JPH04245211A - Optical evaluation device - Google Patents

Optical evaluation device

Info

Publication number
JPH04245211A
JPH04245211A JP1118691A JP1118691A JPH04245211A JP H04245211 A JPH04245211 A JP H04245211A JP 1118691 A JP1118691 A JP 1118691A JP 1118691 A JP1118691 A JP 1118691A JP H04245211 A JPH04245211 A JP H04245211A
Authority
JP
Japan
Prior art keywords
cryostat
sample
optical
luminescence
evaluation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1118691A
Other languages
Japanese (ja)
Inventor
Kazuo Watanabe
和夫 渡辺
Hajime Yamazaki
肇 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1118691A priority Critical patent/JPH04245211A/en
Publication of JPH04245211A publication Critical patent/JPH04245211A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

PURPOSE:To provide an optical evaluation device to easily perform high sensitivity sensing of the impurity level using Zeeman splitting or sensing of Landau level by holding a specimen at an ultra-low temperature and in a ferro-magnetic field over one tesla in a device to measure the photo-luminescence from a micro- part using an optical microscope system. CONSTITUTION:In an optical evaluation device, a specimen 7 placed in a specimen cryostat is irradiated with a laser beam via an objective lens 1 of microscope and a glass window 6 mounted in the lid 5 of the cryostat 4, and the light emitted from the specimen 7 is introduced into the barrel 8 of the microscope through the glass window 6 and objective lens 1, and further into a sensor for measurement of the photo-luminescence. This enables measuring at an ultra- low temp. and in ferro-magnetic field on the accasion to measure the optical characteristics such as photo-luminescence using an optical microscope system.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、光学顕微鏡システムを
用い微小部からのルミネッセンスを測定する装置におい
て、試料を極低温にかつ1テスラ以上の強磁界中に保ち
、ゼーマン分離を利用した高感度不純物準位検出あるい
はランダウ準位の検出等を容易に行うための光学評価装
置に関するものである。
[Industrial Application Field] The present invention is an apparatus for measuring luminescence from minute parts using an optical microscope system, in which a sample is kept at an extremely low temperature and in a strong magnetic field of 1 Tesla or more, and high sensitivity is achieved using Zeeman separation. The present invention relates to an optical evaluation device for easily detecting impurity levels or Landau levels.

【0002】0002

【従来の技術】従来微小な領域からの発光を測定するた
めの光学顕微鏡システムを用いた10K以下の超低温で
のフォトルミネッセンス測定、比較的広い領域の半導体
等試料からのゼーマン分離を利用した高感度不純物準位
検出あるいはランダウ準位の検出のための1テスラ以上
の極低温でのフォトルミネッセンス測定は個別に行われ
ていた。しかし両測定を組み合わせた光学顕微鏡システ
ムを用い1テスラ以上の強磁界下、10K以下の極低温
でのルミネッセンス測定は主に装置構成上の困難性から
行われていない。
[Prior art] Conventionally, photoluminescence measurement at ultra-low temperatures of 10K or less using an optical microscope system for measuring light emission from a minute area, and high sensitivity using Zeeman separation from samples such as semiconductors in a relatively wide area. Photoluminescence measurements at extremely low temperatures of 1 Tesla or higher for detecting impurity levels or Landau levels have been performed separately. However, luminescence measurements using an optical microscope system that combines both measurements under a strong magnetic field of 1 Tesla or more and at an extremely low temperature of 10 K or less have not been carried out mainly due to difficulties in the equipment configuration.

【0003】従来の光学顕微鏡システム対応のクライオ
スタットは、主冷媒である液体ヘリウムまたその回りを
囲む補助冷媒である液体窒素の溜めを持ち、主冷媒であ
る液体ヘリウム溜めへの熱伝導により試料を冷却する方
式がベースとなっている。そのため形状が大きくかつ重
量が重く、また試料用クライオスタットの試料を入れる
主要部の形状を筒状に長くしにくい。従って本装置に適
用しようとすると、試料用クライオスタットを超伝導磁
石のコイルの中に入れにくい。また仮にいれたとしても
コイルの軸方向に自由に動かしにくくまた重い超伝導コ
イルにじゃまされて試料の交換に手間がかかる。さらに
クライオスタットを動かしてルミネッセンスの分布を測
定しにくい等の問題があった。
A conventional cryostat compatible with an optical microscope system has a reservoir of liquid helium as a main coolant and liquid nitrogen as an auxiliary coolant surrounding it, and cools the sample by heat conduction to the reservoir of liquid helium, which is the main coolant. The method is based on Therefore, the shape is large and heavy, and it is difficult to make the main part of the sample cryostat into which the sample is placed into a long cylindrical shape. Therefore, when trying to apply this device to the present device, it is difficult to insert the sample cryostat into the coil of the superconducting magnet. Moreover, even if it were possible to do so, it would be difficult to move freely in the axial direction of the coil, and the heavy superconducting coil would obstruct it, making it laborious to replace the sample. Furthermore, there were other problems such as difficulty in measuring the luminescence distribution by moving the cryostat.

【0004】0004

【発明が解決しようとする課題】本発明の目的は、光学
顕微鏡システムを用いルミネッセンス等の光学特性を測
定する際に極低温下かつ1テスラ以上の強磁界中での測
定また測定後の容易な試料交換を可能とする超伝導コイ
ル中に挿入するためのコンパクト軽量な試料用のクライ
オスッタトを有する光学評価装置を提供することである
[Problems to be Solved by the Invention] It is an object of the present invention to provide a method for measuring optical properties such as luminescence using an optical microscope system at extremely low temperatures and in a strong magnetic field of 1 Tesla or more, and to provide an easy method after measurement. An object of the present invention is to provide an optical evaluation device having a compact and lightweight cryostat for a sample to be inserted into a superconducting coil that allows sample exchange.

【0005】[0005]

【課題を解決するための手段】本発明は、試料を10K
以下の温度に保つためのクライオスタットを液体ヘリウ
ムフロー型冷却システムとする事によりコンパクトに超
伝導コイル内に挿入できるようにしたものである。また
試料用クライオスタットを超伝導コイルの中でコイルの
軸方向に自由に動かせる筒状の形とする事により、コイ
ル中心部でルミネッセンスを測定した後クライオスタッ
ト先端に取り付けた試料を交換する際クライオスタット
をコイル軸方向に深く差し込む方向に動かすかまたはコ
イルから引き出させ、試料交換を容易にしたものである
[Means for Solving the Problems] The present invention provides a method for preparing samples at 10K.
The cryostat that maintains the temperature below is a liquid helium flow type cooling system that can be compactly inserted into the superconducting coil. In addition, by making the sample cryostat into a cylindrical shape that can be moved freely in the axial direction of the coil within the superconducting coil, the cryostat can be moved around the coil when replacing the sample attached to the tip of the cryostat after measuring luminescence at the center of the coil. The sample can be easily replaced by moving it in the direction of deep insertion in the axial direction or by pulling it out from the coil.

【0006】[0006]

【実施例】以下、本発明を実施例を挙げて説明する。[Examples] The present invention will be explained below with reference to Examples.

【0007】図1は本発明に係る光学評価装置の一実施
例を示すもので、光学顕微鏡システムを用い強磁界中で
ルミネッセンスを測定する装置における顕微鏡の対物レ
ンズ1の部分と、超伝導コイル2と、コイル冷却用クラ
イオスタット3と、試料用クライオスタット4とを有す
る光学評価装置の概略図である。
FIG. 1 shows an embodiment of an optical evaluation device according to the present invention, which shows an objective lens 1 of a microscope and a superconducting coil 2 in a device that measures luminescence in a strong magnetic field using an optical microscope system. FIG. 2 is a schematic diagram of an optical evaluation apparatus having a coil cooling cryostat 3 and a sample cryostat 4.

【0008】上記光学評価装置は、顕微鏡対物レンズ1
、試料用クライオスタット4の蓋5に取り付けられたガ
ラス窓6を通してクライオスタット内部の試料7にレー
ザ光を絞って照射し、試料7からの発光をガラス窓6、
対物レンズ1を通して顕微鏡鏡筒8内に導入し、さらに
その光を検出器に導入してフォトルミネッセンスを測定
する光学評価装置である。
The above-mentioned optical evaluation device includes a microscope objective lens 1
, the sample 7 inside the cryostat is focused and irradiated with laser light through the glass window 6 attached to the lid 5 of the sample cryostat 4, and the emitted light from the sample 7 is transmitted through the glass window 6,
This is an optical evaluation device that measures photoluminescence by introducing light into a microscope barrel 8 through an objective lens 1 and further introducing the light into a detector.

【0009】上記光学評価装置において超伝導コイル2
のコア中の磁界は5テスラであり、試料用クライオスタ
ットとともにXY水平駆動台9の上で水平方向に動かし
試料7へのレーザ照射位置を操作するために、超伝導用
コイル2は比較的コンパクトなものを用いておりコア径
も小さい。本実施例においてはコイル用クライオスタッ
ト3のコア内の穴10の径が4cm程度である。この穴
10に試料用クライオスタット4の本体筒状部11を試
料位置がコイルの軸方向中心位置までくるように10c
m程度挿入して(図1の状態)ルミネッセンスを測定す
る。また測定終了後試料を交換する際は対物レンズ1を
上昇し穴10から出すとともに、本体筒状部11を穴1
0に深く挿入し(20cm程度)上部蓋5の位置がコイ
ル用クライオスタット3の穴10の上部と高さ位置が同
程度になるようにして蓋5を閉めているネジ12を緩め
、蓋5を外して試料7を交換できるようにしてある。 これによりコンパクトとはいえ重量のあるコイル2及び
液体ヘリウム溜め13と液体窒素溜め14とを有するコ
イル用冷却クライオスタット3を支持台15から持ち上
げて動かさずに容易に試料交換ができる。
[0009] In the above optical evaluation device, the superconducting coil 2
The magnetic field in the core is 5 Tesla, and the superconducting coil 2 is relatively compact in order to move it horizontally on the XY horizontal drive stage 9 together with the sample cryostat to control the laser irradiation position on the sample 7. The core diameter is also small. In this embodiment, the diameter of the hole 10 in the core of the coil cryostat 3 is about 4 cm. Insert the main body cylindrical part 11 of the sample cryostat 4 into this hole 10 so that the sample position is at the axial center position of the coil.
Insert it approximately m (in the state shown in Figure 1) and measure the luminescence. When replacing the sample after measurement, raise the objective lens 1 and take it out of the hole 10, and insert the main body cylindrical part 11 into the hole 10.
0 deeply (about 20 cm) so that the position of the upper lid 5 is at the same height as the top of the hole 10 of the coil cryostat 3, then loosen the screw 12 that closes the lid 5, and then close the lid 5. It is designed so that it can be removed and the sample 7 replaced. As a result, samples can be easily replaced without lifting and moving the coil cooling cryostat 3 having the compact but heavy coil 2, liquid helium reservoir 13, and liquid nitrogen reservoir 14 from the support base 15.

【0010】本実施例のように本体筒状部11の外径が
4cm程度で、長さが20cm以上もあり、その先端に
試料7があるような試料用クライオスタットは、従来の
光学顕微鏡システム対応の試料用クライオスタットすな
わち主冷媒である液体ヘリウムまたその周りを囲む補助
冷媒である液体窒素の溜めを持ち、主冷媒である液体ヘ
リウム溜めへの熱伝導により試料を冷却する方式では、
外径を含む形状が大きく実現が困難で、図1に示した液
体ヘリウムフロー用細管16を有するフロー型のもので
はじめて実現が容易になる。
[0010] A cryostat for specimens in which the main body cylindrical part 11 has an outer diameter of approximately 4 cm, a length of 20 cm or more, and the specimen 7 is located at the tip of the cryostat as in this embodiment is compatible with conventional optical microscope systems. A sample cryostat, which has a reservoir of liquid helium as the main coolant and liquid nitrogen as an auxiliary coolant surrounding it, cools the sample by heat conduction to the reservoir of liquid helium, the main coolant.
The shape including the outer diameter is large and difficult to realize, and it can only be easily realized by a flow type having a capillary tube 16 for liquid helium flow shown in FIG.

【0011】また、この液体ヘリウムフロー用の型のク
ライオスタットでは重量が軽く、試料を取り出す際の上
下動17が容易となり、さらにXY水平駆動する際のモ
ータにも負担がかからない。
[0011] Furthermore, this type of cryostat for liquid helium flow is light in weight, making it easy to move up and down 17 when taking out a sample, and furthermore, there is no burden on the motor when driving XY horizontally.

【0012】なお、本実施例においては試料を取り出す
際、試料用クライオスタット4の本体筒状部11をコイ
ル用クライオスタット3の穴10に奥深く(図1では上
に)挿入したが、試料用クライオスタット本体筒状部1
1の長さをルミネッサンス測定時に必要な挿入長さ程度
に抑え、穴10から引き出して(図1では下に)試料用
クライオスタット4をコイル冷却用クライオスタット3
の下から取り出して試料交換しても良い。
In this embodiment, when taking out the sample, the main body cylindrical part 11 of the sample cryostat 4 was inserted deeply (into the top in FIG. 1) into the hole 10 of the coil cryostat 3; Cylindrical part 1
1 to the insertion length required for luminescence measurement, pull it out from the hole 10 (lower in Figure 1), and attach the sample cryostat 4 to the coil cooling cryostat 3.
You can also take it out from underneath and replace the sample.

【0013】また、本実施例はレーザ光を照射しルミネ
ッセンスを取り出すフォトルミネッセンスであったが、
試料からリード線を引き出して電界を印加し、対物レン
ズからルミネッセンスを取り出せば、強磁界中でエレク
トロルミネッセンスを行うことができる。
[0013]Also, although this embodiment was a photoluminescence method in which luminescence is extracted by irradiating a laser beam,
Electroluminescence can be performed in a strong magnetic field by pulling out lead wires from the sample, applying an electric field, and extracting the luminescence from the objective lens.

【0014】[0014]

【発明の効果】以上説明したように、本発明は、試料を
10K以下の温度に保つためのクライオスタットを液体
ヘリウムフロー型冷却システムとし、コンパクトに超伝
導コイルに内に挿入する事ができる構成としたので、光
学顕微鏡システムを用いたルミネッセンス等の光学特性
を測定する際における、極低温下かつ強磁界中での測定
が実現できる。
[Effects of the Invention] As explained above, the present invention uses a liquid helium flow type cooling system as a cryostat for keeping a sample at a temperature of 10 K or less, and has a configuration that can be compactly inserted into a superconducting coil. Therefore, when measuring optical properties such as luminescence using an optical microscope system, measurement at extremely low temperatures and in a strong magnetic field can be realized.

【0015】また、クライオスタットを超伝導コイルの
中でのコイルの軸方向に自由に動かせる筒状の形状とし
たので、コイル中心部でルミネッセンスを測定した後に
試料を交換する際、試料用クライオスタットをコイル軸
方向に動かせるようになる。従って試料用クライオスタ
ットを深く差し込み、または引き出す等の操作が容易に
なり、これにより先端に取り付けた試料の取り出しも容
易になる。
In addition, since the cryostat has a cylindrical shape that can be moved freely in the axial direction of the coil within the superconducting coil, when replacing the sample after measuring luminescence at the center of the coil, the cryostat for the sample can be moved freely in the axial direction of the coil. Allows movement in the axial direction. Therefore, operations such as deeply inserting or pulling out the sample cryostat become easy, and thereby it becomes easy to take out the sample attached to the tip.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係る光学評価装置の一実施例を示す概
略図である。
FIG. 1 is a schematic diagram showing an embodiment of an optical evaluation device according to the present invention.

【符号の説明】[Explanation of symbols]

2  超伝導コイル 3  コイル冷却用クライオスタット 4  試料用クライオスタット 7  試料 8  顕微鏡鏡筒 2 Superconducting coil 3 Cryostat for coil cooling 4 Cryostat for samples 7 Sample 8 Microscope barrel

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  光学顕微鏡システムを用いルミネッセ
ンス等の光学特性を測定する装置において、試料を10
K以下の温度の保つためのクライオスタットと、そのク
ライオスタットの回りから試料に1テスラ以上の強磁界
を印加するための超伝導コイルと、その超伝導コイルを
冷却するためのクライオスタットとを有する光学評価装
置。
Claim 1: In an apparatus for measuring optical properties such as luminescence using an optical microscope system, a sample is
An optical evaluation device that has a cryostat for maintaining the temperature below K, a superconducting coil for applying a strong magnetic field of 1 Tesla or more to the sample from around the cryostat, and a cryostat for cooling the superconducting coil. .
【請求項2】  試料を10K以下の温度に保つための
クライオスタットが、液体ヘリウム等冷媒フロー型冷却
システムである請求項1記載の光学評価装置。
2. The optical evaluation apparatus according to claim 1, wherein the cryostat for maintaining the sample at a temperature of 10 K or less is a refrigerant flow type cooling system such as liquid helium.
【請求項3】  試料を10K以下の温度に保つための
クライオスタットが、超伝導コイル中でコイルの軸方向
に自由に動かせる筒状の形状である請求項2記載の光学
評価装置。
3. The optical evaluation device according to claim 2, wherein the cryostat for maintaining the sample at a temperature of 10 K or less has a cylindrical shape that can be freely moved in the axial direction of the superconducting coil.
JP1118691A 1991-01-31 1991-01-31 Optical evaluation device Pending JPH04245211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1118691A JPH04245211A (en) 1991-01-31 1991-01-31 Optical evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1118691A JPH04245211A (en) 1991-01-31 1991-01-31 Optical evaluation device

Publications (1)

Publication Number Publication Date
JPH04245211A true JPH04245211A (en) 1992-09-01

Family

ID=11771041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1118691A Pending JPH04245211A (en) 1991-01-31 1991-01-31 Optical evaluation device

Country Status (1)

Country Link
JP (1) JPH04245211A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008091928A (en) * 2006-10-04 2008-04-17 Oxford Instruments Superconductivity Ltd Flow-cooled magnet system
JP2015529858A (en) * 2012-09-13 2015-10-08 ブランディーズ・ユニバーシティBrandeis University Cooling system and method for cryogenic super-resolution fluorescence microscopy and other applications

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008091928A (en) * 2006-10-04 2008-04-17 Oxford Instruments Superconductivity Ltd Flow-cooled magnet system
JP2015529858A (en) * 2012-09-13 2015-10-08 ブランディーズ・ユニバーシティBrandeis University Cooling system and method for cryogenic super-resolution fluorescence microscopy and other applications
US9784962B2 (en) 2012-09-13 2017-10-10 Brandeis University Cooling systems and methods for cryo super-resolution fluorescence light microscopy and other applications
US10678039B2 (en) 2012-09-13 2020-06-09 Brandeis University Cooling systems and methods for cryo super-resolution fluorescence light microscopy and other applications

Similar Documents

Publication Publication Date Title
EP2555221B1 (en) Method of studying a sample in an ETEM
CN111766550A (en) Three-dimensional magnetic field probe station test system and test method
IL155476A (en) Methods and devices for dissolving hyperpolarised solid material for nmr analyses
CA2427726A1 (en) Methods and devices for polarised nmr samples
Fernández-Morán Electron microscopy with high-field superconducting solenoid lenses
JPH04245211A (en) Optical evaluation device
JPH0545990Y2 (en)
CN113009389B (en) Laser heating high-temperature nuclear magnetic resonance probe and device
US11821855B2 (en) Sample holder for single-crystal X-ray structure analysis apparatus, sample holder unit, and soaking method therefor
CN104181335A (en) Scanning tunneling microscope scanning probe head
CN105891171A (en) Efficient high-precision low-temperature laser scanning double-focus microscope system
CN113008033B (en) High-temperature reaction tube furnace capable of accurately controlling temperature and atmosphere and rapidly quenching sample
CN112462149B (en) Superconducting coil electrical sensing method
JPH05118973A (en) Sample cooling device
Giauque Sample Chamber for Magnetothermodynamic Measurements
Bancel et al. Manipulating crystals with light
JPS6335480Y2 (en)
Van Itterbeek et al. Magnetic susceptibility measurements on germanium between room temperature and liquid hydrogen temperatures
CN216160681U (en) Traction lifting structure of scanning head of scanning tunnel microscope
US6864675B2 (en) Mark forming method, mark forming apparatus and analyzing apparatus
US20230303961A1 (en) Sample measurement apparatus, sample measurement system, and artificial insemination apparatus
Schumacher Versatile cryostat for the study of point defects in quenched metals
CN101119086A (en) Zero-gravity condition non-container processing equipment of anti-magnetism material in magnetic field
JP4903539B2 (en) Induced magnetic field detector
JPH04165320A (en) Optical device