JPH0421718A - Production of high strength steel excellent in sulfide stress cracking resistance - Google Patents

Production of high strength steel excellent in sulfide stress cracking resistance

Info

Publication number
JPH0421718A
JPH0421718A JP12444190A JP12444190A JPH0421718A JP H0421718 A JPH0421718 A JP H0421718A JP 12444190 A JP12444190 A JP 12444190A JP 12444190 A JP12444190 A JP 12444190A JP H0421718 A JPH0421718 A JP H0421718A
Authority
JP
Japan
Prior art keywords
steel
less
stress cracking
cracking resistance
sulfide stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12444190A
Other languages
Japanese (ja)
Other versions
JP2834276B2 (en
Inventor
Hitoshi Asahi
均 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12444190A priority Critical patent/JP2834276B2/en
Publication of JPH0421718A publication Critical patent/JPH0421718A/en
Application granted granted Critical
Publication of JP2834276B2 publication Critical patent/JP2834276B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a high strength steel excellent in sulfide stress cracking resistance property by subjecting a steel having a specific composition consisting of C, Si, Mn, P, S, N, Mo, Nb, Ti, Al, B, and Fe to hot rolling and then to respectively specified heat treatment and working. CONSTITUTION:A steel having a composition which consists of 0.15-0.35% C, 0.05-0.50% Si, 0.20-1.0% Mn, <=0.015% P, <=0.010% S, <=0.008% N, 0.10-0.80% Mo, 0.010-0.050% Nb, <=0.028% Ti, 0.005-0.10% Al, 0.0005-0.0025% B, and the balance essentially Fe and further contains, if necessary, <=1.5% Cr and in which -0.005<=Ti-3.4N<=0.01% is satisfied is hot-rolled. Directly after the above or after reheating to a temp. in the austenite region, the steel is worked at 950-700 deg.C at 15-40% reduction of area. Then, this steel is hardened and successively tempered at 580-720 deg.C. By this method, the high strength steel having high sulfide stress cracking resistance property can be obtained at a low cost.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は油井あるいはガス井やその周辺機材に用いられ
る鋼材として適し、湿潤硫化水素と応力の組み合わせ下
で発生する硫化物応力割れ(以下SSCと称する)に対
する抵抗性の高い高強度鋼、特に降伏強度が70kg 
f /−以上の高強度でしかもSSCの割れ限界応力と
降伏強度の比(以下Rs値)が80%以上という優れた
SSC抵抗性を有する鋼の製造法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention is suitable for use as a steel material for oil or gas wells and their peripheral equipment, and is suitable for use in sulfide stress cracking (hereinafter referred to as SSC), which occurs under the combination of wet hydrogen sulfide and stress. High-strength steel with high resistance to
The present invention relates to a method for manufacturing a steel having high strength of f/- or more and excellent SSC resistance such as a ratio of SSC cracking limit stress to yield strength (hereinafter referred to as Rs value) of 80% or more.

(従来の技術) 近年エネルギー事情の急迫に伴い、硫化水素を含む原油
の掘削、輸送、貯蔵用に鉄鋼材料が使用に供せられる場
合か増えてきている。特に原油掘削用として用いられる
油井管に使用される鋼は深井戸化の傾向に伴い厳しい腐
食環境にさらされることになり、高い降伏強度と優れた
耐SSC性を兼ね備えた鋼が必要とされている。また経
済的な要求から大部分の要求に対しては低合金鋼で対処
する必要かある。
(Prior Art) In recent years, as the energy situation has become more urgent, steel materials are increasingly being used for drilling, transporting, and storing crude oil containing hydrogen sulfide. In particular, steel used in oil country tubular goods used for crude oil drilling is exposed to a severe corrosive environment due to the trend toward deeper wells, and there is a need for steel that has both high yield strength and excellent SSC resistance. There is. Also, due to economical requirements, it is necessary to meet most of the requirements with low-alloy steel.

このような要求に対応して特開昭55−73848号公
報、特開昭55−134158号公報などで紹介されて
いるように、多くの種類の耐SSC鋼管が開発されてい
る。
In response to such demands, many types of SSC-resistant steel pipes have been developed, as introduced in Japanese Patent Laid-Open Publications No. 55-73848 and Japanese Patent Laid-open No. 55-134158.

(発明が解決しようとする問題点) 硫化水素による硫化物応力割れは、鋼材表面か腐食され
る際に発生する水素か鋼材中に拡散することによって引
き起こされる水素脆化が原因とされている。低合金を基
本とする化学成分の鋼材において、鋼材強度が上昇する
につれて、この脆化感受性が高まるため鋼材強度および
優れた耐SSC性を同時に具備させることは困難であっ
た。
(Problems to be Solved by the Invention) Sulfide stress cracking caused by hydrogen sulfide is said to be caused by hydrogen embrittlement caused by hydrogen generated when the steel surface corrodes and diffuses into the steel material. In steel materials with chemical compositions based on low alloys, as the steel material strength increases, this embrittlement susceptibility increases, so it has been difficult to simultaneously provide steel material strength and excellent SSC resistance.

具体的には、従来の技術において耐SSC性に優れた高
強度鋼管はC95クラス(降伏強度66.5〜77kg
/m()か上限と考えられており、さらに低コストで製
造できる鋼が要求されている。
Specifically, high-strength steel pipes with excellent SSC resistance using conventional technology have a C95 class (yield strength of 66.5 to 77 kg).
/m() is considered to be the upper limit, and steel that can be manufactured at even lower cost is required.

(問題点を解決するための手段) 本発明者らは耐SSC性を支配する冶金的因子を詳細に
検討した結果、耐SSC性の低下は旧オーステナイト粒
界割れによって起こること、従って高強度と優れた耐S
SC性を同時に具備させるためには粒界強度を高める処
置をとることか必要との知見を得た。従来粒界強度を高
める方法としては、低合金鋼にMnとPを一定の関係て
含有させる。
(Means for Solving the Problems) As a result of a detailed study by the present inventors on the metallurgical factors governing SSC resistance, we found that the decrease in SSC resistance is caused by prior austenite intergranular cracking, and therefore high strength Excellent S resistance
It was found that in order to simultaneously provide SC properties, it is necessary to take measures to increase grain boundary strength. Conventionally, as a method of increasing grain boundary strength, low alloy steel contains Mn and P in a certain relationship.

特開昭61−621)8号公報やPとMoを一定の関係
で含有させた特開昭62−17721号公報のように鋼
成分を適正化する技術があるが、本発明者は他の方法に
よる抜本的な鋼の粒界強化法について検討した結果、結
晶粒界近傍の転位密度を粒内に較べて高めることにより
粒界強度が向上することを知見した。
There are techniques for optimizing the steel composition, such as JP-A-61-621)8 and JP-A-62-17721, in which P and Mo are contained in a certain relationship. As a result of investigating a drastic grain boundary strengthening method for steel using this method, it was found that grain boundary strength can be improved by increasing the dislocation density near the grain boundaries compared to inside the grains.

本発明はこのような知見に基づき、十分な厚さの鋼材を
製造できることを考慮に入れ構成要件を決定したもので
ある。その要旨は C:0.15〜0.35%、Si:0.05〜050%
、Mn : 0.20−1.0%、P  : 0.[1
15%以下、S  : 0.010%以下、N 二o、
oog%以下、Mo:0.lO〜0.80%、Nb :
0.010〜0.050%、Ti  : 0.0211
1%以下でかつ−0,005%≦Ti−3,4N≦0.
01%、 八Ω・0.005〜010%、B :0.0005〜0
.0025%、を含有し、あるいはさらに Cr:1.5%以下 を含有して残部が実質的に鉄からなる鋼を、熱間圧延終
了直後、あるいは熱間圧延終了直後の低温度からオース
テナイト域温度に再加熱した後の950〜700℃の温
度範囲で断面積減少率にして15〜40%加工した後焼
入れ処理により体積率にて90%以上のマルテンサイト
に変態させた後580〜720℃の温度範囲で焼もどす
ことを特徴とする硫化物応力割れ抵抗性の高い高強度鋼
の製造法である。
The present invention is based on such knowledge, and the structural requirements have been determined taking into consideration the ability to manufacture a steel material of sufficient thickness. The gist is C: 0.15-0.35%, Si: 0.05-050%
, Mn: 0.20-1.0%, P: 0. [1
15% or less, S: 0.010% or less, N2O,
oog% or less, Mo: 0. lO~0.80%, Nb:
0.010-0.050%, Ti: 0.0211
1% or less and -0,005%≦Ti-3,4N≦0.
01%, 8Ω・0.005~010%, B:0.0005~0
.. 0025%, or further contains Cr: 1.5% or less, with the remainder being substantially iron. After being reheated to 950 to 700°C, the cross-sectional area reduction rate is 15 to 40%, and then quenching is carried out to transform it into martensite with a volume fraction of 90% or more. This is a method for producing high-strength steel with high resistance to sulfide stress cracking, which is characterized by tempering in a temperature range.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

ます本発明の鋼成分を上記のように限定した理由につい
て述べる。
First, the reason why the steel components of the present invention are limited as described above will be described.

Cは低合金鋼材の所要強度を確保するために必須な元素
として、その含有量を015%以上とした。
C is an essential element for ensuring the required strength of low alloy steel, and its content was set to 0.15% or more.

しかし035%を越える多量な含有は、焼入れ時に割れ
を生しることかあるため0,35%を上限とした。
However, a large content exceeding 0.35% may cause cracks during quenching, so the upper limit was set at 0.35%.

Siは鋼の粒界強度を低下させる成分として少量化する
ことが望ましく、その上限を0.50%とした。
As a component that reduces the grain boundary strength of steel, it is desirable to reduce the amount of Si, and the upper limit of Si is set to 0.50%.

Mnは焼入性を向上させ、赤熱脆性を防止する有効な成
分で0.2%以上を添加する。しかし多量に含むと粒界
強度を低下させるため、その上限を1.0%とした。
Mn is an effective component that improves hardenability and prevents red brittleness, and is added in an amount of 0.2% or more. However, if it is included in a large amount, grain boundary strength is reduced, so the upper limit was set at 1.0%.

Pは粒界強度を低下させる有害な成分として、その含有
量を低減させる必要がある。従って本発明においては0
.015%以下に限定した。
P is a harmful component that lowers grain boundary strength, so it is necessary to reduce its content. Therefore, in the present invention, 0
.. It was limited to 0.015% or less.

Sは製鋼上完全に除去できない不純物で、多量に含むと
MnSを形成しこれが割れ起点となる。
S is an impurity that cannot be completely removed in steelmaking, and if it is included in a large amount, it forms MnS, which becomes a starting point for cracks.

したがってS含有量の上限を0.010%とした。Therefore, the upper limit of the S content was set to 0.010%.

N量は総Ti量を減少させる上で低い方が望ましいが、
粒界割れを抑制しオーステナイト粒を細かくする有効な
成分として、その上限をo、oos%とした。
A lower amount of N is desirable in order to reduce the total amount of Ti, but
As an effective component for suppressing grain boundary cracking and refining austenite grains, the upper limit was set at o and oos%.

Mc)はPの粒界偏析を抑制し粒界強度を向上させる作
用を有する成分として含有させるが、0.10%以下で
はその効果が小さく、また0、8%を越えて添加しても
一層の効果が望めない。したがってMoの含有量を0.
10〜0.80%とした。
Mc) is included as a component that has the effect of suppressing the grain boundary segregation of P and improving the grain boundary strength, but if it is less than 0.10%, the effect is small, and if it is added in excess of 0.8%, the effect is even worse. The effect cannot be expected. Therefore, the content of Mo is 0.
The content was set at 10% to 0.80%.

Allは結晶粒微細化の作用をして鋼の靭性を向上する
有効な成分であり、その含有量を0.005%以上とし
た。また、0.10%を越える過剰な含有量はAl2O
3を増加させ耐SSC性を低下させる。
Allium is an effective component that improves the toughness of steel by refining grains, and its content was set to 0.005% or more. In addition, excessive content exceeding 0.10% is Al2O
3 and decreases SSC resistance.

したがってAIの含有量は0.005〜0.10%とし
た。
Therefore, the content of AI was set to 0.005 to 0.10%.

NbはNb炭窒化物を生成して再加熱焼入れ鋼の細晶粒
または圧延中の再結晶粒を細かくする効果を有するが0
.01%以下ではその効果は十分でなく、多量に添加し
ても一層の細粒化効果を期待できないばかりか熱間加工
時のキズを発生しやすくする恐れもある。したがってN
b含有量の上限を0.05%とした。
Nb has the effect of forming Nb carbonitrides and making finer grains of reheated and hardened steel or recrystallized grains during rolling, but 0
.. If the amount is less than 0.01%, the effect will not be sufficient, and even if added in a large amount, not only will it not be possible to expect a further grain refinement effect, but there is also a risk that scratches will be more likely to occur during hot working. Therefore N
The upper limit of b content was set to 0.05%.

TiはNをTiNとして固定しBの焼入性向上機能を維
持し、B含有鋼の鋳造時の表面割れを抑制する効果を有
する。しかしTiの過剰添加は粗大なTiNの析出を助
長し耐SSC性を低下させるので、Ti−3,4Nとな
る関係において−0,005〜0.01%としかつ総T
Hitの上限を0.028%とした。
Ti fixes N as TiN, maintains the hardenability improvement function of B, and has the effect of suppressing surface cracking during casting of B-containing steel. However, excessive addition of Ti promotes the precipitation of coarse TiN and reduces SSC resistance, so in the relationship of Ti-3,4N, the total T
The upper limit of Hit was set to 0.028%.

Bは焼入性を著しく向上させる元素であるか、0.00
05%以下ではその効果は十分ではなく多量に添加して
もその効果か飽和するのみならす、熱間加工時の割れ、
キズの発生が懸念されるため上限を0.0025%とし
た。またBの含有はMn、Crの含有量を低減させて耐
SSC性の低下傾向を抑制する作用効果を奏する。
B is an element that significantly improves hardenability, or 0.00
If it is less than 0.5%, the effect is not sufficient, and even if it is added in a large amount, the effect will only reach saturation, which will reduce cracking during hot working,
Due to concerns about scratches, the upper limit was set at 0.0025%. Further, the inclusion of B has the effect of reducing the contents of Mn and Cr and suppressing the tendency for SSC resistance to decrease.

C「は焼入性を高め鋼を強化する有効な成分で、選択的
に含有させるものである。Crは、含有量が少ない場合
には比較的耐SSC性を低下させない元素であるが、多
量に添加すると明らかに耐SSC性を低下させるので上
限を1.5%とした。
Cr is an effective component that improves hardenability and strengthens steel, and is included selectively. Cr is an element that does not relatively reduce SSC resistance when the content is small, but when a large amount Since adding it to the water obviously lowers the SSC resistance, the upper limit was set at 1.5%.

上記のような成分組成の鋼は、転炉、電気炉などの溶解
炉あるいはさらに脱ガス処理を施して溶製された溶鋼を
造塊・分塊法または連続鋳造法で鋼片となし、さらに熱
間圧延を経て製造される。
Steel with the above-mentioned composition is produced by turning molten steel into slabs by using an ingot-making/blowing method or a continuous casting method, using a melting furnace such as a converter or an electric furnace, or by further degassing treatment. Manufactured through hot rolling.

該熱間圧延の仕上圧延後または熱間圧延終了後低温度か
らオーステナイト域温度に再加熱後、950〜700℃
の温度範囲で15〜40%の熱間加工を施した後、焼入
れ処理をする。この工程は本発明の最重要点である。こ
の加工により導入された転位は粒界近くに高密度に堆積
し、この転位は焼入れ処理中に生しるマルテンサイトに
引き継がれる。
After finish rolling of the hot rolling or after reheating from low temperature to austenite range temperature after hot rolling, 950 to 700°C
After performing hot working of 15 to 40% in a temperature range of , quenching treatment is performed. This step is the most important point of the present invention. The dislocations introduced by this processing are deposited at a high density near the grain boundaries, and these dislocations are inherited by martensite generated during the quenching process.

すなわちこの加工により得られたマルテンサイトは組織
特有の高密度の転位を含むと共にとりわけ旧オーステナ
イト粒界近傍の転位密度か高くなる。
That is, the martensite obtained by this processing contains a high density of dislocations peculiar to the structure, and the dislocation density near the prior austenite grain boundaries is especially high.

ここで加工温度を950〜700℃に限定した理由は9
50℃以上では加工により導入された転位が有効に残存
せず転位による粒界強化に寄与しない。
The reason why the processing temperature was limited to 950 to 700℃ is 9.
At temperatures above 50°C, dislocations introduced by processing do not remain effectively and do not contribute to grain boundary strengthening due to dislocations.

方700℃を下まわる温度では加工によりフェライト変
態を起こして強度を低下しマルテンサイト組織とフェラ
イト組織の混合組織を呈して耐SSC特性を劣化する。
On the other hand, at temperatures below 700° C., ferrite transformation occurs during processing, resulting in a decrease in strength and a mixed structure of martensitic and ferrite structures, deteriorating the SSC resistance.

したがって950〜700℃に限定した。加工率を15
%以上とした理由は15%以下では十分な転位による強
化の効果かなく、一方40%を越える加工は再結晶を誘
起して転位か減少する可能性かあるため15〜40%と
した。なお、ここで言う加工率は((加工前断面率)−
(加工前断面積月/(加工前断面積)  X100(%
)により定義される断面積減少率である。
Therefore, the temperature was limited to 950 to 700°C. Processing rate 15
The reason why it is set at 15 to 40% is because if it is less than 15%, there will be no sufficient strengthening effect due to dislocations, while if it is processed more than 40%, recrystallization may be induced and dislocations may be reduced. The machining rate here is ((section ratio before machining) -
(Cross-sectional area before processing / (Cross-sectional area before processing) x 100 (%
) is the cross-sectional area reduction rate defined by

加工された鋼は焼入れ処理によりマルテンサイト変態さ
せられる。拡散変態か生しると加工により導入された転
位か消滅し、本発明が目的とする効果が得られない。し
たがって無拡散変態でマルテンサイト変態させる必要が
ある。しかし一定の厚みの鋼を完全にマルテンサイト変
態させることは一般に困難であるため加工の効果がほぼ
得られ、また工業的に容易に達成できる90%以上のマ
ルテンサイトとした。
Processed steel is transformed into martensitic material by quenching. When diffusion transformation occurs, the dislocations introduced by processing disappear, and the effects aimed at by the present invention cannot be obtained. Therefore, it is necessary to carry out martensitic transformation without diffusion. However, since it is generally difficult to completely transform steel of a certain thickness into martensitic material, the processing effect was almost achieved, and the martensite content was 90% or more, which can be easily achieved industrially.

このようにして得られた焼入れままの鋼を所望の強度に
調整し、靭性、耐SSC特性を向上させるために焼もど
しを行う必要がある。580℃以下では耐SSC特性が
向上する強度まで低下させることが困難であり、また7
20℃以上の高温で加熱するとオーステナイト相が析出
し、冷却後フェライトに変態し、また場合によりマルテ
ンサイトに変態し不均一な組織になるため耐SSC性に
対し好ましくない。したがって焼もどし温度は580〜
720℃と定めた。
It is necessary to temper the as-quenched steel thus obtained in order to adjust it to a desired strength and improve its toughness and SSC resistance. At temperatures below 580°C, it is difficult to reduce the strength to a level that improves the SSC resistance;
When heated at a high temperature of 20° C. or higher, an austenite phase precipitates and transforms into ferrite after cooling, and in some cases transforms into martensite, resulting in a non-uniform structure, which is unfavorable for SSC resistance. Therefore, the tempering temperature is 580~
The temperature was set at 720°C.

以上のように製造された鋼は極めて優れた耐SSC特性
を有する。
The steel manufactured as described above has extremely excellent SSC resistance properties.

(実 施 例) 次に本発明を実施例に基づいて説明する。(Example) Next, the present invention will be explained based on examples.

第1表に示す鋼を用いて、第2表に示す条件で製造した
It was manufactured using the steel shown in Table 1 under the conditions shown in Table 2.

各々の鋼は強度(降伏強度、YS)と硫化物応力割れ特
性を評価した。硫化物応力割れ特性は1気圧のH2Sを
飽和した5%N a C9+0.5%CH3CO0H水
溶液中で平行部直径が6.4龍の丸棒引張試験片に引張
応力を加え720時間で破断しない最大応力(σIh)
を求めた。第2表に示すように同一強度水準で比較する
と本発明鋼は耐硫化物応力割れ特性Rs(σ、、/YS
)が高く優れている。本発明の焼入れ前の加工の効果は
本発明外の鋼にも見られるが、絶対値として低い。
Each steel was evaluated for strength (yield strength, YS) and sulfide stress cracking properties. Sulfide stress cracking characteristics are the maximum that does not break in 720 hours when tensile stress is applied to a round bar tensile test piece with a parallel part diameter of 6.4 in a 5% Na C9 + 0.5% CH3CO0H aqueous solution saturated with 1 atm H2S. Stress (σIh)
I asked for As shown in Table 2, when compared at the same strength level, the steel of the present invention has sulfide stress cracking resistance Rs (σ, , /YS
) is high and excellent. The effect of the processing before quenching according to the present invention is also seen in steels other than those according to the present invention, but the absolute value is low.

(発明の効果) このように、本発明にしたがった鋼の製造法によれば、
従来の方法では達成できなかった高強度と耐硫化物応力
割れを同時に高い水準で併せもつ鋼が得られ産業上に寄
与するところ極めて大きい。
(Effect of the invention) As described above, according to the method for manufacturing steel according to the present invention,
It is possible to obtain steel that has both high strength and resistance to sulfide stress cracking, which could not be achieved using conventional methods, and this makes a huge contribution to industry.

Claims (2)

【特許請求の範囲】[Claims] (1)C:0.15〜0.35%、Si:0.05〜0
.50%、Mn:0.20〜1.0%、P:0.015
%以下、S:0.010%以下、N:0.008%以下
、Mo:0.10〜0.80%、Nb:0.010〜0
.050%、Ti:0.028%以下でかつ−0.00
5%≦Ti−3.4N≦0.01%、 Al:0.005〜0.10%、B:0.0005〜0
.0025%、を含有して残部が実質的に鉄からなる鋼
を、熱間圧延終了直後、または熱間圧延終了直後の低温
度からオーステナイト域温度に再加熱した後の950〜
700℃の温度範囲で断面積減少率にして15〜40%
加工した後焼入れ処理し、続いて580〜720℃の温
度範囲で焼もどすことを特徴とする硫化物応力割れ抵抗
性の高い高強度鋼の製造法。
(1) C: 0.15-0.35%, Si: 0.05-0
.. 50%, Mn: 0.20-1.0%, P: 0.015
% or less, S: 0.010% or less, N: 0.008% or less, Mo: 0.10-0.80%, Nb: 0.010-0
.. 050%, Ti: 0.028% or less and -0.00
5%≦Ti-3.4N≦0.01%, Al: 0.005-0.10%, B: 0.0005-0
.. 950~ after reheating a steel containing 0.025% and the remainder being substantially iron from a low temperature immediately after hot rolling or from a low temperature immediately after hot rolling to an austenite region temperature.
Cross-sectional area reduction rate of 15-40% in the temperature range of 700℃
A method for producing high-strength steel with high sulfide stress cracking resistance, which comprises quenching the steel after processing and then tempering it at a temperature in the range of 580 to 720°C.
(2)C:0.15〜0.35%、Si:0.05〜0
.50%、Mn:0.20〜1.0%、P:0.015
%以下、S:0.010%以下、N:0.008%以下
、Mo:0.10〜0.80%、Nb:0.010〜0
.050%、Ti:0.028%以下でかつ−0.00
5%≦Ti−3.4N≦0.01%、 Al:0.005〜0.10%、B:0.0005〜0
.0025%、を含有して、さらに Cr:1.5%以下、 を含有して残部が実質的に鉄からなる鋼を、熱間圧延終
了直後、または熱間圧延終了直後の低温度からオーステ
ナイト域温度に再加熱した後の950〜700℃の温度
範囲で断面積減少率にして15〜40%加工した後焼入
れ処理し、続いて580〜720℃の温度範囲で焼もど
すことを特徴とする硫化物応力割れ抵抗性の高い高強度
鋼の製造法。
(2) C: 0.15-0.35%, Si: 0.05-0
.. 50%, Mn: 0.20-1.0%, P: 0.015
% or less, S: 0.010% or less, N: 0.008% or less, Mo: 0.10-0.80%, Nb: 0.010-0
.. 050%, Ti: 0.028% or less and -0.00
5%≦Ti-3.4N≦0.01%, Al: 0.005-0.10%, B: 0.0005-0
.. 0025%, and Cr: 1.5% or less, and the remainder is substantially iron. Immediately after hot rolling or at a low temperature immediately after hot rolling, a steel is processed into the austenitic region. Sulfiding characterized by processing the cross-sectional area reduction rate by 15-40% in a temperature range of 950-700°C after reheating to a temperature, followed by quenching treatment, and then tempering in a temperature range of 580-720°C. A method for manufacturing high-strength steel with high stress cracking resistance.
JP12444190A 1990-05-15 1990-05-15 Manufacturing method of high strength steel with excellent sulfide stress cracking resistance Expired - Lifetime JP2834276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12444190A JP2834276B2 (en) 1990-05-15 1990-05-15 Manufacturing method of high strength steel with excellent sulfide stress cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12444190A JP2834276B2 (en) 1990-05-15 1990-05-15 Manufacturing method of high strength steel with excellent sulfide stress cracking resistance

Publications (2)

Publication Number Publication Date
JPH0421718A true JPH0421718A (en) 1992-01-24
JP2834276B2 JP2834276B2 (en) 1998-12-09

Family

ID=14885584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12444190A Expired - Lifetime JP2834276B2 (en) 1990-05-15 1990-05-15 Manufacturing method of high strength steel with excellent sulfide stress cracking resistance

Country Status (1)

Country Link
JP (1) JP2834276B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7083686B2 (en) 2004-07-26 2006-08-01 Sumitomo Metal Industries, Ltd. Steel product for oil country tubular good
US7862667B2 (en) 2007-07-06 2011-01-04 Tenaris Connections Limited Steels for sour service environments
US8002910B2 (en) 2003-04-25 2011-08-23 Tubos De Acero De Mexico S.A. Seamless steel tube which is intended to be used as a guide pipe and production method thereof
US8221562B2 (en) 2008-11-25 2012-07-17 Maverick Tube, Llc Compact strip or thin slab processing of boron/titanium steels
US8328960B2 (en) 2007-11-19 2012-12-11 Tenaris Connections Limited High strength bainitic steel for OCTG applications
US8414715B2 (en) 2011-02-18 2013-04-09 Siderca S.A.I.C. Method of making ultra high strength steel having good toughness
US9644248B2 (en) 2013-04-08 2017-05-09 Dalmine S.P.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9657365B2 (en) 2013-04-08 2017-05-23 Dalmine S.P.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US9970242B2 (en) 2013-01-11 2018-05-15 Tenaris Connections B.V. Galling resistant drill pipe tool joint and corresponding drill pipe
US10844669B2 (en) 2009-11-24 2020-11-24 Tenaris Connections B.V. Threaded joint sealed to internal and external pressures
US11105501B2 (en) 2013-06-25 2021-08-31 Tenaris Connections B.V. High-chromium heat-resistant steel
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
US11952648B2 (en) 2011-01-25 2024-04-09 Tenaris Coiled Tubes, Llc Method of forming and heat treating coiled tubing

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8002910B2 (en) 2003-04-25 2011-08-23 Tubos De Acero De Mexico S.A. Seamless steel tube which is intended to be used as a guide pipe and production method thereof
US7083686B2 (en) 2004-07-26 2006-08-01 Sumitomo Metal Industries, Ltd. Steel product for oil country tubular good
US7862667B2 (en) 2007-07-06 2011-01-04 Tenaris Connections Limited Steels for sour service environments
US8328958B2 (en) 2007-07-06 2012-12-11 Tenaris Connections Limited Steels for sour service environments
US8328960B2 (en) 2007-11-19 2012-12-11 Tenaris Connections Limited High strength bainitic steel for OCTG applications
US8221562B2 (en) 2008-11-25 2012-07-17 Maverick Tube, Llc Compact strip or thin slab processing of boron/titanium steels
US10844669B2 (en) 2009-11-24 2020-11-24 Tenaris Connections B.V. Threaded joint sealed to internal and external pressures
US11952648B2 (en) 2011-01-25 2024-04-09 Tenaris Coiled Tubes, Llc Method of forming and heat treating coiled tubing
US8414715B2 (en) 2011-02-18 2013-04-09 Siderca S.A.I.C. Method of making ultra high strength steel having good toughness
US9970242B2 (en) 2013-01-11 2018-05-15 Tenaris Connections B.V. Galling resistant drill pipe tool joint and corresponding drill pipe
US10378075B2 (en) 2013-03-14 2019-08-13 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US10378074B2 (en) 2013-03-14 2019-08-13 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US11377704B2 (en) 2013-03-14 2022-07-05 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US9657365B2 (en) 2013-04-08 2017-05-23 Dalmine S.P.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9644248B2 (en) 2013-04-08 2017-05-09 Dalmine S.P.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US11105501B2 (en) 2013-06-25 2021-08-31 Tenaris Connections B.V. High-chromium heat-resistant steel
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing

Also Published As

Publication number Publication date
JP2834276B2 (en) 1998-12-09

Similar Documents

Publication Publication Date Title
JP4381355B2 (en) Steel having excellent delayed fracture resistance and tensile strength of 1600 MPa class or more and method for producing the molded product thereof
JPS62253720A (en) Production of low-alloy high-tension oil-well steel having excellent resistance to sulfide stress corrosion cracking
JPH0421718A (en) Production of high strength steel excellent in sulfide stress cracking resistance
JPS6043425A (en) Production of hot rolled composite structure steel sheet having high strength and high workability
JP6684353B2 (en) Thick plate steel excellent in low temperature toughness and hydrogen induced cracking resistance, and method of manufacturing the same
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JPS6059018A (en) Production of cu-added steel having excellent weldability and low-temperature toughness
JPH0250916A (en) Production of low alloy high tension seamless steel pipe having fine grained structure
JP2019039065A (en) MANUFACTURING METHOD OF Ni CONTAINING STEEL PLATE
KR20000043762A (en) Method of manufacturing super high-strength cold-rolled steel sheet improved in ductility
JPS62207821A (en) Production of unnormalized steel for hot forging
JPS6156235A (en) Manufacture of high toughness nontemper steel
JPS6216250B2 (en)
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JPS63210234A (en) Manufacture of high-strength stainless steel stock excellent in workability and free from softening by welding
WO2019039339A1 (en) Method for production of ni-containing steel sheet
JPH03249126A (en) Soaking treatment in production of high strength steel
JPS6028885B2 (en) UOE steel pipe heat treatment method that yields high toughness weld metal
JPS6046318A (en) Preparation of steel excellent in sulfide cracking resistance
JPS6117885B2 (en)
JPS62149814A (en) Production of low-carbon high-strength seamless steel pipe by direct hardening method
JPS6056019A (en) Production of strong and tough steel
JPS6338518A (en) Production of steel plate having excellent hydrogen induced cracking resistance
JPS62149813A (en) Production of high-strength seamless steel pipe having excellent resistance to sulfide stress corrosion cracking
JPS62284043A (en) Steel excellent in sulfid stress corrosion cracking resistance in weld zone and its production