて取り込まれる。そして乗算
器4Aによって各受信信号と基準信号S1 とが乗算さ
れ、乗算器4Bによって各受信信号と基準信号S2 と
が乗算される。よって乗算器4A,4Bによりクアドラ
チャ検波による周波数変換が行なわれ、血流による検波
信号は実数成分と虚数成分とに分離されて高域通過フィ
ルタ5A,5BまたはSW1 ,SW2 に取り込まれ
る。
Each received signal amplified by the preamplifier 3 is taken into multipliers 4A and 4B, and the multipliers 4A and 4B receive a reference signal S1 consisting of a sine wave and a cosine wave from the reference signal generator 11. The reference signal S2 is taken in with a phase difference of 90° from each other. The multiplier 4A multiplies each received signal by the reference signal S1, and the multiplier 4B multiplies each received signal by the reference signal S2. Therefore, the multipliers 4A, 4B perform frequency conversion by quadrature detection, and the detected signal due to the blood flow is separated into a real component and an imaginary component, which are taken into the high-pass filters 5A, 5B or SW1, SW2.

【0015】ここで、超音波探触子1から連続波を送波
し、超音波受信モードが連続波ドプラモード時(FFT
のみ)には、モード切換制御部6からの制御信号によっ
てスイッチSW1 ,SW2 が非動作(オフ)し高域
通過フィルタ5A,5Bが動作(オン)する。そうする
と、検波信号は、コンデンサC1 及び抵抗R1 ,コ
ンデンサC2 及び抵抗R2 によって低周波数成分が
除去される。 すなわち検波信号に含まれるクロストーク成分(クラッ
タ等の低周波成分及び直流成分を含む)が十分に除去さ
れる。したがって、低域フィルタ7A,7B以降の例え
ばA/D8A,8Bや整相加算器9のダイナミックレン
ジの不足を解消でき、よって良好な超音波画像を得るこ
とができる。またA/D8A,8Bのダイナミックレン
ジをの不足を解消できるから、A/D8A,8B以降の
データ数,ビット長を減らすことができる。
Here, a continuous wave is transmitted from the ultrasound probe 1, and when the ultrasound reception mode is the continuous wave Doppler mode (FFT
(only), the switches SW1 and SW2 are inactivated (turned off) and the high-pass filters 5A and 5B are activated (turned on) by a control signal from the mode switching control section 6. Then, low frequency components of the detected signal are removed by capacitor C1 and resistor R1, capacitor C2 and resistor R2. That is, crosstalk components (including low frequency components such as clutter and DC components) contained in the detected signal are sufficiently removed. Therefore, the lack of dynamic range of the A/Ds 8A, 8B and the phasing adder 9 after the low-pass filters 7A, 7B, for example, can be solved, and a good ultrasound image can therefore be obtained. In addition, since the lack of dynamic range of A/Ds 8A and 8B can be resolved, the number of data and bit length after A/Ds 8A and 8B can be reduced.

【0016】次に超音波探触子1からパルス波を送波し
、超音波受信モードがパルス波ドプラモード(FFT,
CFM)あるいはBモード時には、モード切換制御部6
からの制御信号によってスイッチSW1 ,SW2 が
動作(オン)する。このとき、検波信号は、スイッチS
W1 ,SW2 を通り、そのままLPF7A,7B以
降に出力される。
Next, a pulse wave is transmitted from the ultrasound probe 1, and the ultrasound reception mode is set to pulse wave Doppler mode (FFT,
CFM) or B mode, the mode switching control section 6
The switches SW1 and SW2 are operated (turned on) by control signals from the switch SW1 and SW2. At this time, the detection signal is
It passes through W1 and SW2 and is output as is from LPF7A and 7B.

【0017】したがって、検波信号が高域通過フィルタ
5A,5Bを通過することによって発生する信号波形の
尾引き現象による位相情報の損失を、簡単な回路構成を
増加するのみで低減することができる。
Therefore, the loss of phase information due to the trailing phenomenon of the signal waveform caused by the detection signal passing through the high-pass filters 5A and 5B can be reduced by simply increasing the circuit configuration.

【0018】さらにA/D8A,8Bの前で受信信号に
対してクアドラチャ検波を行なうから、変換された信号
の周波数が受信信号よりも低くなって、A/D8A,8
Bの変換周期を遅くすることができる。
Furthermore, since quadrature detection is performed on the received signal before the A/Ds 8A and 8B, the frequency of the converted signal becomes lower than the received signal, and the A/Ds 8A and 8B
The conversion period of B can be slowed down.

【0019】次に本発明の第2の実施例を図2を参照し
て説明する。第2の実施例は、アナログ信号のみを信号
処理するものであって、前述した第1の実施例に対して
、A/D8A,8Bを削除し、アナログ遅延手段を有す
る整相加算器9aを設けたことを特徴とする。
Next, a second embodiment of the present invention will be explained with reference to FIG. The second embodiment processes only analog signals, and in contrast to the first embodiment described above, the A/Ds 8A and 8B are removed and a phasing adder 9a having analog delay means is added. It is characterized by having been provided.

【0020】このように構成された第2の実施例によっ
ても、第1の実施例と同様な効果が得られる。また受信
信号を乗算器4A,4Bによって直交位相検波して周波
数を低くした後に、高域通過フィルタ5A,5B,LP
F7A,7Bを介して整相加算器9aによる信号の加算
を行なうので、整相加算器9aでの信号の周波数が低い
から、アナログ遅延手段でのストレーキャパシタンスの
影響を減少することができ、よって周波数特性を改善で
きる。
The second embodiment configured as described above also provides the same effects as the first embodiment. Further, after the received signal is subjected to quadrature phase detection by multipliers 4A, 4B to lower the frequency, high-pass filters 5A, 5B, LP
Since the signals are added by the phasing adder 9a via F7A and 7B, the frequency of the signal in the phasing adder 9a is low, so the influence of stray capacitance in the analog delay means can be reduced. Frequency characteristics can be improved.

【0021】次に本発明の第3の実施例を図3を参照し
て説明する。第3の実施例は、第1の実施例に対して、
整相加算器9をプリアンプ3と乗算器4A,4Bとの間
に設け、かつBモード処理部15,DSC(ディジタル
・スキャン・コンバータ)17を整相加算器9とTVモ
ニタ12との間に設けたことを特徴とする。
Next, a third embodiment of the present invention will be described with reference to FIG. The third embodiment has the following points in contrast to the first embodiment:
A phasing adder 9 is provided between the preamplifier 3 and multipliers 4A, 4B, and a B mode processing section 15 and a DSC (digital scan converter) 17 are provided between the phasing adder 9 and the TV monitor 12. It is characterized by having been provided.

【0022】すなわち、各受信信号を整相加算器9で加
算することにより整相加算信号とし、この信号の包絡線
をBモード処理部15によって検波してBモード像を得
て、このBモード像をDSC17を介してTVモニタ1
2に表示する。
That is, each received signal is added by the phasing adder 9 to obtain a phasing sum signal, and the envelope of this signal is detected by the B mode processing section 15 to obtain a B mode image. The image is sent to the TV monitor 1 via the DSC 17.
Display on 2.

【0023】一方、整相加算器9からの信号を乗算器4
A,4Bによって直交位相検波して得られたドプラ信号
を高域通過フィルタ5A,5B、低域フィルタ7A,7
B、A/D8A,8Bを介して信号処理することにより
画像再構成演算部10にてFFT像またはCFM像を再
構成し、超音波画像をTVモニタ12に表示する。この
ような第3の実施例にあっても、上記第1の実施例と同
様な効果が得られる。
On the other hand, the signal from the phasing adder 9 is transmitted to the multiplier 4
The Doppler signals obtained by quadrature phase detection by A and 4B are passed through high-pass filters 5A and 5B and low-pass filters 7A and 7.
B, A/D 8A, and 8B perform signal processing to reconstruct an FFT image or a CFM image in an image reconstruction calculation unit 10, and display the ultrasound image on a TV monitor 12. Even in such a third embodiment, the same effects as in the first embodiment can be obtained.

【0024】次に本発明の第4の実施例を図4を参照し
て説明する。第4の実施例は第2の実施例及び第3の実
施例の変形例であって、アナログ信号を処理しかつBモ
ード処理系を別に設けた構成になっている。このような
第4の実施例にあっても、上記第2の実施例と同様な効
果が得られる。
Next, a fourth embodiment of the present invention will be explained with reference to FIG. The fourth embodiment is a modification of the second and third embodiments, and has a configuration in which analog signals are processed and a B-mode processing system is provided separately. Even in such a fourth embodiment, the same effects as in the second embodiment described above can be obtained.

【0025】なお本発明は上述した実施例に限定される
ものではない。上述した第1及び第3の実施例では、L
PF7A,7Bの後にA/D8A,8Bを設けたが、例
えばA/D8A,8Bの後にLPF7A,7Bを設けて
も良い。また、本実施例では高域通過フィルタとして抵
抗R、コンデンサCからなる構成としたが、より高次の
フィルタであっても良く、高域通過フィルタの機能を持
つものであれば何でも良い。このほか本発明の要旨を逸
脱しない範囲で種々変形実施可能であることは勿論であ
る。
Note that the present invention is not limited to the embodiments described above. In the first and third embodiments described above, L
Although the A/Ds 8A and 8B are provided after the PFs 7A and 7B, for example, the LPFs 7A and 7B may be provided after the A/Ds 8A and 8B. Further, in this embodiment, the high-pass filter is constructed of a resistor R and a capacitor C, but it may be a higher-order filter, and any filter having the function of a high-pass filter may be used. It goes without saying that various other modifications can be made without departing from the gist of the present invention.

【0026】[0026]

【発明の効果】本発明によれば、連続波ドプラモ−ド時
には高域通過フィルタが動作し、変換された信号の低周
波数成分が除去されるで、クロストーク(クラッタ等の
低周波成分及び直流成分を含む)が低減できるから、信
号処理手段の例えばA/Dのダイナミックレンジ不足を
解消できる。またパルスドプラ,Bモード時には高域通
過フィルタが非動作し、変換された信号の全帯域が通過
するので、信号波形の尾引き現象等を低減することがで
きる。よって良好な超音波画像を得ることのできる超音
波診断装置を提供できる。
According to the present invention, the high-pass filter operates during continuous wave Doppler mode, and low frequency components of the converted signal are removed, thereby reducing crosstalk (low frequency components such as clutter and direct current). (including components) can be reduced, it is possible to solve the problem of a lack of dynamic range in the signal processing means, such as an A/D. Furthermore, in the pulse Doppler and B modes, the high-pass filter is inactive and the entire band of the converted signal passes through, so it is possible to reduce the trailing phenomenon of the signal waveform. Therefore, it is possible to provide an ultrasonic diagnostic apparatus that can obtain good ultrasonic images.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係る超音波診断装置の第1の実施例を
示すブロック図。
FIG. 1 is a block diagram showing a first embodiment of an ultrasonic diagnostic apparatus according to the present invention.

【図2】本発明に係る超音波診断装置の第2の実施例を
示すブロック図。
FIG. 2 is a block diagram showing a second embodiment of the ultrasonic diagnostic apparatus according to the present invention.

【図3】本発明に係る超音波診断装置の第3の実施例を
示すブロック図。
FIG. 3 is a block diagram showing a third embodiment of the ultrasonic diagnostic apparatus according to the present invention.

【図4】本発明に係る超音波診断装置の第4の実施例を
示すブロック図。
FIG. 4 is a block diagram showing a fourth embodiment of the ultrasonic diagnostic apparatus according to the present invention.

【図5】従来の超音波診断装置の一例を示すブロック図
FIG. 5 is a block diagram showing an example of a conventional ultrasound diagnostic apparatus.

【符号の説明】[Explanation of symbols]

1…超音波探触子、2…送信回路、3…プリアンプ、4
A,4B…乗算器、5A,5B…HPF、6A,6B…
モード切換制御部、7A,7B…LPF、8A,8B…
A/D、9…整相加算器、10…画像再構成演算部、1
2…TVモニタ。
1...Ultrasonic probe, 2...Transmission circuit, 3...Preamplifier, 4
A, 4B...multiplier, 5A, 5B...HPF, 6A, 6B...
Mode switching control section, 7A, 7B...LPF, 8A, 8B...
A/D, 9... phasing adder, 10... image reconstruction calculation unit, 1
2...TV monitor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  複数の超音波振動子を併設した超音波
探触子で超音波ビームを被検体に対して走査しこれによ
り得られた受信信号を変換手段で周波数変換し変換され
た信号を信号処理手段で処理することにより超音波画像
を得る超音波診断装置において、前記変換された信号の
高周波成分を通過させる高域通過フィルタ手段と、連続
波ドプラモード時に前記高域通過フィルタ手段を動作さ
せ、パルスドプラモ−ド,Bモード時に前記高域通過フ
ィルタ手段を非動作させる制御手段とを設けたことを特
徴とする超音波診断装置。
Claim 1: An ultrasonic probe equipped with a plurality of ultrasonic transducers scans an ultrasonic beam onto a subject, and a received signal obtained thereby is frequency-converted by a converting means to convert the converted signal. An ultrasonic diagnostic apparatus that obtains an ultrasound image by processing with a signal processing means, comprising: a high-pass filter means for passing a high-frequency component of the converted signal; and the high-pass filter means is operated in a continuous wave Doppler mode. and control means for inactivating the high-pass filter means in pulsed Doppler mode and B mode.
JP870791A 1991-01-28 1991-01-28 Ultrasound diagnostic equipment Expired - Lifetime JP3272735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP870791A JP3272735B2 (en) 1991-01-28 1991-01-28 Ultrasound diagnostic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP870791A JP3272735B2 (en) 1991-01-28 1991-01-28 Ultrasound diagnostic equipment

Publications (2)

Publication Number Publication Date
JPH04250149A true JPH04250149A (en) 1992-09-07
JP3272735B2 JP3272735B2 (en) 2002-04-08

Family

ID=11700415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP870791A Expired - Lifetime JP3272735B2 (en) 1991-01-28 1991-01-28 Ultrasound diagnostic equipment

Country Status (1)

Country Link
JP (1) JP3272735B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006081045A (en) * 2004-09-13 2006-03-23 Hitachi Ltd Quadrature detector, quadrature demodulator using same, and sampling quadrature demodulator
JP2009240700A (en) * 2008-03-31 2009-10-22 Toshiba Corp Ultrasonic diagnostic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4607434B2 (en) * 2003-07-24 2011-01-05 株式会社東芝 Ultrasonic diagnostic equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006081045A (en) * 2004-09-13 2006-03-23 Hitachi Ltd Quadrature detector, quadrature demodulator using same, and sampling quadrature demodulator
JP4492264B2 (en) * 2004-09-13 2010-06-30 株式会社日立製作所 Quadrature detector and quadrature demodulator and sampling quadrature demodulator using the same
US7920652B2 (en) 2004-09-13 2011-04-05 Hitachi, Ltd. Orthogonality detector, and quadrature demodulator and sampling quadrature demodulator using detector thereof
KR101140333B1 (en) * 2004-09-13 2012-05-03 가부시키가이샤 히타치세이사쿠쇼 An orthogonal detector and the orthogonal demodulator and the sampling orthogonal demodulator which using the orthogonal detector
US8315338B2 (en) 2004-09-13 2012-11-20 Hitachi, Ltd. Orthogonality detector, and quadrature demodulator and sampling quadrature demodulator using detector thereof
JP2009240700A (en) * 2008-03-31 2009-10-22 Toshiba Corp Ultrasonic diagnostic device
US8485977B2 (en) 2008-03-31 2013-07-16 Kabushiki Kaisha Toshiba Ultrasound diagnosis apparatus

Also Published As

Publication number Publication date
JP3272735B2 (en) 2002-04-08

Similar Documents

Publication Publication Date Title
US7682309B2 (en) Ultrasound system for generating a single set of ultrasound pulse firings
CN101496728B (en) Supersonic frequency composite imaging method and device
JP2003501177A (en) Simultaneous tissue and motion ultrasound diagnostic imaging
JPH08628A (en) Ultrasonic diagnostic device
JPH0614934B2 (en) Ultrasonic diagnostic equipment
JPH04250149A (en) Ultrasonic diagnostic device
JP3285673B2 (en) Ultrasound image display
JP2001095805A (en) Ultrasonograph
JP2569582Y2 (en) Ultrasound diagnostic equipment
JP2876166B2 (en) Ultrasound blood flow imaging device
JP4568080B2 (en) Ultrasonic diagnostic equipment
JP3332090B2 (en) Ultrasound diagnostic equipment
JP3875947B2 (en) Ultrasonic diagnostic equipment
JP3179749B2 (en) Ultrasound diagnostic equipment
JPH06209933A (en) Ultrasonic doppler diagnosing device
JP2850032B2 (en) Ultrasonic Doppler device
JPH0549639A (en) Ultrasonic color doppler diagnostic device
JP2000163364A (en) Ultrasonic diagnostic system
JPH1033531A (en) Ultrasonograph
JPH05200024A (en) Ultrasonic wave doppler diagnosing apparatus
JPH0523334A (en) Ultrasonic doppler image apparatus
JP2004057525A (en) Ultrasonographic apparatus
JP2000217825A (en) Ultrasonograph
JP2719706B2 (en) Ultrasonic Doppler analyzer
JP2004329603A (en) Ultrasonic diagnostic instrument

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 10