JPH0424632B2 - - Google Patents

Info

Publication number
JPH0424632B2
JPH0424632B2 JP22259384A JP22259384A JPH0424632B2 JP H0424632 B2 JPH0424632 B2 JP H0424632B2 JP 22259384 A JP22259384 A JP 22259384A JP 22259384 A JP22259384 A JP 22259384A JP H0424632 B2 JPH0424632 B2 JP H0424632B2
Authority
JP
Japan
Prior art keywords
coating layer
water
coating
resin
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22259384A
Other languages
Japanese (ja)
Other versions
JPS61101798A (en
Inventor
Masaji Saito
Yoshitaka Hiromae
Yutaka Okuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP22259384A priority Critical patent/JPS61101798A/en
Publication of JPS61101798A publication Critical patent/JPS61101798A/en
Publication of JPH0424632B2 publication Critical patent/JPH0424632B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/04Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of rubber; of plastics material; of varnish

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、アルミニウム製熱交換器フイン材
に関する。 なお本発明書において、アルミニウムとは、工
業用純アルミニウム及びアルミニウム合金を総称
する。 (従来の技術) 熱交換器フイン材として、軽量かつ加工性、熱
伝導性に優れたアルミニウムが広く使用されてい
る。 従来の熱交換器フイン材は、表面処理をせずに
裸のまま用いられていた。しかし、このような裸
のフインを用いた熱交換器は使用中に、空気中の
水分によつてアルミニウムが腐食し、いわゆる
「白銹(しろさび)」を発生するとか、フイン表面
に凝縮した水の層が通風抵抗となつて熱交換効率
を低下させる欠点があつた。この裸のフインの欠
点の改善のため、アルミニウム表面に「白銹」を
防止し(以後、この性能を耐食性とよぶ)、かつ、
凝縮水の層を薄く保ち熱交換効率の低下を防止す
るため、アルミニウムと水との接触角を減ずる
(以後、この性能を親水性とよぶ)被覆層を形成
する方法が採用されてきた。 この被覆層の形成をフイン成形後に行なう方法
(ポストコート法)もあるが、最近は、工程の簡
略化、被覆層の均一性等の観点から、フイン成形
前のアルミニウム薄板に皮膜を形成して、それを
フイン成形する方法(以後プレコート法と呼ぶ。)
への要請が強い。 このプレコート法に用いるためには、被覆層は
前記の耐食性、親水性の他に、以下2つの特性を
要求される。 すなわちこの被覆層は連続的にフイン成形をし
た場合にも、工具の摩耗をもたらすものであつて
はならない。この要求性能を、連続成形性と呼ぶ
ことにする。 さらに成形時には潤滑油を用いるが、成形後こ
れをトリクレン等の有機溶剤で洗浄する際に、上
記の被覆層が溶け出してはならない。この要求性
能を耐薬品性と呼ぶことにする。 これらの要求に対して、特に親水性に優れたも
のとして、シリカやアルミナなどの無機物質を有
機樹脂に混合した被覆層を形成する技術が知られ
ている(特開昭54−142650、特開昭55−99976、)。
しかしこれらは、連続成形性と耐食性とが非常に
劣る。 また、連続成形性と耐食性に優れたものとして
水溶性アクリル樹脂の被覆層が挙げられるが、こ
れは、親水性が劣る。 このように単一の被覆層によつて耐食性、親水
性、連続成形性と耐薬品性とを具備するのは非常
に困難である。 (発明が解決しようとする問題点) このように従来、耐食性、親水性、連続成形
性、耐薬品性のすべてを満足する被覆層は存在し
なかつた。そこで本発明者らは、熱交換器フイン
材に要求されるこれら4つの性能の全てを満たす
被覆層を得るべく鋭意研究の結果、本願発明に到
達したものである。 (問題点を解決するための手段) 本願発明の要旨は、アルミニウム薄板の表面に
水溶性アクリル樹脂よりなる第1被覆層を介し
て、水溶性セルロース樹脂よりなる第2被覆層が
設けられていることを特徴とする熱交換器フイン
材に存する。 (作用) ここで、第1被覆層として用いる水溶性アクリ
ル樹脂とは、アクリル酸及びそのエステル、ある
いはこれらとメラミン、アクリルアミド、アクリ
ロニトリル、スチレン、酢酸ビニル等との共重合
体を含む水溶性の樹脂の総称である。この第1被
覆層は特に耐食性を担うものである。 第2被覆層として用いる水溶性セルロース樹脂
とは、セルロース及びそのエステルあるいはエー
テル等との誘導体の総称である。この第2被覆層
は耐薬品性が良好で、さらに水となじみやすい−
OH基を多く持つので特に親水性が良好となる。 また、第1被覆層、第2被覆層ともに有機皮膜
であり、固い無機物質を含まないため、連続成形
性に優れる。 また、第1被覆層の塗膜量は焼付乾燥後0.5〜
2.0g/m2であり、第2被覆層の塗膜量は焼付乾
燥後0.1〜1.0g/m2であることが望ましい。 第1被覆層の塗膜量が0.5g/m2未満だと耐食
性が不十分になりやすく、2.0g/m2を超えると
耐食性の一層の向上は望めずコストアツプにな
り、第2被覆層の塗膜量が0.1g/m2未満だと親
水性が不十分になりやすく、1.0g/m2を超える
と親水性が強すぎて、耐食性の劣化につながるか
らである。 さらに、第1被覆層の上に第2被覆層を塗布す
る際、両者のなじみが悪く第2被覆層が塗布でき
ない場合には、第2被覆層のセルロース樹脂に界
面活性剤を少量添加するとよい。 また第1被覆層の塗膜層の塗膜焼付条件は温度
150〜310℃で10〜60秒焼付ける。(150℃×10秒)
未満の条件では焼付が不十分であり、(310℃×60
秒)をこえると過焼付となりともに十分な塗膜性
能が得られない。さらに第2被覆層の塗膜焼付条
件は温度150〜310℃で10〜60秒焼付ける。(150℃
×10秒)未満の条件では、第1被覆層との反応が
十分でなく第2被覆層が流出しやすく耐薬品性、
親水性が劣る。(310℃×60秒)をこえる条件では
−OH基が第1伴覆層との反応に消費され親水性
能が損なわれる。 さらに、、第1被覆層、第2被覆層に拘らず
(310℃×60秒)をこえる焼付条件ではアルミニウ
ム板自体が軟化してしまいフイン成形後の強度不
足になる。 (実施例) 板厚0.12mmの工業用純アルミニウム(JIS A
1100)板材を脱脂後、第1被覆層として水溶性ア
クリル共重合体メラミン樹脂(樹脂固形分17%水
分83%、関西ペイント株式会社製、商品名
KP9401)をバーコーターで塗布し、250℃×20秒
間焼付けその上に第2被覆層として水溶性セルロ
ース樹脂(樹脂固形分10%、水分90%、三井東圧
化学株式会社製、商品名 ソリダイトWH−10)
をバーコーターで塗布し、260℃×20秒間焼付け
て、熱交換器フイン材を作成した。 なお、比較例として 水溶性アクリル樹脂単層のもの(試料番号8) 水溶接セルロース樹脂単層のもの(試料番号9) シリカーアクリル樹脂単層のもの(試料番号10) を用意した。 また、発明例においては第1被覆層と第2被覆
層の塗膜量を変化させた。 これらの熱交換器フイン材に対し、以下の特性
を評価した。 (イ) 耐食性 塩水噴霧試験600時間後の白銹発生
面積(%)で評価 (ロ) 親水性 「95%以上相対湿度、50℃で7時間
+乾燥雰囲気、常温で17時間」を1サイクルと
し、10サイクル経過後の接触角で評価 (ハ) 連続成形性 フインプレス後の工具(ポンチ
とダイス)の摩耗状況と成形後のフイン材の成
形欠陥とを肉眼観察して評価。 (ニ) 耐薬品性 トリクレン洗浄後の全塗膜量に対
する塗膜減量(%)で評価。 第1表に、被覆層の樹脂種別と塗膜量を、第2
表に、特性の評価結果を示す。
(Industrial Application Field) This invention relates to an aluminum heat exchanger fin material. Note that in the present invention, aluminum collectively refers to industrial pure aluminum and aluminum alloys. (Prior Art) Aluminum is widely used as a heat exchanger fin material because it is lightweight and has excellent workability and thermal conductivity. Conventional heat exchanger fin materials were used as they were without surface treatment. However, during use of heat exchangers using bare fins, the aluminum corrodes due to moisture in the air, causing so-called "white rust" or condensation on the fin surface. The disadvantage was that the water layer acted as ventilation resistance and reduced heat exchange efficiency. In order to improve this drawback of bare fins, we prevent "white rust" on the aluminum surface (hereinafter this performance is referred to as corrosion resistance), and
In order to keep the layer of condensed water thin and prevent a decrease in heat exchange efficiency, methods have been adopted to form a coating layer that reduces the contact angle between aluminum and water (hereinafter this performance is referred to as hydrophilic). There is a method of forming this coating layer after forming the fins (post-coating method), but recently, from the viewpoint of simplifying the process and ensuring uniformity of the coating layer, a coating layer is formed on the aluminum thin plate before forming the fins. , a method of forming it into fins (hereinafter referred to as the pre-coating method).
There is a strong demand for In order to be used in this precoating method, the coating layer is required to have the following two properties in addition to the above-mentioned corrosion resistance and hydrophilicity. That is, this coating layer must not cause wear of the tool even when fin forming is performed continuously. This required performance will be referred to as continuous formability. Furthermore, lubricating oil is used during molding, but the above-mentioned coating layer must not melt out when it is washed with an organic solvent such as trichlene after molding. This required performance will be referred to as chemical resistance. In order to meet these demands, a technique is known that forms a coating layer that is a mixture of an organic resin and an inorganic substance such as silica or alumina, which has particularly excellent hydrophilic properties (Japanese Unexamined Patent Publication No. 54-142650, Showa 55-99976,).
However, these are very poor in continuous moldability and corrosion resistance. In addition, a coating layer of water-soluble acrylic resin is cited as a coating layer having excellent continuous moldability and corrosion resistance, but this coating layer has poor hydrophilicity. In this way, it is extremely difficult to provide corrosion resistance, hydrophilicity, continuous moldability, and chemical resistance with a single coating layer. (Problems to be Solved by the Invention) As described above, conventionally, there has been no coating layer that satisfies all of corrosion resistance, hydrophilicity, continuous moldability, and chemical resistance. Therefore, the present inventors conducted extensive research to obtain a coating layer that satisfies all of these four performances required for heat exchanger fin materials, and as a result, they arrived at the present invention. (Means for Solving the Problems) The gist of the present invention is that a second coating layer made of water-soluble cellulose resin is provided on the surface of a thin aluminum plate via a first coating layer made of water-soluble acrylic resin. The invention resides in a heat exchanger fin material characterized by the following. (Function) Here, the water-soluble acrylic resin used as the first coating layer is a water-soluble resin containing acrylic acid and its ester, or a copolymer of these with melamine, acrylamide, acrylonitrile, styrene, vinyl acetate, etc. It is a general term for This first coating layer is particularly responsible for corrosion resistance. The water-soluble cellulose resin used as the second coating layer is a general term for cellulose and its derivatives with esters, ethers, etc. This second coating layer has good chemical resistance and is also compatible with water.
Since it has many OH groups, it has particularly good hydrophilicity. Further, since both the first coating layer and the second coating layer are organic films and do not contain hard inorganic substances, continuous moldability is excellent. In addition, the coating amount of the first coating layer is 0.5 to 0.5 after baking drying.
The coating weight of the second coating layer is preferably 0.1 to 1.0 g/m 2 after baking and drying. If the coating amount of the first coating layer is less than 0.5 g/m 2 , corrosion resistance tends to be insufficient, and if it exceeds 2.0 g/m 2 , further improvement in corrosion resistance cannot be expected and the cost increases. If the coating amount is less than 0.1 g/m 2 , hydrophilicity tends to be insufficient, and if it exceeds 1.0 g/m 2 , the hydrophilicity is too strong, leading to deterioration in corrosion resistance. Furthermore, when applying the second coating layer on top of the first coating layer, if the second coating layer cannot be applied due to poor compatibility between the two, it is recommended to add a small amount of surfactant to the cellulose resin of the second coating layer. . In addition, the coating baking conditions for the coating layer of the first coating layer are temperature
Bake at 150-310℃ for 10-60 seconds. (150℃ x 10 seconds)
Baking is insufficient under conditions below (310°C x 60°C).
If the temperature exceeds 2 seconds), overbaking will occur and sufficient coating performance will not be obtained. Further, the second coating layer is baked at a temperature of 150 to 310°C for 10 to 60 seconds. (150℃
x 10 seconds), the reaction with the first coating layer is insufficient and the second coating layer tends to flow out, resulting in chemical resistance and
Poor hydrophilicity. (310°C x 60 seconds), -OH groups are consumed in reaction with the first entrainment layer and the hydrophilic performance is impaired. Furthermore, irrespective of the first coating layer or the second coating layer, if the baking conditions exceed (310° C. x 60 seconds), the aluminum plate itself will soften, resulting in insufficient strength after fin forming. (Example) Industrial pure aluminum (JIS A
1100) After degreasing the board material, apply water-soluble acrylic copolymer melamine resin (resin solid content 17% moisture 83%, manufactured by Kansai Paint Co., Ltd., product name) as the first coating layer.
KP9401) was applied with a bar coater and baked at 250°C for 20 seconds.A second coating layer was applied on top of the water-soluble cellulose resin (resin solid content 10%, moisture 90%, manufactured by Mitsui Toatsu Chemical Co., Ltd., product name Solidite WH). -10)
was coated with a bar coater and baked at 260°C for 20 seconds to create a heat exchanger fin material. As comparative examples, we prepared a single layer of water-soluble acrylic resin (sample number 8), a single layer of water-welded cellulose resin (sample number 9), and a single layer of silica acrylic resin (sample number 10). Furthermore, in the invention examples, the coating amounts of the first coating layer and the second coating layer were varied. The following properties of these heat exchanger fin materials were evaluated. (a) Corrosion resistance Evaluated by white rust generation area (%) after 600 hours of salt spray test (b) Hydrophilicity One cycle is "95% relative humidity or more, 7 hours at 50℃ + 17 hours at room temperature in a dry atmosphere" , evaluated by the contact angle after 10 cycles (c) Continuous formability Evaluated by visually observing the wear status of the tools (punch and die) after fin pressing and the forming defects of the fin material after forming. (d) Chemical resistance Evaluated by paint film weight loss (%) based on the total paint film amount after cleaning with Triclean. Table 1 shows the resin type and coating amount of the coating layer.
The table shows the characteristics evaluation results.

【表】【table】

【表】 (発明の効果) 第2表よりわかるように、アルミニウム上の第
1被覆層を水溶性アクリル樹脂、第2被覆層を水
溶性セルロース樹脂とした本発明例は、耐食性、
親水性、連続成形性、耐薬品性のいずれもが優れ
ている。 一般に、単一層の塗布を行なうとある性能を発
輝する樹脂を何種類も何層にも重ねた場合、すべ
ての層の性能を発輝することはまれであり、本願
発明の組み合わせに到達することは容易なことで
はなかつた。 さらに、耐食性は、第1被覆層の水溶性アクリ
ル樹脂の塗膜量が多いと良好で、親水性は第2被
覆層の水溶性セルロース樹脂の塗膜量が多いと良
好で、この2つの被覆層は共に有機物であるので
連続成形性が良好で、第2被覆層の水溶性セルロ
ース樹脂はトリクレン洗浄しても溶け出しにくく
耐薬品性が良好であることがわかる。 また、塗膜量を特許請求の範囲第2項に記載し
た範囲内にしたものは本発明例のなかでも上記特
性が特に優れている。
[Table] (Effects of the Invention) As can be seen from Table 2, the example of the present invention in which the first coating layer on aluminum is a water-soluble acrylic resin and the second coating layer is a water-soluble cellulose resin has excellent corrosion resistance,
Excellent in hydrophilicity, continuous moldability, and chemical resistance. Generally, when a single layer of resin exhibits a certain performance, when many types of resins are layered, it is rare that the performance of all the layers is achieved, and the combination of the present invention is achieved. It was not easy. Furthermore, corrosion resistance is better when the coating amount of water-soluble acrylic resin in the first coating layer is large, and hydrophilicity is good when the coating amount is large with water-soluble cellulose resin in the second coating layer. It can be seen that since both layers are made of organic material, continuous moldability is good, and the water-soluble cellulose resin of the second coating layer is difficult to dissolve even when washed with trichlene, and has good chemical resistance. Further, among the examples of the present invention, those in which the coating amount is within the range described in claim 2 are particularly excellent in the above characteristics.

Claims (1)

【特許請求の範囲】 1 アルミニウム薄板の表面に水溶性アクリル樹
脂よりなる第1被覆層を介して、水溶性セルロー
ス樹脂よりなる第2被覆層が設けられていること
を特徴とする熱交換器フイン材。 2 第1被覆層の塗膜量が乾燥後0.5〜2.0g/
m2、第2被覆層の塗膜量が乾燥後0.1〜1.0g/m2
であることを特徴とする特許請求の範囲第1項に
記載の熱交換器フイン材。
[Scope of Claims] 1. A heat exchanger fin characterized in that a second coating layer made of water-soluble cellulose resin is provided on the surface of a thin aluminum plate via a first coating layer made of water-soluble acrylic resin. Material. 2 The coating amount of the first coating layer is 0.5 to 2.0 g/
m 2 , the coating amount of the second coating layer is 0.1 to 1.0 g/m 2 after drying.
The heat exchanger fin material according to claim 1, characterized in that:
JP22259384A 1984-10-23 1984-10-23 Heat exchanger fin material Granted JPS61101798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22259384A JPS61101798A (en) 1984-10-23 1984-10-23 Heat exchanger fin material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22259384A JPS61101798A (en) 1984-10-23 1984-10-23 Heat exchanger fin material

Publications (2)

Publication Number Publication Date
JPS61101798A JPS61101798A (en) 1986-05-20
JPH0424632B2 true JPH0424632B2 (en) 1992-04-27

Family

ID=16784897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22259384A Granted JPS61101798A (en) 1984-10-23 1984-10-23 Heat exchanger fin material

Country Status (1)

Country Link
JP (1) JPS61101798A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2525378B2 (en) * 1986-10-24 1996-08-21 三井東圧化学株式会社 Resin composition for surface treatment
JPH0747703B2 (en) * 1988-04-06 1995-05-24 三井東圧化学株式会社 Surface treated aluminum fin material
US4973359A (en) * 1989-01-04 1990-11-27 Nippon Paint Co., Ltd. Surface treatment chemical and bath for forming hydrophilic coatings and method of surface-treating aluminum members
JP2009006231A (en) * 2007-06-27 2009-01-15 Kansai Paint Co Ltd Method for manufacturing hydrophilically-treated aluminum plate

Also Published As

Publication number Publication date
JPS61101798A (en) 1986-05-20

Similar Documents

Publication Publication Date Title
JPH09502924A (en) Non-abrasive, corrosion-resistant hydrophilic coating on aluminum surface, coating method and coating
US4664182A (en) Hydrophilic fins for a heat exchanger
US5211989A (en) Clear hydrophilic coating for heat exchanger fins
JP2857343B2 (en) Method for producing resin-based precoated fin material for heat exchanger having excellent hydrophilicity
JP2003201577A (en) Aluminum or aluminum alloy material for heat exchanger fin, and fin for heat exchanger
JPH0424632B2 (en)
JP3383914B2 (en) Aluminum fin material for heat exchanger
IL103174A (en) Hydrophilic and corrosion resistant fins for a heat exchanger
JPH0515176B2 (en)
JP3258244B2 (en) Fin material for heat exchanger with excellent hydrophilicity
JP3225793B2 (en) Highly hydrophilic paint
JPH05125555A (en) Precoated fin material excellent in press formability
JPS61225044A (en) Aluminum fin material for heat exchanger
JP2584109B2 (en) Paint for water-repellent coating and heat exchanger coated with the paint
JP3420721B2 (en) Pre-coated fin material for heat exchanger
JPH05322469A (en) Aluminum fin material for heat exchanger of air conditioner, whose surface is treated with hydrophilic coating
JPS63262238A (en) Heat-exchanger fin material
JPH11201688A (en) Fin material for heat-exchanger
JP2525378B2 (en) Resin composition for surface treatment
JPH01174438A (en) Aluminum fin material for heat exchanger
JP2880308B2 (en) Aluminum fin material for heat exchanger
JP2795550B2 (en) Aluminum fin material
JPS59185996A (en) Aluminum plate for heat exchanger fin
JP3274060B2 (en) Aluminum surface treated fin material with excellent stain resistance
JPH06194091A (en) Aluminum precoating fin material for heat exchanger with excellent mildewproof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees