JPH0422415A - Method for adsorbing and removing carbon dioxide - Google Patents

Method for adsorbing and removing carbon dioxide

Info

Publication number
JPH0422415A
JPH0422415A JP2125953A JP12595390A JPH0422415A JP H0422415 A JPH0422415 A JP H0422415A JP 2125953 A JP2125953 A JP 2125953A JP 12595390 A JP12595390 A JP 12595390A JP H0422415 A JPH0422415 A JP H0422415A
Authority
JP
Japan
Prior art keywords
carbon dioxide
ammonia
adsorbent
adsorption
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2125953A
Other languages
Japanese (ja)
Inventor
Yuji Horii
堀井 雄二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2125953A priority Critical patent/JPH0422415A/en
Publication of JPH0422415A publication Critical patent/JPH0422415A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To drastically enhance adsorption performance by previously allowing ammonia to be adsorbed to an adsorbent or previously adding ammonia to a gaseous raw material, in a method for removing the trace quantity of carbon dioxide contained in the gaseous raw material utilized for the producing process of a semiconductor, while using the adsorbent. CONSTITUTION:An adsorbent which selectively adsorbs carbon dioxide and ammonia is equipped to the insides of main adsorption towers 11, 12. Gaseous ammonia is passed through an ammonia circulation passage 30 from an ammonia storage tank 34 and introduced into the main adsorption tower 11, and adsorbed to the adsorbent. Thereafter, a gaseous raw material such as air is introduced into the reactor 10 of a copper oxide catalyst and the combustible components contained therein are converted into carbon dioxide and water. Thereafter, these are introduced into the main adsorption tower 11 at normal temp. and brought into contact with the adsorbent. Thereby carbon dioxide contained in the gaseous raw material is selectively adsorbed to the adsorbent. The concn. of carbon dioxide in the outlet side of the adsorption tower 11 is stably held at low concn. Thereafter, ammonia is desorbed from the adsorbent in an auxiliary adsorption tower 21 and recovered into the ammonia storage tank 34. Further purification and recovery of gas can be continuously performed by alternately utilizing two sets of adsorption towers in this equipment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、He、Ar、N2.02 、H2、空気、C
H4の純ガス等に含まれる微量の二酸化炭素を吸着剤を
用いて除去する方法に関するものであり、特に、超高純
度ガスが要求される分野、例えば半導体製造プロセス等
への適用に有効な方法に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention is applicable to He, Ar, N2.02, H2, air, C
This relates to a method for removing trace amounts of carbon dioxide contained in pure H4 gas, etc. using an adsorbent, and is particularly effective for applications in fields that require ultra-high purity gas, such as semiconductor manufacturing processes. It is related to.

〔従来の技術〕[Conventional technology]

従来、二酸化炭素を含む原料ガス、特に、空気等の低濃
度ガスから二酸化炭素を除去する場合には、主として、
特公昭57−27380号公報等に示されるような合成
ゼオライトによる吸着方法が採用されている。また、原
料ガスが微量の可燃成分を含む場合には、この可燃成分
を貴金属触媒や酸化銅触媒上で燃焼させ、二酸化炭素お
よび水分に変換した後、吸着除去する方法も知られてい
る(特開昭61−225568号公報参照)。
Conventionally, when removing carbon dioxide from a raw material gas containing carbon dioxide, especially a low concentration gas such as air, the following methods have been used:
An adsorption method using synthetic zeolite as shown in Japanese Patent Publication No. 57-27380 has been adopted. In addition, when the raw material gas contains trace amounts of combustible components, a method is also known in which these combustible components are burned on a noble metal catalyst or copper oxide catalyst, converted into carbon dioxide and moisture, and then adsorbed and removed (especially (Refer to JP-A-61-225568).

さらに近年は、上記吸着を0℃〜−70℃程度の低温条
件下で行うことにより、上記吸着剤における二酸化炭素
の吸着容量を増加させ、吸着塔出口の濃度を下げる方法
も提案されるに至っている(昭和53年日本原子力学会
秋の分科会資料G−35)。
Furthermore, in recent years, a method has been proposed in which the adsorption is performed at low temperatures of about 0°C to -70°C to increase the adsorption capacity of carbon dioxide in the adsorbent and lower the concentration at the outlet of the adsorption tower. (1971 Atomic Energy Society of Japan Autumn Subcommittee Material G-35).

第3図は、上記のような方法を実施するための吸着除去
装置の一例を示したものである。この装置において、ま
ず、原料ガス中の可燃性ガスを酸化銅触媒反応器90で
酸化し、二酸化炭素および水分に変換した後、このガス
をゼオライト吸着塔91(92)に導入し、上記二酸化
炭素および水分を吸着除去する。そして、この二酸化炭
素および水分の破過が始まる前に吸着操作を打ち切り、
ヒータ93(94)で吸着塔91(92)を加熱しなが
ら、精製ガスの一部を再生ガス通路95を通じて環流さ
せることにより、吸着塔91(92)で吸着されている
二酸化炭素および水を脱着させ、廃棄する。この脱着操
作の間、他の吸着塔92(91)で吸着を行うことによ
り、精製ガスを連続的に得ることができる。
FIG. 3 shows an example of an adsorption/removal apparatus for carrying out the above method. In this apparatus, first, combustible gas in the raw material gas is oxidized in a copper oxide catalyst reactor 90 and converted into carbon dioxide and moisture, and then this gas is introduced into a zeolite adsorption tower 91 (92), and the carbon dioxide and adsorbs and removes moisture. Then, the adsorption operation is stopped before the breakthrough of carbon dioxide and moisture begins.
Carbon dioxide and water adsorbed in the adsorption tower 91 (92) are desorbed by circulating a part of the purified gas through the regeneration gas passage 95 while heating the adsorption tower 91 (92) with the heater 93 (94). and discard. During this desorption operation, purified gas can be continuously obtained by performing adsorption in another adsorption tower 92 (91).

このような方法によれば、例えば吸着剤として合成ゼオ
ライト(代表的にはモレキュラシーブ5A)を用い、常
温で吸着させ、150°〜250℃程度で二酸化炭素を
脱着させることにより、吸着塔出口の二酸化炭素濃度を
1〜2 ppmまで下げることが可能である。
According to such a method, for example, synthetic zeolite (typically Molecular Sieve 5A) is used as an adsorbent, and carbon dioxide is adsorbed at room temperature and carbon dioxide is desorbed at about 150°C to 250°C, thereby reducing the amount of carbon dioxide at the outlet of the adsorption tower. It is possible to reduce the carbon concentration to 1-2 ppm.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のように二酸化炭素および水を常温で吸着させる方
法では、吸着塔出口濃度を常時安定して低濃度(1〜2
ppm)に保つことは困難であり、それ以下の濃度のも
のまで精製することはできない。また、このような低濃
度領域では、吸着が進行して二酸化炭素濃度が低下する
のに伴い、これとほぼ比例して吸着剤の吸着容量も減少
するので、出口濃度を僅かに下げようとするだけでも、
それに要する吸着剤の量が急増することとなる。
As mentioned above, in the method of adsorbing carbon dioxide and water at room temperature, the concentration at the outlet of the adsorption tower is always kept stable and low (1 to 2
ppm) and cannot be purified to a lower concentration. In addition, in such a low concentration region, as adsorption progresses and the carbon dioxide concentration decreases, the adsorption capacity of the adsorbent decreases approximately in proportion to this, so it is necessary to try to lower the outlet concentration slightly. Even with only this,
The amount of adsorbent required for this will increase rapidly.

一方、このような常温吸着方法に対し、低温で吸着を行
うようにすれば、吸着剤による吸着容量を大幅に向上さ
せことができるが、このような低温吸着方法では、液体
窒素等の冷却剤あるいは冷凍機を要するとともに、必然
的に吸脱着サイクルが長くなるので、装置の大型化およ
びコスト上昇は避けられない。特に、小流量の原料ガス
を処理する場合には不経済であり、有利な方法とは言い
難い。
On the other hand, compared to such room temperature adsorption methods, if adsorption is performed at low temperatures, the adsorption capacity of the adsorbent can be greatly improved. Alternatively, since a refrigerator is required and the adsorption/desorption cycle is inevitably lengthened, it is inevitable that the device becomes larger and the cost increases. In particular, this method is uneconomical when processing a small flow rate of raw material gas, and cannot be called an advantageous method.

本発明は、このような事情に鑑み、簡単な構成で原料ガ
ス中の二酸化炭素を十分に除去することができる方法を
提供することを目的とする。
In view of these circumstances, an object of the present invention is to provide a method that can sufficiently remove carbon dioxide from raw material gas with a simple configuration.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、二酸化炭素を含む原料ガスを吸着剤に接触さ
せ、この吸着剤に二酸化炭素を選択的に吸着させること
によりその除去を行う二酸化炭素の吸着除去方法におい
て、予め吸着剤にアンモニアを吸着させ、その後に原料
ガスを上記吸着剤に接触させるものである(請求項1)
The present invention is a carbon dioxide adsorption/removal method in which carbon dioxide is removed by bringing a raw material gas containing carbon dioxide into contact with an adsorbent and selectively adsorbing carbon dioxide onto the adsorbent. and then bring the raw material gas into contact with the adsorbent (Claim 1)
.

また、予め原料ガスにアンモニアを添加し、その後にこ
の原料ガスを吸着剤に接触させることによっても同様の
効果を得ることができる(請求項2)。
The same effect can also be obtained by adding ammonia to the raw material gas in advance and then bringing the raw material gas into contact with an adsorbent (Claim 2).

さらに、上記原料ガスを吸着剤に接触させてから二酸化
炭素の破過が始まる前に吸着操作を停諌し、次いで二酸
化炭素およびアンモニアを脱着させた後、この脱着ガス
を同脱着ガス中のアンモニアのみ選択的に吸着する副吸
着剤に接触させ、次いでこの副吸着剤からアンモニアを
脱着させて回収するようにすれば、より好ましい(請求
項3)。
Furthermore, after bringing the raw material gas into contact with the adsorbent, the adsorption operation is stopped before carbon dioxide breakthrough begins, and then after carbon dioxide and ammonia are desorbed, this desorption gas is mixed with ammonia in the desorption gas. More preferably, the ammonia is brought into contact with a sub-adsorbent that selectively adsorbs the ammonia, and then the ammonia is desorbed and recovered from the sub-adsorbent (Claim 3).

〔作 用〕[For production]

請求項1,2記載の方法によれば、アンモニアと二酸化
炭素とを共存させて吸着を行うことにより、二酸化炭素
を単独で吸着させる場合と比べ、その吸着量は大幅に増
加する。これは、両分子の共存によって吸着剤内でカル
バミン酸アンモニウムNH2C0ONH4が生成され、
もしくは水の共存下で炭酸アンモニウム(N H4) 
2 C03が生成されて極性が強くなり、高密度吸着が
実現されることに起因するものと推察される。
According to the methods described in claims 1 and 2, by adsorbing ammonia and carbon dioxide in the coexistence, the amount of carbon dioxide adsorbed is significantly increased compared to the case where carbon dioxide is adsorbed alone. This is because ammonium carbamate NH2COONH4 is generated within the adsorbent due to the coexistence of both molecules.
Or ammonium carbonate (NH4) in the presence of water.
This is presumed to be due to the fact that 2C03 is generated, the polarity becomes stronger, and high-density adsorption is realized.

さらに、請求項3記載の方法によれば、二酸化炭素の除
去で用いられたアンモニアが使用後に回収され、再使用
が可能となる。
Furthermore, according to the method of claim 3, ammonia used for removing carbon dioxide is recovered after use, and can be reused.

〔実施例〕〔Example〕

第1図は、本発明方法を実施するための装置の一例を示
したものである。
FIG. 1 shows an example of an apparatus for carrying out the method of the present invention.

図において、10は酸化銅触媒反応器であり、その下流
側には2つの主吸着塔11.12が並列に配されている
。これら酸化銅触媒反応器10および各主吸着塔11.
12には、加熱用の電気ヒタ14〜16が各々装備され
ている。
In the figure, 10 is a copper oxide catalyst reactor, and two main adsorption towers 11 and 12 are arranged in parallel on the downstream side thereof. These copper oxide catalyst reactor 10 and each main adsorption tower 11.
12 is equipped with electric heaters 14 to 16 for heating, respectively.

各主吸着塔11.12は、二酸化炭素およびアンモニア
を選択的に吸着する吸着剤(5A型合成ゼオライト)を
内部に備え、両生吸着塔11.12の下流側には、生成
ガスの一部を環流するための再生ガス通路18が配設さ
れている。
Each main adsorption tower 11.12 is internally equipped with an adsorbent (5A type synthetic zeolite) that selectively adsorbs carbon dioxide and ammonia. A regeneration gas passage 18 for reflux is provided.

また、この実施例装置では、主吸着塔11,12とは別
に副吸着塔21.22が備えられ、各副吸着塔21.2
2には、電気ヒータ25.26が設けられるとともに、
その内部には、二酸化炭素を吸着せずアンモニアのみを
選択的に吸着する開眼着剤が設けられている。この開眼
着剤としては、例えば3A型合成ゼオライトが好適であ
る。このような吸着剤を用いれば、分子が大きすぎる二
酸化炭素は吸着されず、アンモニアのみが吸着されるこ
とになる。
In addition, in this example apparatus, sub-adsorption towers 21.22 are provided separately from the main adsorption towers 11 and 12, and each sub-adsorption tower 21.2
2 is provided with electric heaters 25 and 26, and
Inside, an eye-opening adhesive is provided that selectively adsorbs only ammonia without adsorbing carbon dioxide. As this eye opening adhesive, for example, 3A type synthetic zeolite is suitable. If such an adsorbent is used, carbon dioxide whose molecules are too large will not be adsorbed, but only ammonia will be adsorbed.

両側吸着塔2122は、廃ガス通路28を介して上記主
吸着塔11.12に接続されるとともに、アンモニア循
環通路30を介して上記酸化銅触媒反応器10と各主吸
着塔11.12との間の通路に接続されており、このア
ンモニア循環通路30の途中には、真空ポンプ32およ
びアンモニア貯槽34が設けられている。
The adsorption towers 2122 on both sides are connected to the main adsorption tower 11.12 via the waste gas passage 28, and are connected to the copper oxide catalyst reactor 10 and each main adsorption tower 11.12 via the ammonia circulation passage 30. A vacuum pump 32 and an ammonia storage tank 34 are provided in the middle of this ammonia circulation passage 30.

また、各通路の適所には、通路切換用として閃格の電磁
弁が配設されている。
In addition, flashing solenoid valves for passage switching are provided at appropriate locations in each passage.

次に、この装置において行われる二酸化炭素の吸着除去
方法を説明する。なお、この装置は、二酸化炭素および
アンモニアの吸着を主吸着塔11゜12において交互に
行うことにより、精製ガスを連続的に得るとともに、ア
ンモニアの吸着を副吸着塔21,22において交互に行
うことにより、アンモニアガスを連続的に回収するよう
にしたものであるが、以下の説明では、便宜上、片側の
主眼1塔11および副吸着塔21で行われる工程につい
てのみ話を進める。
Next, a method for adsorbing and removing carbon dioxide performed in this apparatus will be explained. In addition, this apparatus is capable of continuously obtaining purified gas by alternately adsorbing carbon dioxide and ammonia in the main adsorption towers 11 and 12, and alternately adsorbing ammonia in the sub-adsorption towers 21 and 22. However, in the following explanation, for convenience, only the steps performed in the main column 1 11 and the sub-adsorption column 21 on one side will be discussed.

まず、アンモニア貯槽34からアンモニア循環通路30
を通じて主吸着塔11内・にアンモニアガスを送り込み
、吸着剤に吸着させる。このときのアンモニアの吸着量
は、後に詳細に説明するように、吸着すべき二酸化炭素
とのモル比が21となるように設定することが望ましい
First, from the ammonia storage tank 34 to the ammonia circulation passage 30
Ammonia gas is fed into the main adsorption tower 11 through the main adsorption tower 11 and adsorbed by the adsorbent. The amount of ammonia adsorbed at this time is desirably set so that the molar ratio to carbon dioxide to be adsorbed is 21, as will be explained in detail later.

その後、空気等の原料ガスを酸化銅触媒反応器10内に
送り込み、その中の可燃成分を二酸化炭素と水に変換し
た後、常温で主吸着塔11内に送り込み、吸着剤と接触
させる。これにより、原料ガス中の二酸化炭素が選択的
に吸着剤に吸着され、原料ガスから除去される。
Thereafter, a raw material gas such as air is fed into the copper oxide catalytic reactor 10 to convert the combustible components therein into carbon dioxide and water, and then fed into the main adsorption tower 11 at room temperature to contact with the adsorbent. Thereby, carbon dioxide in the raw material gas is selectively adsorbed by the adsorbent and removed from the raw material gas.

このときの二酸化炭素の吸着量は、後に詳細に記す、;
うに、アンモニアが存在しない場合に比べて大幅に増加
し、吸着塔11の出口側の二酸化炭素濃度は安定して低
濃度に保たれる。
The amount of carbon dioxide adsorbed at this time will be described in detail later;
This significantly increases the carbon dioxide concentration compared to the case where ammonia does not exist, and the carbon dioxide concentration at the outlet side of the adsorption tower 11 is stably maintained at a low concentration.

このようにして吸着操作を進めていくが、主吸着塔11
内で破過が始まる前の時点で吸着操作を打ち切り、原料
ガスの供給を止める。次いで、電気ヒータ15で主吸着
塔11を150℃〜250℃に加熱しながら、再生ガス
通路18を通じて精製ガスの一部を環流させることによ
り、主吸着塔11内で吸着された二酸化炭素およびアン
モニアを脱着させ、その混合ガスを廃ガス通路28を通
じて副吸着塔21内に送り込む。この副吸着塔21内で
は、二酸化炭素は吸着されず、アンモニアのみが吸着さ
れる。
As the adsorption operation progresses in this way, the main adsorption tower 11
The adsorption operation is terminated at a point before breakthrough begins within the reactor, and the supply of raw material gas is stopped. Next, while heating the main adsorption tower 11 to 150°C to 250°C with the electric heater 15, a part of the purified gas is refluxed through the regeneration gas passage 18, thereby removing the carbon dioxide and ammonia adsorbed in the main adsorption tower 11. is desorbed and the mixed gas is sent into the sub-adsorption tower 21 through the waste gas passage 28. In this sub-adsorption tower 21, carbon dioxide is not adsorbed, but only ammonia is adsorbed.

その後、電気ヒータ25で副吸着塔21を加熱しながら
真空ポンプ32を作動させることにより、副吸着塔21
内の吸着剤からアンモニアを脱着させ、アンモニア貯槽
34内に回収する。このとき、再生用パージガスを副吸
着塔21内に供給するようにしてもよい。
Thereafter, by operating the vacuum pump 32 while heating the sub-adsorption tower 21 with the electric heater 25, the sub-adsorption tower 21 is heated.
Ammonia is desorbed from the adsorbent inside and collected in the ammonia storage tank 34. At this time, the purge gas for regeneration may be supplied into the sub-adsorption tower 21.

以上説明した方法によれば、次に示す実験結果から明ら
かなように、吸着塔11内において予めアンモニアを吸
着させておくだけで二酸化炭素の吸着性能を大幅に向上
させることができる。
According to the method described above, as is clear from the experimental results shown below, the carbon dioxide adsorption performance can be significantly improved simply by adsorbing ammonia in advance in the adsorption tower 11.

第2図は、上記方法により得られる効果を確証するため
に行われた実験工程を示したものである。
FIG. 2 shows the experimental steps carried out to confirm the effects obtained by the above method.

各工程における運転条件は次の通りである。The operating conditions in each step are as follows.

吸着温度:室温(27〜29℃) 吸着圧力+5Nm 再生温度=250℃(大気圧の乾燥N2流通の下で吸着
塔内温度を 250℃に 1時間保持後、冷却、吸着) 吸着剤 :5A型合成ゼオライト 吸着ガス ガスI : C02350ppm/ N2バランスガス
ガスII : NH370G 911111/N2バラ
ンスガス各工程について具体的に説明すると、まず、吸
着塔11を加熱することによってその内部の吸着剤を再
生しく工程P1)、次いで二酸化炭素と窒素のバランス
ガスであるガスエを主吸着塔11内に送り込む。これに
より、吸着剤に二酸化炭素が吸着される(工程P2)。
Adsorption temperature: Room temperature (27-29℃) Adsorption pressure + 5Nm Regeneration temperature = 250℃ (After keeping the temperature inside the adsorption tower at 250℃ for 1 hour under dry N2 flow at atmospheric pressure, cooling and adsorption) Adsorbent: 5A type Synthetic zeolite adsorption gas I: C02350ppm/N2 balance gas Gas II: NH370G 911111/N2 balance gas To explain each step in detail, first, the adsorption tower 11 is heated to regenerate the adsorbent inside it, step P1); Next, gas, which is a balance gas of carbon dioxide and nitrogen, is sent into the main adsorption tower 11. As a result, carbon dioxide is adsorbed onto the adsorbent (step P2).

その後、再び再生を行い(工程P3)、今度はアンモニ
アと窒素とのバランスガスであるガス■を吸着塔11内
に送り込んでアンモニアを吸着させる(工程P4)。さ
らに、再生後(工程P5)、今度は上記ガス■を吸着さ
せ、その直後にガスIを吸着させ(工程Pa)、その後
に再生する(工程P7)。
Thereafter, regeneration is performed again (step P3), and this time gas (2), which is a balance gas of ammonia and nitrogen, is sent into the adsorption tower 11 to adsorb ammonia (step P4). Further, after the regeneration (step P5), the gas (2) is adsorbed, and immediately after that, the gas I is adsorbed (step Pa), followed by regeneration (step P7).

以上の一連の操作を行うことにより、各工程において次
表に示されるような吸着量および吸着塔出口濃度を得る
ことができた。
By performing the above series of operations, it was possible to obtain adsorption amounts and concentrations at the outlet of the adsorption tower in each step as shown in the following table.

表 ここで、二酸化炭素濃度の測定にはガスクロマトグラフ
ィーを用い、アンモニア濃度の測定には吸光光度法を用
いている。また吸着量は、上記出口濃度の変化曲線、す
なわち破過曲線を積分して求めている。
Table Here, gas chromatography is used to measure carbon dioxide concentration, and spectrophotometry is used to measure ammonia concentration. The amount of adsorption is determined by integrating the change curve of the outlet concentration, that is, the breakthrough curve.

上記の実験結果から、次のような考察を行うことができ
る。
From the above experimental results, the following considerations can be made.

i)二酸化炭素の吸着性能の向上 二酸化炭素のみを単独で吸着させる工程P2では、二酸
化炭素の吸着量が2.7v1%、出口側濃度が1.7p
pmであるのに対し、アンモニアとの共存下で吸着させ
る工程P6では、二酸化炭素の吸着量が12.0w1%
、出口側濃度が0.ippm未満となっている。すなわ
ち、アンモニアを共存させることにより、二酸化炭素の
吸着量は4倍以上となり、出口濃度も測定不能な領域ま
で低減する。換言すれば、本方法を実施することにより
、従来と比べて吸着剤の量を1/4まで削減することが
可能となる。
i) Improving carbon dioxide adsorption performance In step P2 in which carbon dioxide is adsorbed alone, the adsorption amount of carbon dioxide is 2.7v1%, and the outlet side concentration is 1.7p.
pm, whereas in step P6 where it is adsorbed in the coexistence with ammonia, the amount of carbon dioxide adsorbed is 12.0w1%.
, the outlet side concentration is 0. It is less than ippm. That is, by allowing ammonia to coexist, the amount of carbon dioxide adsorbed becomes four times or more, and the outlet concentration is also reduced to an unmeasurable range. In other words, by implementing this method, it is possible to reduce the amount of adsorbent to 1/4 compared to the conventional method.

また、原料ガス中の二酸化炭素の分圧を同じくし、吸着
温度のみを一73℃〜−53℃まで下げて上記工程P2
を行った場合には、約18.0wt%の吸着量が得られ
ることが実験で確認されているが、この吸着量と比べる
と、本方法のようにアンモニアを共存させれば、常温で
も上記低温吸着時の吸着量の2/3の吸着量が得られる
ことが分かる。
In addition, the partial pressure of carbon dioxide in the raw material gas is kept the same, and only the adsorption temperature is lowered from -73°C to -53°C in the above step P2.
It has been experimentally confirmed that an adsorption amount of approximately 18.0 wt% can be obtained when using It can be seen that an adsorption amount that is 2/3 of the adsorption amount during low-temperature adsorption can be obtained.

従って、本方法によれば、特に低温吸着を行わなくても
、常温で、しかも少ない吸着剤量で、充分な二酸化炭素
の吸着量を得ることが可能である。
Therefore, according to this method, it is possible to obtain a sufficient amount of carbon dioxide adsorbed at room temperature and with a small amount of adsorbent, without particularly performing low-temperature adsorption.

また、上記工程P4および工程P6での吸着量を比較す
ることにより、二酸化炭素との共存によってアンモニア
の吸着量も大幅に増加することがよく分かる。
Moreover, by comparing the adsorption amounts in the above steps P4 and P6, it is clearly seen that the adsorption amount of ammonia also increases significantly due to coexistence with carbon dioxide.

)二酸化炭素とアンモニアの吸着量の関係工程P6にお
いて、二酸化炭素およびアンモニアの吸着量は各々12
.Ovt%、  9.4v1%となっており、両者のモ
ル比は1:2となっている。
) Relationship between adsorption amount of carbon dioxide and ammonia In step P6, the adsorption amounts of carbon dioxide and ammonia are each 12
.. Ovt% and 9.4v1%, and the molar ratio of both is 1:2.

これは、両分子が共存することにより、吸着剤内でカル
バミン酸アンモニウムNH2C○ONH4を生成するか
、あるいは水との共存下で炭酸アンモニウム(N H4
) 2 COaを生成していることを暗示するものであ
る。このような生成物は、極性が強いために強固に吸着
し易く、これによって高密度吸着が実現され、吸着量の
大幅な増加が得られるものと推察できる。
When both molecules coexist, ammonium carbamate NH2C○ONH4 is produced within the adsorbent, or ammonium carbonate (NH4) is produced in the coexistence of water.
) 2 This suggests that COa is generated. Since such products have strong polarity, they tend to be strongly adsorbed, and it can be inferred that this allows high-density adsorption to be achieved, resulting in a significant increase in the amount of adsorption.

よって、本方法では、二酸化炭素およびアンモニアをモ
ル比にして1.2の割合で混合することにより、過不足
なく二酸化炭素の吸着を行うことができ、この比に対し
て二酸化炭素の量が少ないとアンモニアが余剰し、逆に
アンモニアの量が少ないと二酸化炭素が十分に吸着され
ず、早期に破過が生じることになる。
Therefore, in this method, by mixing carbon dioxide and ammonia at a molar ratio of 1.2, carbon dioxide can be adsorbed in just the right amount, and the amount of carbon dioxide is small relative to this ratio. If the amount of ammonia is too small, carbon dioxide will not be adsorbed sufficiently and breakthrough will occur early.

すなわち、この方法では上記モル比を1:2に設定する
ことが最も理想的であると言える。
In other words, it can be said that in this method, it is most ideal to set the molar ratio to 1:2.

例えば、前記工程P2と同様に二酸化炭素の吸着量を 
2.7vt%とし、かつ出口濃度を前記工程P6におけ
る濃度と同程度に維持するには、予めアンモニアを 2
.lvt%吸着させれば理想的となる。また、このモル
比に対応する量以上の量のアンモニアを用いれば、アン
モニアは余るが、二酸化炭素の吸着性能の向上は完全と
なる。
For example, as in step P2, the amount of carbon dioxide adsorbed is
2.7 vt% and to maintain the outlet concentration at the same level as the concentration in step P6, add 2.7 vt% of ammonia in advance.
.. It would be ideal if lvt% was adsorbed. Further, if ammonia is used in an amount equal to or more than the amount corresponding to this molar ratio, there will be a surplus of ammonia, but the carbon dioxide adsorption performance will be completely improved.

なお、脱着したアンモニアはそのまま廃棄してもよいし
、適当な除去処理をしてから廃棄するようにしてもよい
が、上記方法のように、脱着ガスを副吸着塔21に送り
込んでアンモニアのみを吸着させ、脱着するようにすれ
ば、−度使用したアンモニアを廃棄することなく回収す
ることにより、有効に再利用することができる。
Note that the desorbed ammonia may be disposed of as is or may be disposed of after being subjected to appropriate removal treatment, but as in the above method, the desorbed gas is sent to the sub-adsorption tower 21 and only ammonia is removed. If the ammonia is adsorbed and desorbed, the used ammonia can be recovered without being disposed of and thus effectively reused.

この方法での代表的な操作条件を次に示す。Typical operating conditions for this method are shown below.

原料ガス圧力 5a1m以下 酸化銅触媒反応器10の温度:250℃以下主吸着主眼
1.12 吸着温度:常温 吸着圧力・5a1m以下 再生温度  150〜250°C 再生圧カニ大気圧 吸着剤:5A型ゼオライト 副吸着塔21.22 吸着温度 常温 吸着圧力 1 atm以下 再生温度:150〜250°C 再生圧力・負圧(真空ポンプ30 の使用時) 吸着剤;3A型合成ゼオライト なお、副吸着塔2]、、22での再生圧力は、パージガ
スの使用によって12(m程度まで上げることが可能で
ある。逆に、真空ポンプ32の使用によって、パージガ
スの使用量を下げ、再生圧力を下げることができる。
Raw material gas pressure 5a1m or less Temperature of copper oxide catalytic reactor 10: 250℃ or less Main adsorption focus 1.12 Adsorption temperature: room temperature adsorption pressure/5a1m or less Regeneration temperature 150 to 250°C Regeneration pressure Crab atmospheric pressure adsorbent: 5A type zeolite Sub-adsorption tower 21.22 Adsorption temperature Normal temperature Adsorption pressure 1 atm or less Regeneration temperature: 150 to 250°C Regeneration pressure/negative pressure (when using vacuum pump 30) Adsorbent: 3A type synthetic zeolite Note that sub-adsorption tower 2], , 22 can be raised to about 12 (m) by using purge gas. Conversely, by using vacuum pump 32, the amount of purge gas used can be lowered and the regeneration pressure can be lowered.

以上の説明は、予めアンモニアを吸着剤に吸着させ、そ
の後に二酸化炭素の吸着を行う方法についてのものであ
るが、これに限らず、アンモニアと二酸化炭素とが吸着
剤内で共存すれば上記結果が得られる。従って、予め原
料ガス中に適量のアンモニアを添加しておき、この原料
ガスを吸着剤に接触させるようにしても、上記と同様に
良好な二酸化炭素の吸着を実現することができる。
The above explanation is about a method in which ammonia is adsorbed on an adsorbent in advance and then carbon dioxide is adsorbed, but the method is not limited to this, and if ammonia and carbon dioxide coexist in the adsorbent, the above results can be obtained. is obtained. Therefore, even if an appropriate amount of ammonia is added to the raw material gas in advance and the raw material gas is brought into contact with the adsorbent, good adsorption of carbon dioxide can be achieved in the same way as described above.

この場合も、二酸化炭素とアンモニアのモル比は1・2
とするのが最も好ましく、例えば原料ガスにおける二酸
化炭素の濃度がlOppmである場合には、同ガスにお
けるアンモニアの濃度が20ppmとなるまでアンモニ
アを添加するようにすれば最良となる。また、この方法
においても、二酸化炭素およびアンモニアを脱着後、こ
のガスを上記副吸着塔21.22に送り込むことにより
、アンモニアの回収および再利用を図ることができる。
In this case as well, the molar ratio of carbon dioxide and ammonia is 1.2
For example, when the concentration of carbon dioxide in the raw material gas is 10 ppm, it is best to add ammonia until the concentration of ammonia in the gas reaches 20 ppm. Also in this method, after desorbing carbon dioxide and ammonia, this gas is sent to the sub-adsorption tower 21, 22, thereby making it possible to recover and reuse ammonia.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明は、予め吸着剤にアンモニアを吸着
させ、あるいは予め原料ガスにアンモニアを添加した後
に、原料ガスを吸着剤に接触させるようにしたものであ
るので、二酸化炭素のみを単独で吸着させる場合に比べ
、吸着性能を大幅に向上させることができ、このため、
少量の吸着剤で、しかも常温下で、充分な吸着量を得る
ことができ、吸着剤通過後の二酸化炭素濃度を安定して
低濃度に保つことができる効果がある。
As described above, in the present invention, ammonia is adsorbed on an adsorbent in advance, or ammonia is added to a raw material gas in advance, and then the raw material gas is brought into contact with an adsorbent. Compared to the case of adsorption, the adsorption performance can be greatly improved, and for this reason,
A sufficient amount of adsorption can be obtained with a small amount of adsorbent at room temperature, and the carbon dioxide concentration after passing through the adsorbent can be stably maintained at a low concentration.

さらに、上記吸着剤で吸着された二酸化炭素およびアン
モニアを脱着させ、この脱着ガスを、同ガス中のアンモ
ニアのみを選択的に吸着する吸着剤に接触させた後、こ
の吸着剤からアンモニアを脱着させることにより、使用
したアンモニアを廃棄することなく回収して有効に再利
用することができ、より一層のコストの削減を図ること
ができる。
Furthermore, carbon dioxide and ammonia adsorbed by the above-mentioned adsorbent are desorbed, this desorbed gas is brought into contact with an adsorbent that selectively adsorbs only ammonia in the same gas, and then ammonia is desorbed from this adsorbent. By doing so, the used ammonia can be recovered and effectively reused without being discarded, and further cost reduction can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施するための装置の一例を示す
全体構成図、第2図は同装置において行われた実験工程
を示す流れ図、第3図は従来の二酸化炭素の吸着除去装
置の一例を示す全体構成図である。 11.12・・・主吸着塔、21.22・・・副吸着塔
、30・・・アンモニア環流通路、34・・・アンモニ
ア貯槽。 特許出願人     株式会社 神戸製鋼折代 理 人
     弁理士  小谷 悦司同       弁理
士  長1) 正第 図
Fig. 1 is an overall configuration diagram showing an example of an apparatus for carrying out the method of the present invention, Fig. 2 is a flowchart showing the experimental steps carried out in the same apparatus, and Fig. 3 is a diagram of a conventional carbon dioxide adsorption/removal apparatus. FIG. 1 is an overall configuration diagram showing an example. 11.12... Main adsorption tower, 21.22... Sub-adsorption tower, 30... Ammonia circulation passage, 34... Ammonia storage tank. Patent Applicant: Kobe Steel Orisyoshi Co., Ltd. Patent Attorney: Etsushi Kotani Patent Attorney: Chief 1) Positive Diagram

Claims (1)

【特許請求の範囲】 1、二酸化炭素を含む原料ガスを吸着剤に接触させ、こ
の吸着剤に二酸化炭素を選択的に吸着させることにより
その除去を行う二酸化炭素の吸着除去方法において、予
め吸着剤にアンモニアを吸着させ、その後に原料ガスを
上記吸着剤に接触させることを特徴とする二酸化炭素の
吸着除去方法。 2、二酸化炭素を含む原料ガスを吸着剤に接触させ、こ
の吸着剤に二酸化炭素を選択的に吸着させることにより
その除去を行う二酸化炭素の吸着除去方法において、予
め原料ガスにアンモニアを添加し、その後にこの原料ガ
スを吸着剤に接触させることを特徴とする二酸化炭素の
吸着除去方法。 3、請求項1または2記載の二酸化炭素の吸着除去方法
において、原料ガスを吸着剤に接触させてから二酸化炭
素の破過が始まる前に吸着操作を停止し、次いで二酸化
炭素およびアンモニアを脱着させた後、この脱着ガスを
同脱着ガス中のアンモニアのみ選択的に吸着する副吸着
剤に接触させ、次いでこの副吸着剤からアンモニアを脱
着させて回収することを特徴とする二酸化炭素の吸着除
去方法。
[Claims] 1. In a carbon dioxide adsorption/removal method in which carbon dioxide is removed by bringing a raw material gas containing carbon dioxide into contact with an adsorbent and allowing the adsorbent to selectively adsorb carbon dioxide, A method for adsorbing and removing carbon dioxide, which comprises adsorbing ammonia onto a carbon dioxide, and then bringing a raw material gas into contact with the adsorbent. 2. In a carbon dioxide adsorption removal method in which carbon dioxide is removed by bringing a raw material gas containing carbon dioxide into contact with an adsorbent and selectively adsorbing carbon dioxide on the adsorbent, ammonia is added to the raw material gas in advance, A method for adsorption and removal of carbon dioxide, which comprises subsequently bringing this raw material gas into contact with an adsorbent. 3. In the method for adsorption and removal of carbon dioxide according to claim 1 or 2, the adsorption operation is stopped after bringing the raw material gas into contact with the adsorbent and before carbon dioxide breakthrough begins, and then carbon dioxide and ammonia are desorbed. After that, this desorption gas is brought into contact with a sub-adsorbent that selectively adsorbs only ammonia in the desorption gas, and then ammonia is desorbed and recovered from this sub-adsorption agent. .
JP2125953A 1990-05-15 1990-05-15 Method for adsorbing and removing carbon dioxide Pending JPH0422415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2125953A JPH0422415A (en) 1990-05-15 1990-05-15 Method for adsorbing and removing carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2125953A JPH0422415A (en) 1990-05-15 1990-05-15 Method for adsorbing and removing carbon dioxide

Publications (1)

Publication Number Publication Date
JPH0422415A true JPH0422415A (en) 1992-01-27

Family

ID=14923061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2125953A Pending JPH0422415A (en) 1990-05-15 1990-05-15 Method for adsorbing and removing carbon dioxide

Country Status (1)

Country Link
JP (1) JPH0422415A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008508993A (en) * 2004-08-03 2008-03-27 ザ リージェンツ オブ ザ ユニバーシティ オブ コロラド, ア ボディー コーポレイト Membrane for highly selective separation
DE102007030069A1 (en) * 2007-06-29 2009-01-02 Siemens Ag Process for the separation of carbon dioxide from flue gases and associated apparatus
JP2010069398A (en) * 2008-09-17 2010-04-02 Ngk Insulators Ltd Co2 separating/recovering method
JP2016097388A (en) * 2014-11-26 2016-05-30 日産自動車株式会社 Dehumidification apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008508993A (en) * 2004-08-03 2008-03-27 ザ リージェンツ オブ ザ ユニバーシティ オブ コロラド, ア ボディー コーポレイト Membrane for highly selective separation
US7828875B2 (en) 2004-08-03 2010-11-09 The Regents Of The University Of Colorado Membranes for highly selective separations
US8067327B2 (en) 2004-08-03 2011-11-29 The Regents Of The University Of Colorado, A Body Corporate Membranes for highly selective separations
DE102007030069A1 (en) * 2007-06-29 2009-01-02 Siemens Ag Process for the separation of carbon dioxide from flue gases and associated apparatus
JP2010069398A (en) * 2008-09-17 2010-04-02 Ngk Insulators Ltd Co2 separating/recovering method
JP2016097388A (en) * 2014-11-26 2016-05-30 日産自動車株式会社 Dehumidification apparatus

Similar Documents

Publication Publication Date Title
JPH01172204A (en) Recovery of gaseous co2 from gaseous mixture by adsorption
JPH0459926B2 (en)
US5626033A (en) Process for the recovery of perfluorinated compounds
JPH0422415A (en) Method for adsorbing and removing carbon dioxide
EP3426383B1 (en) A temperature-swing adsorption process
JPH0624962B2 (en) Method for recovering high-purity argon from exhaust gas from a single crystal manufacturing furnace
KR101956924B1 (en) Apparatus for CO2 capture and operating method of thereof
JPS621768B2 (en)
JPS62117612A (en) Regenerating method for adsorption tower
JPS621767B2 (en)
JP2999050B2 (en) Recovery method of low concentration hydrogen sulfide
JPH0422419A (en) Method for adsorbing and removing ammonia
JPH0112529B2 (en)
JPS6297622A (en) Pressure swing adsorbing method
JP2005349332A (en) Method for separating gas and its apparatus
JPS6097022A (en) Concentration and separation of carbon monoxide in carbon monoxide-containing gaseous mixture by using adsorbing method
JPS63166414A (en) Treatment method for coke oven gas
JP2024519064A (en) Production of hydrogen from ammonia using pressure swing adsorption
JPH05285341A (en) Treatment of carbon dioxide
JPS5936527A (en) Dry type stack gas desulfurization process
JPS60239309A (en) Process for recovering argon
JPH06126120A (en) Method for increasing co concentration in cracking gas
SU831152A1 (en) Method of separating blowing gas at ammonia synthesis
JPS6410443B2 (en)
JPS6139087B2 (en)