JPH04242010A - Anisotropic conductive agent for connection - Google Patents

Anisotropic conductive agent for connection

Info

Publication number
JPH04242010A
JPH04242010A JP1478791A JP1478791A JPH04242010A JP H04242010 A JPH04242010 A JP H04242010A JP 1478791 A JP1478791 A JP 1478791A JP 1478791 A JP1478791 A JP 1478791A JP H04242010 A JPH04242010 A JP H04242010A
Authority
JP
Japan
Prior art keywords
anisotropic conductive
particles
conductive agent
binder
conductive particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1478791A
Other languages
Japanese (ja)
Other versions
JP3003952B2 (en
Inventor
Yukio Yamada
幸男 山田
Takashi Ando
尚 安藤
Masamitsu Itagaki
板垣 政光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=11870769&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH04242010(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sony Chemicals Corp filed Critical Sony Chemicals Corp
Priority to JP1478791A priority Critical patent/JP3003952B2/en
Publication of JPH04242010A publication Critical patent/JPH04242010A/en
Application granted granted Critical
Publication of JP3003952B2 publication Critical patent/JP3003952B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/2939Base material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29444Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29455Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Abstract

PURPOSE:To stabilize conductive resistance of an anisotropic conductive agent for conductively bonding opposing connection circuits. CONSTITUTION:An anisotropic conductive agent incorporates conductive particles, where the surface of a high polymer particle having an epoxy group is covered with a metal plating film, a potential epoxy hardener (imidazole hardener) crosslinked with the high polymer particle, and a binder of a bisphenol A type epoxy resin. An epoxy group of the high polymer particle included in the conductive particle is chemically connected to an epoxy group of an epoxy resin via the hardener at the time of bonding under pressure.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、対向する接続回路を導
通接着するための接続用異方性導電剤に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anisotropic conductive agent for connection for conductively bonding opposing connection circuits.

【0002】0002

【従来の技術】集積回路の配線基板への接続、液晶ディ
スプレイ等の表示装置と配線基板との接続、電気回路と
リードとの接続などのように接続端子が対向して細かい
ピッチで並んでいる場合の接続方法として異方性導電剤
を用いた接続方法が提案されている。之は特に、高密度
、高精細化の進む微細回路の接続に適用して好適である
。この接続方法は導電性粒子を分散させた粘着性の樹脂
フィルム(所謂異方性導電剤)を、対向する接続回路間
に配し、加圧または加熱加圧によって接続回路間の導通
と同時に隣り合う回路間の絶縁性を付与して対向する接
続回路間を接着固定するものである。
[Prior Art] Connecting terminals are arranged facing each other at a fine pitch, such as when connecting an integrated circuit to a wiring board, connecting a display device such as a liquid crystal display to a wiring board, or connecting an electric circuit to a lead. A connection method using an anisotropic conductive agent has been proposed as a connection method in this case. This is particularly suitable for connection of fine circuits, which are becoming increasingly dense and precise. In this connection method, an adhesive resin film (so-called anisotropic conductive material) in which conductive particles are dispersed is placed between opposing connection circuits, and conduction is established between the connection circuits by applying pressure or heating. This provides insulation between matching circuits and adhesively fixes opposing connected circuits.

【0003】従来、この様な異方性導電剤としては、(
I)例えば架橋ポリスチレン粒子の表面に金属メッキ例
えばNi及びAuメッキを施した導電性粒子を、スチレ
ンブタジェンラバー系バインダー中に分散して成る異方
性導電剤、(II)圧着の際、導電性粒子の金属メッキ
層が割れて中のポリスチレン粒子とスチレンブタジェン
ラバー系バインダーが接続し安定した導通を得るように
した異方性導電剤(特公平2−829号参照)、(II
I)半田粒子をエポキシ系熱硬化性バインダー中に分散
して成る異方性導電剤、等が知られている。
Conventionally, such anisotropic conductive agents include (
I) An anisotropic conductive agent made by dispersing conductive particles, for example cross-linked polystyrene particles whose surfaces are plated with metal, for example Ni and Au, in a styrene-butadiene rubber binder; Anisotropic conductive agent (see Japanese Patent Publication No. 2-829), (II
I) Anisotropic conductive agents formed by dispersing solder particles in an epoxy thermosetting binder are known.

【0004】0004

【発明が解決しようとする課題】しかしながら、上述の
(I)の異方性導電剤は、スチレンブタジェン系バイン
ダーの熱膨張係数が 1.4×10−4、導電性粒子の
熱膨張係数が 7.0×10−5であるために、対向す
る接続回路(即ち端子)間を接続した場合、熱膨張係数
の違いでサーマルショックなどの熱衝撃により導通抵抗
が変化しやすい欠点を有していた。即ち、図3に示すよ
うに異方性導電剤1を介して例えば液晶ディスプレイ本
体2の端子3とフレキシブル配線基板4の端子5を接続
した状態(図3A参照)で高温と低温が周期的に繰返さ
れるサーマルショックを与えると、高温時ではバインダ
ー6が導電性粒子7よりも熱膨張が大きいめた、導電性
粒子7と端子3、5間の接触が外れ(図3B参照)導通
抵抗が大きくなる。
[Problems to be Solved by the Invention] However, in the above-mentioned anisotropic conductive agent (I), the styrene-butadiene binder has a thermal expansion coefficient of 1.4 x 10-4, and the conductive particles have a thermal expansion coefficient of 1.4 x 10-4. 7.0 x 10-5, it has the disadvantage that when connecting opposing connection circuits (i.e. terminals), the conduction resistance tends to change due to thermal shock such as thermal shock due to the difference in coefficient of thermal expansion. Ta. That is, as shown in FIG. 3, when the terminal 3 of the liquid crystal display main body 2 and the terminal 5 of the flexible wiring board 4 are connected via the anisotropic conductive material 1 (see FIG. 3A), high and low temperatures are periodically changed. When repeated thermal shocks are applied, the binder 6 has a larger thermal expansion than the conductive particles 7 at high temperatures, so the contact between the conductive particles 7 and the terminals 3 and 5 comes off (see Figure 3B), resulting in a large conduction resistance. Become.

【0005】また、上述の(II)の異方性導電剤は、
圧着の際に導電性粒子の金属メッキ層が割れて中のポリ
スチレン粒子とバインダーが接着するが、これは単なる
ポリスチレン粒子とバインダーの接着にとどまる為に、
高温でのエージングではバインダーの凝集力が低下し熱
膨張係数の差が導通抵抗を上昇させる原因となる。さら
に、上述の(III)の異方性導電剤は、バインダーの
熱膨張係数が 5.2×10−5、半田粒子の熱膨張係
数が 2.5×10−5であるため、(I)の異方性導
電剤と同様にサーマルショック等で導通抵抗が上昇する
傾向になる。
[0005] Furthermore, the above-mentioned anisotropic conductive agent (II) is
During crimping, the metal plating layer of the conductive particles cracks and the polystyrene particles inside and the binder adhere, but this is only a simple adhesion between the polystyrene particles and the binder.
Aging at high temperatures reduces the cohesive force of the binder, and the difference in thermal expansion coefficient causes an increase in conduction resistance. Furthermore, in the above-mentioned anisotropic conductive agent (III), since the binder has a thermal expansion coefficient of 5.2 x 10-5 and the solder particles have a thermal expansion coefficient of 2.5 x 10-5, (I) Similar to the anisotropic conductive agent, conduction resistance tends to increase due to thermal shock, etc.

【0006】本発明は、上述の点に鑑み、導通の信頼性
を向上することができる異方性導電剤を提供するもので
ある。
In view of the above points, the present invention provides an anisotropic conductive agent that can improve the reliability of conduction.

【0007】[0007]

【課題を解決するための手段】本発明は、対向する接続
回路間に薄層状で介在させ、接続回路間を押圧すること
により接続回路間の導通と接着が得られる接続用異方性
導電剤において、異方性導電剤15を、官能基を有する
高分子粒子11の表面を導電性金属薄膜12で被覆して
なる導電性粒子13と、この高分子粒子11と架橋する
硬化剤と、絶縁性有機接着剤14とを有して構成する。
[Means for Solving the Problems] The present invention provides an anisotropic conductive agent for connection which can be interposed in a thin layer between opposing connection circuits and pressurized between the connection circuits to obtain continuity and adhesion between the connection circuits. In , an anisotropic conductive agent 15, conductive particles 13 formed by coating the surface of a polymer particle 11 having a functional group with a conductive metal thin film 12, a curing agent crosslinking with the polymer particle 11, and an insulating The organic adhesive 14 is made up of:

【0008】[0008]

【作用】本発明においては、異方性導電剤15を対向す
る接続回路間に介在させて加圧したとき、導電性粒子1
3の導電性金属薄膜12が割れて、内部の高分子粒子1
1が露出し、その高分子粒子11表面の官能基と、絶縁
性有機接着剤14の官能基が該絶縁性有機接着剤14中
の硬化剤を介して反応し、導電性粒子13の高分子粒子
11と絶縁性有機接着剤14とが化学的に結合する。
[Operation] In the present invention, when the anisotropic conductive agent 15 is interposed between opposing connection circuits and pressurized, the conductive particles 1
The conductive metal thin film 12 of No. 3 is cracked, and the polymer particles 1 inside
1 is exposed, the functional group on the surface of the polymer particle 11 and the functional group of the insulating organic adhesive 14 react via the curing agent in the insulating organic adhesive 14, and the polymer of the conductive particle 13 reacts with the functional group of the insulating organic adhesive 14. Particles 11 and insulating organic adhesive 14 are chemically bonded.

【0009】之によって、導電性粒子13の膨張、収縮
と絶縁性有機接着剤14の膨張、収縮が同等となるか、
若しくは両者の結合がしっかりする為に、導電性粒子1
3の膨張、収縮が抑えられ、その後のサーマルショック
等の熱衝撃試験を行っても安定した導通抵抗が得られる
[0009] Therefore, whether the expansion and contraction of the conductive particles 13 and the expansion and contraction of the insulating organic adhesive 14 are equal to each other.
Alternatively, in order to firmly bond the two, conductive particles 1
The expansion and contraction of No. 3 is suppressed, and stable conduction resistance can be obtained even after subsequent thermal shock tests such as thermal shock.

【0010】0010

【実施例】本発明においては、図1に示すように、例え
ば水酸基(−OH)、カルボキシル基(−COOH)、
アミノ基(−NH3)、エポキシ基(化1)、C=C等
の官能基を有する高分子粒子11の表面を、導電性金属
薄膜12例えばNi、Auメッキ(所謂NiとAuの2
層メッキ)等の金属メッキ膜で被覆した導電性粒子13
を設け、この導電性粒子13を上記の各対応する官能基
と反応する硬化剤を配合したバインダー(絶縁性有機接
着剤)14中に分散して目的の異方性導電剤15を構成
する。
[Example] In the present invention, as shown in FIG. 1, for example, hydroxyl group (-OH), carboxyl group (-COOH),
The surface of the polymer particle 11 having a functional group such as an amino group (-NH3), an epoxy group (Chem.
Conductive particles 13 coated with a metal plating film such as layer plating)
The conductive particles 13 are dispersed in a binder (insulating organic adhesive) 14 containing a curing agent that reacts with each of the corresponding functional groups described above to form a target anisotropic conductive agent 15.

【化1】[Chemical formula 1]

【0011】この異方性導電剤15の導電性粒子13は
、例えば図2に示すように相対向する接続回路間即ち例
えば液晶ディスプレイ本体2の端子3とフレキシブル配
線基板4の端子5との間で押圧変形した形状で高分子粒
子11の一部が導電性金属薄膜12から露出してバイン
ダー14と接触状態となるように形成する。表面に官能
基を有する高分子粒子11としては、官能基をもつポリ
マーで形成してもよく、又は高分子粒子11の表面に官
能基を付与して形成することができる。
The conductive particles 13 of the anisotropic conductive agent 15 are used, for example, between opposing connection circuits as shown in FIG. The polymer particles 11 are formed in a press-deformed shape such that a portion of the polymer particles 11 is exposed from the conductive metal thin film 12 and comes into contact with the binder 14. The polymer particles 11 having a functional group on their surface may be formed of a polymer having a functional group, or may be formed by adding a functional group to the surface of the polymer particle 11.

【0012】バインダー14としては例えば熱硬化性樹
脂、紫外線硬化性樹脂、電子ビーム硬化性樹脂等、プレ
ス時に反応が開始するタイプのものを用いる。硬化剤と
してはバインダー14と導電性粒子13の官能基のどち
らとも反応するものを用いる。
As the binder 14, for example, a thermosetting resin, an ultraviolet curable resin, an electron beam curable resin, or the like, which starts a reaction during pressing, is used. As the curing agent, one that reacts with both the binder 14 and the functional groups of the conductive particles 13 is used.

【0013】かかる構成の異方性導電剤15においては
、導電性粒子が接続時の加圧或は加熱加圧により、導電
性粒子相互あるいは回路部と面状に接触して導通状態が
形成される。このとき、加圧によって導電性粒子13の
導電性金属薄膜12が割れて内部の高分子粒子11が一
部露出すると、この高分子粒子11の官能基とバインダ
ー14の官能基がバインダー14中の硬化剤を介して反
応し、高分子粒子11とバインダー14とが化学的に結
合し、一体化する。この導電性粒子13とバインダー1
4との一体化で導電性粒子13の膨張、収縮が抑えられ
、例えばサーマルショックなどの熱衝撃を受けた場合に
も導通抵抗の安定性が向上する。従って、用途として例
えば車載用の液晶ディスプレイ装置に適用した場合にも
十分耐える特性が得られる。
[0013] In the anisotropic conductive agent 15 having such a structure, the conductive particles come into planar contact with each other or with the circuit portion by applying pressure or heating and pressurization during connection, thereby forming a conductive state. Ru. At this time, when the conductive metal thin film 12 of the conductive particles 13 is cracked by pressure and some of the internal polymer particles 11 are exposed, the functional groups of the polymer particles 11 and the functional groups of the binder 14 are Reaction occurs via the curing agent, and the polymer particles 11 and the binder 14 are chemically bonded and integrated. This conductive particle 13 and binder 1
4, the expansion and contraction of the conductive particles 13 is suppressed, and the stability of conduction resistance is improved even when subjected to thermal shock such as thermal shock. Therefore, sufficient durability can be obtained even when applied to a vehicle-mounted liquid crystal display device, for example.

【0014】次に、具体例を示す。 〔比較例1〕                          
         成  分            
スチレンブタジェンラバー             
     50重量部            テルペ
ンフェノール(接着付与剤)          50
重量部            導電性粒子A    
                         
   5重量部但し、導電性粒子Aは、架橋ポルスチレ
ン粒子の表面にNi、Auメッキを施した平均粒径8μ
mの金属メッキ粒子である。上記成分を配合して異方性
導電剤を作成する。 この異方性導電剤において、導電性粒子Aの熱膨張係数
は7×10−5、バインダーの熱膨張係数は 1.4×
10−4である。
Next, a specific example will be shown. [Comparative example 1]
Ingredients
styrene butadiene rubber
50 parts by weight Terpene phenol (adhesive agent) 50
Part by weight Conductive particles A

5 parts by weight However, conductive particles A are crosslinked porstyrene particles whose surfaces are plated with Ni and Au and have an average particle size of 8 μm.
m metal plated particles. The above components are blended to create an anisotropic conductive agent. In this anisotropic conductive agent, the thermal expansion coefficient of the conductive particles A is 7 x 10-5, and the thermal expansion coefficient of the binder is 1.4 x.
It is 10-4.

【0015】 〔比較例2〕                          
         成  分            
ビスフェノールA型のエポキシ樹脂(固型)  50重
量部            ビスフェノールA型のエ
ポキシ樹脂(液状)  50重量部         
   潜在性エポキシ硬化剤            
          40重量部          
  導電性粒子B                 
             30重量部但し、導電性粒
子Bは平均粒径10μmの半田粒子である。上記成分を
配合して異方性導電剤を作成する。この異方性導電剤に
おいて、導電性粒子Bの熱膨張係数は 2.5×10−
5、バインダーの熱膨張係数は 5.2×10−5であ
る。
[Comparative Example 2]
Ingredients
Bisphenol A type epoxy resin (solid) 50 parts by weight Bisphenol A type epoxy resin (liquid) 50 parts by weight
latent epoxy hardener
40 parts by weight
Conductive particles B
30 parts by weight However, the conductive particles B are solder particles with an average particle size of 10 μm. The above components are blended to create an anisotropic conductive agent. In this anisotropic conductive agent, the thermal expansion coefficient of conductive particles B is 2.5×10−
5. The coefficient of thermal expansion of the binder is 5.2 x 10-5.

【0016】 〔実施例1〕                          
         成  分            
ビスフェノールA型のエポキシ樹脂(固型)  50重
量部            ビスフェノールA型のエ
ポキシ樹脂(液状)  50重量部         
   潜在性エポキシ硬化剤            
          40重量部          
  導電性粒子C                 
               5重量部但し、導電性
粒子Cは、ポリスチレン粒子表面にエポキシ基を付与し
た高分子粒子の表面にNi、Auメッキを施した平均粒
径7μmの金属メッキ粒子である。上記成分を配合して
異方性導電剤を作成する。この異方性導電剤において、
導電性粒子Cの熱膨張係数は 6.8×10−5、バイ
ンダーの熱膨張係数は 5.2×10−5である。
[Example 1]
Ingredients
Bisphenol A type epoxy resin (solid) 50 parts by weight Bisphenol A type epoxy resin (liquid) 50 parts by weight
latent epoxy hardener
40 parts by weight
Conductive particles C
5 parts by weight However, the conductive particles C are metal-plated particles having an average particle size of 7 μm, which are obtained by plating Ni and Au on the surfaces of polymer particles having epoxy groups added to the surfaces of polystyrene particles. The above components are blended to create an anisotropic conductive agent. In this anisotropic conductive agent,
The thermal expansion coefficient of the conductive particles C is 6.8 x 10-5, and the thermal expansion coefficient of the binder is 5.2 x 10-5.

【0017】 〔実施例2〕                          
         成  分            
ビスフェノールA型のエポキシ樹脂(固型)  50重
量部            ビスフェノールA型のエ
ポキシ樹脂(液状)  50重量部         
   潜在性エポキシ硬化剤            
          40重量部          
  トルエンジイソシアネート(硬化剤)      
   0.5重量部            導電性粒
子D                       
         5重量部但し、導電性粒子Dは、ポ
リスチレン粒子表面に水酸基(−OH)を付与した高分
子粒子の表面にNi、Auメッキを施した平均粒径7μ
mの金属メッキ粒子である。トルエンジイソシアネート
は導電性粒子Dの水酸基(−OH)とバインダーの水酸
基(−OH)と反応するものである。ビスフェノールA
型のエポキシ樹脂は水酸基(−OH)を有している。上
記成分を配合して異方性導電剤を作成する。この異方性
導電剤において導電性粒子Dの熱膨張係数は 6.8×
10−5、バインダーの熱膨張係数は 5.2×10−
5である。
[Example 2]
Ingredients
Bisphenol A type epoxy resin (solid) 50 parts by weight Bisphenol A type epoxy resin (liquid) 50 parts by weight
latent epoxy hardener
40 parts by weight
Toluene diisocyanate (curing agent)
0.5 parts by weight Conductive particles D
5 parts by weight However, the conductive particles D are polymer particles with a hydroxyl group (-OH) added to the surface of the polystyrene particles, and the surfaces of the particles are plated with Ni and Au, and the average particle size is 7 μm.
m metal plated particles. Toluene diisocyanate reacts with the hydroxyl group (-OH) of the conductive particles D and the hydroxyl group (-OH) of the binder. Bisphenol A
The type of epoxy resin has a hydroxyl group (-OH). The above components are blended to create an anisotropic conductive agent. In this anisotropic conductive agent, the thermal expansion coefficient of conductive particles D is 6.8×
10-5, the coefficient of thermal expansion of the binder is 5.2×10-
It is 5.

【0018】 〔比較例3〕                          
         成  分            
ビスフェノールA型のエポキシ樹脂(固型)  50重
量部            ビスフェノールA型のエ
ポキシ樹脂(液状)  50重量部         
   潜在性エポキシ硬化剤            
          40重量部          
  導電性粒子D                 
               5重量部上記成分を配
合して異方性導電剤を作成する。この異方性導電剤にお
いて、導電性粒子の熱膨張係数は 6.8×10−5、
バインダーの熱膨張係数は 5.2×10−5である。
[Comparative Example 3]
Ingredients
Bisphenol A type epoxy resin (solid) 50 parts by weight Bisphenol A type epoxy resin (liquid) 50 parts by weight
latent epoxy hardener
40 parts by weight
Conductive particles D
An anisotropic conductive agent is prepared by blending 5 parts by weight of the above components. In this anisotropic conductive agent, the thermal expansion coefficient of the conductive particles is 6.8×10-5,
The coefficient of thermal expansion of the binder is 5.2 x 10-5.

【0019】 〔比較例4〕                          
         成  分            
ビスフェノールA型のエポキシ樹脂(固型)  50重
量部            ビスフェノールA型のエ
ポキシ樹脂(液状)  50重量部         
   潜在性エポキシ硬化剤            
          40重量部          
  導電性粒子A                 
               5重量部上記成分を配
合して異方性導電剤を作成する。この異方性導電剤にお
いて、導電性粒子の熱膨張係数は 7.0×10−5、
バインダーの熱膨張係数は 5.2×10−5である。
[Comparative Example 4]
Ingredients
Bisphenol A type epoxy resin (solid) 50 parts by weight Bisphenol A type epoxy resin (liquid) 50 parts by weight
latent epoxy hardener
40 parts by weight
Conductive particles A
An anisotropic conductive agent is prepared by blending 5 parts by weight of the above components. In this anisotropic conductive agent, the thermal expansion coefficient of the conductive particles is 7.0×10-5,
The coefficient of thermal expansion of the binder is 5.2 x 10-5.

【0020】上記の実施例1、2、比較例1、2、3、
4の各異方性導電剤を用いて相対向する回路部間を接着
したときの、初期導通抵抗及びサーマルショック後の導
通抵抗の結果を表1に示す。
[0020] The above Examples 1 and 2, Comparative Examples 1, 2, 3,
Table 1 shows the results of the initial conduction resistance and the conduction resistance after thermal shock when opposing circuit parts were bonded using each of the anisotropic conductive agents No. 4.

【0021】[0021]

【表1】 尚、サーマルショックは、−40℃(30分)と+12
0℃(30分)の温度変化を200サイクル施す熱衝撃
テストである。
[Table 1] Thermal shocks are -40℃ (30 minutes) and +12℃.
This is a thermal shock test in which a temperature change of 0°C (30 minutes) is applied for 200 cycles.

【0022】表1により比較例1ではバインダーとして
熱可塑性バインダーを用いており、熱膨張係数も大きく
、導電性粒子とバインダーが接しているだけであるため
、サーマルショック後の導通抵抗の上昇が大きい。比較
例2では、熱硬化性バインダーを用いている為、サーマ
ルショック後の導通抵抗の上昇はそれほど大きくないが
、しかし導電性粒子をバインダーが単に接しているだけ
の為、実施例1、2に比べて導通抵抗が上昇する。
According to Table 1, in Comparative Example 1, a thermoplastic binder is used as the binder, and the coefficient of thermal expansion is large, and since the conductive particles and the binder are only in contact with each other, the increase in conduction resistance after thermal shock is large. . In Comparative Example 2, since a thermosetting binder is used, the increase in conduction resistance after thermal shock is not so large. In comparison, the conduction resistance increases.

【0023】之に対し、実施例1では、熱硬化性バイン
ダーを用い、加圧時にバインダーのエポキシ基と導電性
粒子の金属メッキ層より露出する高分子粒子のエポキシ
基とが潜在性エポキシ硬化剤(即ちイミダゾール系硬化
剤)により、化学結合するため、サーマルショック後の
導通抵抗の変化が少なく、安定した導通抵抗が得られる
。化2に実施例1の化学反応式を示す。
On the other hand, in Example 1, a thermosetting binder is used, and when pressurized, the epoxy groups of the binder and the epoxy groups of the polymer particles exposed from the metal plating layer of the conductive particles form a latent epoxy curing agent. (That is, an imidazole-based curing agent) causes chemical bonding, so there is little change in conduction resistance after thermal shock, and stable conduction resistance can be obtained. Chemical reaction formula 2 shows the chemical reaction formula of Example 1.

【0024】[0024]

【化2】 この様にバインダーのエポキシ基と導電性粒子のエポキ
シ基がイミダゾール系硬化剤を介して反応し、バインダ
ーと導電性粒子が一体化することにより、導電性粒子の
膨張、収縮とバインダーの膨張、収縮が同等になるか、
若しくは互いの結合がしっかりするため、導電性粒子の
膨張、収縮が抑えられる。
[Chemical formula 2] In this way, the epoxy groups of the binder and the epoxy groups of the conductive particles react through the imidazole curing agent, and the binder and the conductive particles are integrated, causing expansion and contraction of the conductive particles and the binding of the conductive particles. Will the expansion and contraction of
Alternatively, the expansion and contraction of the conductive particles can be suppressed because they are firmly bonded to each other.

【0025】また、実施例2では、バインダーであるエ
ポキシ樹脂の水酸基(−OH)と導電性粒子の水酸基(
−OH)とがトルエンジイソシアート(硬化剤)を介し
て化学結合している為に、同様に安定した導通抵抗が得
られる。化3に実施例2の化学反応式を示す。
In addition, in Example 2, the hydroxyl group (-OH) of the epoxy resin as the binder and the hydroxyl group (-OH) of the conductive particles
-OH) are chemically bonded via toluene diisocyanate (curing agent), similarly stable conduction resistance can be obtained. Chemical reaction formula 3 shows the chemical reaction formula of Example 2.

【0026】[0026]

【化3】 この様に、エポキシ樹脂の水酸基と導電性粒子の水酸基
をトルエンジイソシアネートが継ぐ反応が起こり、実施
例1と同様に導電性粒子の膨張、収縮とバインダーの膨
張、収縮が同等になるか、若しくは互いの結合がしっか
りしているため、導電性粒子の膨張、収縮が抑えられる
[Chemical formula 3] In this way, a reaction occurs in which toluene diisocyanate connects the hydroxyl groups of the epoxy resin and the hydroxyl groups of the conductive particles, and as in Example 1, the expansion and contraction of the conductive particles becomes equivalent to the expansion and contraction of the binder. or because they are firmly bonded to each other, expansion and contraction of the conductive particles can be suppressed.

【0027】比較例3は実施例2との比較である。この
比較例3ではトルエンジイソシアネートが配合系に入っ
ていないために実施例2に比べて導通抵抗がやや上昇す
る。比較例4は実施例1との比較である。この比較例4
では導電性粒子の核である高分子粒子に官能基がないた
めに導通抵抗の上昇が大きい。
Comparative Example 3 is a comparison with Example 2. In Comparative Example 3, since toluene diisocyanate was not included in the blending system, the conduction resistance was slightly increased compared to Example 2. Comparative Example 4 is a comparison with Example 1. This comparative example 4
Since the polymer particles, which are the core of the conductive particles, do not have functional groups, the conduction resistance increases significantly.

【0028】このように本実施例1、2においては、導
通抵抗がサーマルショック後においても変化が少なく、
安定しており、したがって導通抵抗の信頼性を向上する
ことができる。
As described above, in Examples 1 and 2, the conduction resistance does not change much even after the thermal shock;
It is stable, and therefore the reliability of the conduction resistance can be improved.

【0029】[0029]

【発明の効果】本発明の異方性導電剤によれば、従来に
比べてサーマルショックなどの熱衝撃に対する導通抵抗
の安定性が向上し、異方性導電剤としての信頼性を向上
することができる。
[Effects of the Invention] According to the anisotropic conductive agent of the present invention, the stability of conduction resistance against thermal shock such as thermal shock is improved compared to the conventional one, and reliability as an anisotropic conductive agent is improved. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の接続用異方性導電剤の構成図である。FIG. 1 is a configuration diagram of an anisotropic conductive agent for connection according to the present invention.

【図2】本発明に係る接着時の構成図である。FIG. 2 is a configuration diagram at the time of adhesion according to the present invention.

【図3】従来の接続用異方性導電剤の説明図である。FIG. 3 is an explanatory diagram of a conventional anisotropic conductive agent for connection.

【符号の説明】[Explanation of symbols]

3、5  端子 11  高分子粒子 12  導電性金属薄膜 13  導電性粒子 14  絶縁性有機接着剤 15  接続用異方性導電剤 3, 5 Terminal 11 Polymer particles 12 Conductive metal thin film 13 Conductive particles 14 Insulating organic adhesive 15 Anisotropic conductive agent for connection

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  対向する接続回路間に薄層状で介在さ
せ前記接続回路間を押圧することにより前記接続回路間
の導通と接着が得られる接続用異方性導電剤において、
前記異方性導電剤は、官能基を有する高分子粒子の表面
を導電性金属薄膜で被覆してなる導電性粒子と、前記高
分子粒子と架橋する硬化剤と、絶縁性有機接着剤とを有
してなることを特徴とする接続用異方性導電剤。
1. An anisotropic conductive agent for connection, which is interposed in a thin layer between opposing connection circuits and presses the connection circuits to obtain continuity and adhesion between the connection circuits, comprising:
The anisotropic conductive agent comprises conductive particles formed by coating the surface of polymer particles having a functional group with a conductive metal thin film, a curing agent that crosslinks with the polymer particles, and an insulating organic adhesive. An anisotropic conductive agent for connection, characterized by comprising:
JP1478791A 1991-01-14 1991-01-14 Connection structure using anisotropic conductive agent Expired - Lifetime JP3003952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1478791A JP3003952B2 (en) 1991-01-14 1991-01-14 Connection structure using anisotropic conductive agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1478791A JP3003952B2 (en) 1991-01-14 1991-01-14 Connection structure using anisotropic conductive agent

Publications (2)

Publication Number Publication Date
JPH04242010A true JPH04242010A (en) 1992-08-28
JP3003952B2 JP3003952B2 (en) 2000-01-31

Family

ID=11870769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1478791A Expired - Lifetime JP3003952B2 (en) 1991-01-14 1991-01-14 Connection structure using anisotropic conductive agent

Country Status (1)

Country Link
JP (1) JP3003952B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995012643A1 (en) * 1993-11-03 1995-05-11 W. L. Gore & Associates, Inc. Electrically conductive adhesives
EP0795262A1 (en) * 1994-12-02 1997-09-17 Augat Inc. Chemically grafted electrical devices
US5761053A (en) * 1996-05-08 1998-06-02 W. L. Gore & Associates, Inc. Faraday cage
US5814180A (en) * 1993-11-03 1998-09-29 W. L. Gore & Associates, Inc. Low temperature method for mounting electrical components
WO2000034830A1 (en) * 1998-12-08 2000-06-15 Taiyo Ink Manufacturing Co., Ltd. Photocurable anisotropically conductive composition and anisotropically conductive pattern formed by using the same
JP2005097619A (en) * 2004-10-01 2005-04-14 Sony Chem Corp Anisotropic conductive adhesive and anisotropic conductive adhesive sheet using the same
US8147911B2 (en) 2003-06-06 2012-04-03 Sumitomo Electric Industries, Ltd. Perforated porous resin base material and production process of porous resin base with inner wall surfaces of perforations made conductive.

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995012643A1 (en) * 1993-11-03 1995-05-11 W. L. Gore & Associates, Inc. Electrically conductive adhesives
US5604026A (en) * 1993-11-03 1997-02-18 W. L. Gore & Associates, Inc. Electrically conductive adhesives
US5814180A (en) * 1993-11-03 1998-09-29 W. L. Gore & Associates, Inc. Low temperature method for mounting electrical components
EP0795262A1 (en) * 1994-12-02 1997-09-17 Augat Inc. Chemically grafted electrical devices
EP0795262A4 (en) * 1994-12-02 1999-11-17 Augat Inc Chemically grafted electrical devices
US5761053A (en) * 1996-05-08 1998-06-02 W. L. Gore & Associates, Inc. Faraday cage
US5763824A (en) * 1996-05-08 1998-06-09 W. L. Gore & Associates, Inc. Lid assembly for shielding electronic components from EMI/RFI interferences
WO2000034830A1 (en) * 1998-12-08 2000-06-15 Taiyo Ink Manufacturing Co., Ltd. Photocurable anisotropically conductive composition and anisotropically conductive pattern formed by using the same
US8147911B2 (en) 2003-06-06 2012-04-03 Sumitomo Electric Industries, Ltd. Perforated porous resin base material and production process of porous resin base with inner wall surfaces of perforations made conductive.
JP2005097619A (en) * 2004-10-01 2005-04-14 Sony Chem Corp Anisotropic conductive adhesive and anisotropic conductive adhesive sheet using the same

Also Published As

Publication number Publication date
JP3003952B2 (en) 2000-01-31

Similar Documents

Publication Publication Date Title
KR950000710B1 (en) Anisotropic conductive adhesive compositions
KR101163436B1 (en) Insulation-coated electroconductive particles
JPH1129748A (en) Adhesive, adhesion, and mounted substrate board assembly
KR100359175B1 (en) Anisotropic Electrically Conductive Adhesive Film
US6365840B1 (en) Electrical connecting device and electrical connecting method
KR20010083236A (en) Bonding materials
KR101151133B1 (en) Adhesive film and method for producing the same
US6632532B1 (en) Particle material anisotropic conductive connection and anisotropic conductive connection material
US6447898B1 (en) Electrically conductive, thermoplastic, heat-activatable adhesive sheet
JP2000207943A (en) Anisotropically conductive film and electrical connection device using the same
JP2501100B2 (en) Connection sheet
JPH04242010A (en) Anisotropic conductive agent for connection
KR100776554B1 (en) Connecting material and connection structure
EP1246206B1 (en) Moisture resistant electrically conductive cements and method for the production and using same
JPH06295617A (en) Anithotropic conductive adhesive compound
JPH05258830A (en) Connecting method for circuit
JP4867805B2 (en) Adhesive for electrode connection
JPH11185526A (en) Anisotropic conductive adhesive, electronic circuit parts, and piezoelectric parts, and bonding method for electric parts
JPH10273635A (en) Connecting member for circuit and production of circuit board
JPH0146549B2 (en)
JP2901137B2 (en) Anisotropic conductive adhesive film
JPH09115335A (en) Anisotropic conductive adhesive film
JP2000174066A (en) Method of mounting semiconductor device
JPH03110711A (en) Anisotropic conductive adhesive composition
JPH0329209A (en) Anisotropically conductive film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 12