JPH0422445B2 - - Google Patents

Info

Publication number
JPH0422445B2
JPH0422445B2 JP4021386A JP4021386A JPH0422445B2 JP H0422445 B2 JPH0422445 B2 JP H0422445B2 JP 4021386 A JP4021386 A JP 4021386A JP 4021386 A JP4021386 A JP 4021386A JP H0422445 B2 JPH0422445 B2 JP H0422445B2
Authority
JP
Japan
Prior art keywords
far
infrared
paint film
infrared camera
heating means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4021386A
Other languages
Japanese (ja)
Other versions
JPS62198707A (en
Inventor
Koji Ishihara
Juji Matoba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP4021386A priority Critical patent/JPS62198707A/en
Publication of JPS62198707A publication Critical patent/JPS62198707A/en
Publication of JPH0422445B2 publication Critical patent/JPH0422445B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は例えば金属材表面の塗装状態を検査
する非接触塗装検査装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a non-contact coating inspection device for inspecting the coating condition of a surface of a metal material, for example.

〔従来の技術〕[Conventional technology]

従来、金属材表面例えば水圧鉄管等の塗装検査
においては、人間が目視により観察しその凹凸や
色合い等から塗装膜の浮き上りや剥離状態等を判
断している。そして、この判断の後、特に疑わし
い部分は人手により押圧して塗装膜が浮き上つて
いるか否かを調べている。
BACKGROUND ART Conventionally, in coating inspections of metal surfaces, such as penstocks, etc., human beings visually observe the surface and judge the lifting, peeling, etc. of the coating film based on its unevenness, color, etc. After making this determination, particularly suspicious areas are manually pressed to check whether the paint film has lifted or not.

また他の検査方法として、探触子を用いて超音
波探傷により塗装膜の剥離状態を検査する方法が
ある。
As another inspection method, there is a method of inspecting the peeling state of the paint film by ultrasonic flaw detection using a probe.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の目視による検査方法では、塗装膜がわず
かに浮きかけているような場合には人手により押
えただけでは殆んど判断できないこと、さらにそ
の検査員の主観に左右されて正確な判断を得るこ
とは難しい。また、環境や安全性の面から人間が
近づけないところでは検査できないという問題点
がある。
With conventional visual inspection methods, if the paint film is slightly floating, it is almost impossible to tell just by pressing it down manually, and it is also dependent on the subjectivity of the inspector to obtain an accurate judgment. That's difficult. Another problem is that it cannot be tested in areas that are inaccessible to humans due to environmental and safety concerns.

また超音波探傷による検査方法は、塗装膜の剥
離部分には使用できないばかりか、金属表面と塗
装膜の間に水等の音響媒体が存在していたり、探
触子の押圧により塗装膜の浮き上りがなくなつた
りする場合には誤差が生じ易い欠点を有してい
る。また、測定時に探触子を塗装膜に接触させな
ければならず、はがれの部分が拡大したり、塗装
面が損傷するなどの問題点がある。
Furthermore, the inspection method using ultrasonic flaw detection is not only not suitable for areas where the paint film has peeled off, but also when there is an acoustic medium such as water between the metal surface and the paint film, or if the paint film is lifted due to the pressure of the probe. It has the disadvantage that errors are likely to occur when there is no upstream. In addition, the probe must be brought into contact with the paint film during measurement, which causes problems such as the peeled portion becoming larger and the painted surface being damaged.

この発明はかかる問題点を解決するためになさ
れたものであり、塗装膜の浮き上りや剥離状態を
非接触で効率よく正確に計測し得る非接触塗装検
査装置を得ることを目的とする。
The present invention has been made to solve these problems, and an object of the present invention is to provide a non-contact coating inspection device that can efficiently and accurately measure the lifting and peeling of a coating film in a non-contact manner.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る非接触塗装検査装置は遠赤外線
発生手段により塗装を施こした部材表面を加熱し
て塗装膜状態によつて変化する熱拡散状態を作り
出し、これを赤外線カメラで検知して温度分布画
像として表示することにより塗装状態を検査す
る。
The non-contact coating inspection device according to the present invention heats the surface of a coated member using far-infrared ray generating means to create a thermal diffusion state that changes depending on the state of the coating film, and detects this with an infrared camera to distribute the temperature. The coating condition is inspected by displaying it as an image.

〔作用〕[Effect]

この発明においては、塗装膜が吸収し易い遠赤
外線を塗装膜にその上方から照射し、塗装膜欠陥
部と正常部の熱伝達率の相違により変化する熱拡
散状態を作り、この状態を検知することにより塗
装状態を非接触で検査する。
In this invention, far infrared rays, which are easily absorbed by the paint film, are irradiated onto the paint film from above, creating a heat diffusion state that changes depending on the difference in heat transfer coefficient between defective parts and normal parts of the paint film, and detecting this state. This enables non-contact inspection of the paint condition.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示すブロツク図
であり、図において1は鋼板、鋼管等の被塗装物
(部材)、2は被塗装物1の表面に塗料を吹付けま
たは塗布し、その後、焼付けまたはそのままの状
態で所定厚さに形成した塗装膜、2aは塗装膜2
の剥離部分を示している。3は遠赤外線発生手段
であり、第2図に示すようにセラミツク材4の背
景にヒータ5を取付け、これに通電してセラミツ
ク材4を加熱することにより、セラミツク材4の
表面より波長5.6μm以上の遠赤外線を放射する。
6は塗装膜2の面に対して直角方向に遠赤外線発
生手段3と並列的に一定間隔をもつて配置した赤
外線カメラである。7は制御部であり、遠赤外線
発生手段3、赤外線カメラ6及び制御部は自走台
車(図示せず)上に搭載され、図示の矢印A方向
に所定速度で走行する。この移動速度はかならず
しも一定ではないので、その速度に応じて遠赤外
線発生手段3の加熱及び赤外線カメラ6を制御す
る。すなわち、速度計8で検出した走行速度に比
例して遠赤外線発生手段3が放射する遠赤外線の
エネルギを制御し、かつ赤外線カメラ6の走査速
度を制御する。従つて、予め台車速度が定まつて
いる場合、制御部7は既に知られている台車速度
に基づいて制御すればよく、この場合には速度計
8は必ずしも必要でない。9は信号処理部であつ
て、赤外線カメラ6からの出力データおよび制御
部7から出力される走査タイミングとから1枚の
二次元温度分布画像を得、CRTデイスプレイ1
0およびビデオレコーダ11に出力するものとな
つている。すなわち、赤外線カメラ6の出力デー
タを2値化または階調差をもつたデイジタルデー
タに変換して図示しない画像メモリに記憶し、制
御部7からの走査タイミングに応じて読出してア
ナログ化し、輝度変調信号やカラー表示信号に変
換した後、CRTデイスプレイ10に出力して表
示すると共に、ビデオレコーダ11に出力して記
録する。なお、上記の走査タイミングとは、一枚
一枚の二次元画像を得るため、すなわち走行距離
当たりの枚数を一定にし、リアルタイムで見てい
くための制御に対する因子である。
FIG. 1 is a block diagram showing an embodiment of the present invention. In the figure, 1 is an object (member) to be painted such as a steel plate or steel pipe, 2 is a paint sprayed or applied onto the surface of the object 1, and Thereafter, the coating film 2a is formed to a predetermined thickness by baking or as it is.
The peeled part is shown. Reference numeral 3 denotes a far-infrared ray generating means, and as shown in FIG. 2, a heater 5 is attached to the background of the ceramic material 4, and by energizing the heater 5 and heating the ceramic material 4, a wavelength of 5.6 μm is emitted from the surface of the ceramic material 4. It emits far infrared rays of more than
Reference numeral 6 denotes an infrared camera arranged at a constant interval in parallel with the far infrared ray generating means 3 in a direction perpendicular to the surface of the coating film 2. Reference numeral 7 denotes a control section, and the far-infrared generating means 3, the infrared camera 6, and the control section are mounted on a self-propelled trolley (not shown) and run at a predetermined speed in the direction of arrow A shown in the figure. Since this moving speed is not necessarily constant, the heating of the far-infrared ray generating means 3 and the infrared camera 6 are controlled depending on the speed. That is, the far-infrared energy emitted by the far-infrared ray generating means 3 is controlled in proportion to the traveling speed detected by the speedometer 8, and the scanning speed of the infrared camera 6 is controlled. Therefore, when the truck speed is determined in advance, the control section 7 may perform control based on the already known truck speed, and in this case, the speedometer 8 is not necessarily required. 9 is a signal processing unit which obtains one two-dimensional temperature distribution image from the output data from the infrared camera 6 and the scanning timing output from the control unit 7, and displays the image on the CRT display 1.
0 and a video recorder 11. That is, the output data of the infrared camera 6 is converted into binary data or digital data with a gradation difference, stored in an image memory (not shown), read out according to the scanning timing from the control unit 7, converted into analog data, and then modulated in brightness. After converting it into a signal or a color display signal, it is outputted to a CRT display 10 for display, and also outputted to a video recorder 11 for recording. Note that the above-mentioned scanning timing is a factor for control in order to obtain two-dimensional images one by one, that is, to keep the number of images per traveling distance constant and view them in real time.

次に、上記のように構成した非接触塗装検査装
置の動作を説明する。CRTデイスプレイ10お
よびビデオレコーダ11を含みあるいはこれらを
除いて装置全体を自走式台車に載置し、かつ塗装
膜2表面から遠赤外線発生手段3を所定距離だけ
隔てた状態で第1図中矢印A方向に移動させる。
Next, the operation of the non-contact coating inspection device configured as described above will be explained. The entire device, including or excluding the CRT display 10 and video recorder 11, is mounted on a self-propelled trolley, and the far-infrared ray generating means 3 is separated by a predetermined distance from the surface of the coating film 2, as shown in the arrow in FIG. Move in direction A.

この移動中において、制御部7は赤外線カメラ
6により測定された塗装膜2を含んだ被塗装物1
の温度信号を取込む。このとき、制御部7は速度
計8からの速度信号または予め知りうる速度信号
に基いて遠赤外線発生手段3および赤外線カメラ
6を制御する。すなわち遠赤外線発生手段3のヒ
ータ3に制御電流を流し、塗装膜2に遠赤外線を
照射する。この遠赤外線は塗装膜2に吸収され塗
装膜2は発熱し、この熱は被塗装物1内に拡散す
る。
During this movement, the control unit 7 controls the object 1 to be coated including the coating film 2 measured by the infrared camera 6.
The temperature signal is captured. At this time, the control section 7 controls the far-infrared generating means 3 and the infrared camera 6 based on the speed signal from the speedometer 8 or a speed signal that can be known in advance. That is, a control current is passed through the heater 3 of the far-infrared ray generating means 3, and the coating film 2 is irradiated with far-infrared rays. This far infrared rays are absorbed by the coating film 2, which generates heat, and this heat is diffused into the object 1 to be coated.

いま、第1図に示すように塗装膜2に剥離部分
2aが生じていると、剥離部分2aの塗装膜2と
被塗装物1間の熱伝達率は金属材である被塗装物
1の熱伝達率より小さいため、熱拡散状態が非剥
離部分と異なり、剥離部分2aの温度が他の正常
部分の温度より高くなる。たとえば外気温度が20
℃のとき、加熱温度の50℃とし、外気とは30℃の
温度差をもたせるように設定すると、剥離部分2
aと非剥離部分とでは約6℃の温度差が現われ
る。なお、装置の移動速度が速い場合には、前記
加熱温度を確保するため、制御部7は速度に比例
して遠赤外線発生手段3による加熱温度を制御す
る。
Now, as shown in FIG. 1, if a peeled part 2a has occurred in the paint film 2, the heat transfer coefficient between the paint film 2 at the peeled part 2a and the object 1 to be painted is equal to the heat transfer rate of the object 1, which is a metal material. Since it is smaller than the transfer rate, the thermal diffusion state is different from that of the non-separated portion, and the temperature of the peeled portion 2a becomes higher than the temperature of other normal portions. For example, the outside temperature is 20
℃, if the heating temperature is set to 50℃ and the temperature is set to have a temperature difference of 30℃ from the outside air, the peeled part 2
A temperature difference of about 6° C. appears between a and the non-peeled portion. Note that when the moving speed of the device is fast, the control section 7 controls the heating temperature by the far-infrared ray generating means 3 in proportion to the speed in order to ensure the heating temperature.

このようにして遠赤外線発生手段3により熱拡
散を生じさせた後、赤外線カメラ6により温度を
測定し、この温度信号を信号処理部9に送る。そ
うすると、信号処理部9において、制御部7から
送られてくる走査タイミングに応じて1枚の二次
元温度分布画像が構成され、CRTデイスプレイ
10に表示されると共に、ビデオレコーダ11に
記録される。
After the far-infrared ray generating means 3 generates heat diffusion in this manner, the temperature is measured by the infrared camera 6, and this temperature signal is sent to the signal processing section 9. Then, in the signal processing section 9, one two-dimensional temperature distribution image is constructed according to the scanning timing sent from the control section 7, and is displayed on the CRT display 10 and recorded on the video recorder 11.

第3図はCRTデイスプレイ10の表示画面、
すなわち温度分布画像を示す図である。図中Mは
正常状態にある低温部分を示し、図中Nは塗装膜
2の剥離部分2aである高温部分を示している。
Figure 3 shows the display screen of the CRT display 10.
That is, it is a diagram showing a temperature distribution image. In the figure, M indicates a low temperature part in a normal state, and N in the figure indicates a high temperature part, which is the peeled part 2a of the coating film 2.

このように本装置によれば、CRTデイスプレ
イ10に表示される、あるいはデイスプレイ11
に記録される温度分布画像を見ることによつて、
塗装膜2の剥離状態を高精度に検査することがで
きる。
In this way, according to the present device, the information displayed on the CRT display 10 or the display 11
By looking at the temperature distribution image recorded in
The peeling state of the paint film 2 can be inspected with high precision.

なお、前記実施例は1台の赤外線カメラ6を用
いた場合について説明したが第4図に示すように
赤外線カメラを2台配置する場合は、制御部7と
信号処理部9との間に遅延回路を設ける。遠赤外
線発生手段3の前方に一定間隔を置いて前置赤外
線カメラ12と、前置赤外線カメラ12で検出し
た温度信号を一定時間遅延させる遅延回路13を
設け、遠赤外線発生手段3により熱拡散が生じる
前後の温度を測定し同時期に信号処理部9に入力
することによりノイズ成分を除去しながら精度よ
く塗装状態を検査することもできる。
Although the above embodiment describes the case where one infrared camera 6 is used, when two infrared cameras are arranged as shown in FIG. Set up a circuit. A front infrared camera 12 and a delay circuit 13 for delaying the temperature signal detected by the front infrared camera 12 for a certain period of time are provided in front of the far infrared ray generating means 3 at a fixed interval, so that the far infrared ray generating means 3 can prevent heat diffusion. By measuring the temperatures before and after they occur and inputting them to the signal processing unit 9 at the same time, it is possible to accurately inspect the coating state while removing noise components.

すなわち、Δtを遅延時間とすると、Δt=l/
vで表わされる。ここで、lはカメラ間の間隔
(一定)、vはその時の相対的な装置速度である。
このΔtを用いて2つの赤外線カメラ6,12か
らの情報の差分を取ることにより、もとから生じ
ていた被検体表面の温度むらすなわちノイズを除
去した精度のよい検査結果が得られる。
In other words, if Δt is the delay time, Δt=l/
It is represented by v. Here, l is the distance between cameras (constant) and v is the relative device speed at that time.
By using this Δt to calculate the difference in information from the two infrared cameras 6 and 12, highly accurate inspection results can be obtained in which the originally occurring temperature unevenness, that is, noise on the surface of the object to be inspected is removed.

また前記各実施例は遠赤外線発生手段3等を移
動する場合について説明したが被塗装物1を移動
させるようにしても同様な作用を奏する。
Further, in each of the embodiments described above, the far-infrared ray generating means 3 and the like are moved, but the same effect can be obtained even if the object 1 to be coated is moved.

さらに、前記各実施例は金属材の塗装について
説明したが、プラスチツク、木材等の塗装にも適
用し得ることができる。
Furthermore, although each of the above embodiments has been described with respect to coating metal materials, the present invention can also be applied to coating plastics, wood, and the like.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したように塗装膜が吸収し
易い遠赤外線を照射し、塗装膜状態の変化によつ
て生じる熱拡散状態の変化を赤外線カメラで検出
して温度分布画像を表示するようにしたので、塗
装膜の浮き上りや剥離状態を非接触で効率よく、
かつ正確に検出することができる効果を有する。
As explained above, this invention irradiates far infrared rays that are easily absorbed by the paint film, detects changes in the heat diffusion state caused by changes in the state of the paint film with an infrared camera, and displays a temperature distribution image. Therefore, the lifting and peeling of the paint film can be checked efficiently and without contact.
It also has the effect of allowing accurate detection.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例を示すブロツク図、
第2図は前記実施例の遠赤外線発生手段の説明
図、第3図は前記実施例の温度分布図、第4図は
他の実施例を示すブロツク図である。 1……被塗装物、2……塗装膜、2a……剥離
部分、3……遠赤外線発生手段、4……セラミツ
クス材、5……ヒータ、6,12……赤外線カメ
ラ、7……制御部、8……速度計、9……信号処
理部、10……CRTデイスプレイ、11……ビ
デオレコーダ、13……遅延回路。
FIG. 1 is a block diagram showing an embodiment of this invention.
FIG. 2 is an explanatory diagram of the far-infrared ray generating means of the embodiment, FIG. 3 is a temperature distribution diagram of the embodiment, and FIG. 4 is a block diagram showing another embodiment. DESCRIPTION OF SYMBOLS 1...Object to be painted, 2...Painted film, 2a...Peeling part, 3...Far infrared ray generating means, 4...Ceramics material, 5...Heater, 6, 12...Infrared camera, 7...Control 8...Speedometer, 9...Signal processing unit, 10...CRT display, 11...Video recorder, 13...Delay circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 部材表面に施こされた塗装膜の状態を検査す
る非接触塗装検出装置において、前記塗装膜表面
より一定距離隔てて設けられ、前記塗装膜表面に
遠赤外線を照射して塗装膜状態によつて異なる熱
拡散状態を形成せしめる遠赤外線加熱手段と、こ
の遠赤外線加熱手段と所定間隔をもつて配置さ
れ、前記熱拡散状態を検出する赤外線カメラと、
前記部材と遠赤外線加熱手段、赤外線カメラとを
相対的に移動させ、このときの移動速度または予
め定められた移動速度に応じて前記遠赤外線加熱
手段の照射強度と赤外線カメラの走査タイミング
とを制御する制御部と、この制御部から出力され
た前記走査タイミング信号と前記赤外線カメラか
ら出力された表示信号とを用いて温度分布画像を
デイスプレイ表示する表示手段とを備えたことを
特徴とする非接触塗装検査装置。
1 In a non-contact paint detection device that inspects the condition of a paint film applied to the surface of a member, the device is installed at a certain distance from the paint film surface and irradiates the paint film surface with far infrared rays to detect the condition of the paint film. far-infrared heating means for forming different thermal diffusion states; an infrared camera disposed at a predetermined distance from the far-infrared heating means for detecting the thermal diffusion states;
The member, the far-infrared heating means, and the infrared camera are moved relative to each other, and the irradiation intensity of the far-infrared heating means and the scanning timing of the infrared camera are controlled according to the moving speed at this time or a predetermined moving speed. and a display unit that displays a temperature distribution image on a display using the scanning timing signal output from the control unit and the display signal output from the infrared camera. Paint inspection equipment.
JP4021386A 1986-02-27 1986-02-27 Noncontact paint inspecting device Granted JPS62198707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4021386A JPS62198707A (en) 1986-02-27 1986-02-27 Noncontact paint inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4021386A JPS62198707A (en) 1986-02-27 1986-02-27 Noncontact paint inspecting device

Publications (2)

Publication Number Publication Date
JPS62198707A JPS62198707A (en) 1987-09-02
JPH0422445B2 true JPH0422445B2 (en) 1992-04-17

Family

ID=12574495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4021386A Granted JPS62198707A (en) 1986-02-27 1986-02-27 Noncontact paint inspecting device

Country Status (1)

Country Link
JP (1) JPS62198707A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4114671A1 (en) * 1991-05-06 1992-11-12 Hoechst Ag METHOD AND MEASURING ARRANGEMENT FOR CONTACTLESS ON-LINE MEASUREMENT
DE4114672A1 (en) * 1991-05-06 1992-11-12 Hoechst Ag METHOD AND MEASURING ARRANGEMENT FOR CONTACTLESS ON-LINE MEASUREMENT
WO1995024279A1 (en) * 1994-03-10 1995-09-14 Ishikawa, Toshiharu Film removing device
US7220966B2 (en) 2003-07-29 2007-05-22 Toyota Motor Manufacturing North America, Inc. Systems and methods for inspecting coatings, surfaces and interfaces
US7129492B2 (en) 2003-07-29 2006-10-31 Toyota Motor Manufacturing North America, Inc. Systems and methods for inspecting coatings
DE102007050557B4 (en) * 2007-10-20 2013-01-24 Hochschule Mittweida (Fh) Device for rapid integral and non-contact measurement of roughness
US8204294B2 (en) 2009-11-25 2012-06-19 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for detecting defects in coatings utilizing color-based thermal mismatch

Also Published As

Publication number Publication date
JPS62198707A (en) 1987-09-02

Similar Documents

Publication Publication Date Title
EP1918698B1 (en) Systems and method for locating failure events in samples under load
US7409313B2 (en) Method and apparatus for nondestructive evaluation of insulative coating
US4854724A (en) Method of and apparatus for thermographic evaluation of spot welds
US5711603A (en) Nondestructive testing: transient depth thermography
US3504524A (en) Method of thermal material inspection
US4996426A (en) Device for subsurface flaw detection in reflective materials by thermal transfer imaging
US4733079A (en) Method of and apparatus for thermographic identification of parts
GB2220065A (en) Coating inspection
JPH0422445B2 (en)
JP2008014959A (en) Method for inspecting coating member for interface defects
US5433106A (en) Method for detecting moisture in a honeycomb panel
EP0192722B1 (en) Apparatus and method for static stress measurement in an object
JP2001249052A (en) Infrared thermography using differential image processing
US4795906A (en) Apparatus and system for thermographic identification of parts
JPS61132848A (en) Non-contact painting inspecting device
JPH0422446B2 (en)
JPS61230053A (en) Non-contact peel inspecting device
JPS6298243A (en) Inspection method for external wall of building and the like
JPS62112056A (en) Measuring method for sound pressure in solid body of ultrasonic probe by photoelastic method
JPS62126338A (en) Method for detecting flaw of ceramic coating
RU2568044C1 (en) Electrothermal method for detecting and identifying defects in walls of structural members
JPS60186743A (en) Method and device for inspecting internal defect of structure
KR102493099B1 (en) sleeve still surface temperature measuring apparatus and measuring method thereof
JPH0356847A (en) Nondestructive detecting method for interfacial defect of coating member
CA1297550C (en) Device of subsurface flaw detection in reflective materials by thermal-transferimaging

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees