JPH04204522A - Electrolytic thin film - Google Patents

Electrolytic thin film

Info

Publication number
JPH04204522A
JPH04204522A JP2329888A JP32988890A JPH04204522A JP H04204522 A JPH04204522 A JP H04204522A JP 2329888 A JP2329888 A JP 2329888A JP 32988890 A JP32988890 A JP 32988890A JP H04204522 A JPH04204522 A JP H04204522A
Authority
JP
Japan
Prior art keywords
thin film
film
electrolytic
ionic
ionic conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2329888A
Other languages
Japanese (ja)
Inventor
Yoshiki Mizuno
祥樹 水野
Kumiko Mukoda
向田 久美子
Satoshi Sakurada
桜田 智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP2329888A priority Critical patent/JPH04204522A/en
Publication of JPH04204522A publication Critical patent/JPH04204522A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Non-Insulated Conductors (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Fuel Cell (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain hgh ionic conductivity in an electrolytic thin film filling vacant holes of a solid high polymeric porous thin film with ionic conductive material, by treating the surface of the vacant holes of the electrolytic thin film by surfactants. CONSTITUTION:A perfluoroalkyl amine oxide of 5wt.% is dissolved into the mixed solvent of water and iso-propanol (mixing ratio of 4:1 in volume ratio), and a polyethylene fine porous film (25mum in thickness) is immersed into the obtained solution for two hours, and washed by pure water. The film is dried at 50 deg.C in vacuum, and a surface treated film is formed. The film is charged with the electrolytic liquid which is formed by dissolving LiClO4 into the mixed solution of polypropylene carbonate and dimethoxy ethane (mixing ratio of 1:1 in volume ratio) and obtaining a concentration of 1mol/l. The ionic conductivity of this film is 3.2X10<-3>OMEGA<-1>cm<-1>. Since the surface of the vacant hole on the solid high polymeric porous thin film is treated by surfactants, the mobility of the ionic conductive body for charge is improved, and the ionic conductivity of the electrolytic thin film is improved, and the electrolytic liquid charge is facilitated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電解質薄膜に係り、より詳しくは固体高分子多
孔性薄膜の空孔中にイオン導電体を充填して成る電解質
薄膜に関する。電解質薄膜は一次電池、二次電池、エレ
クトロクロミンクデバイス、センサーなど、電気抵抗が
低く、かつすぐれた機械的強度が要求される分野に広く
利用できる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrolyte thin film, and more particularly to an electrolyte thin film formed by filling the pores of a solid polymer porous thin film with an ionic conductor. Electrolyte thin films can be widely used in fields that require low electrical resistance and excellent mechanical strength, such as primary batteries, secondary batteries, electrochromic devices, and sensors.

〔従来の技術〕[Conventional technology]

本出願人は、固体高分子多孔膜の空孔中にイオン導電体
を充填してなる電解質薄膜を先に開示している(特開平
1−158051号公報)。
The present applicant has previously disclosed an electrolyte thin film formed by filling the pores of a solid polymer porous membrane with an ionic conductor (Japanese Unexamined Patent Publication No. 1-158051).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の電解質薄膜は取扱上固体の性質を有しながら、な
おかつ固体高分子電解質膜と比べて格段に高い導電率を
有し、その有効性は究めて幅広くかつ高いものである。
Although the electrolyte thin film described above has the properties of a solid when handled, it also has a much higher conductivity than a solid polymer electrolyte membrane, and its effectiveness is extremely wide and high.

しかしながら、この電解質薄膜においても、用途により
、あるいは同じ固体高分子多孔膜とイオン導電体の組合
せにおいて、さらに高いイオン導電率が望まれる場合が
あり、さらには電解液によっては固体高分子多孔膜に充
填することが困難な場合もあった。
However, even in this electrolyte thin film, higher ionic conductivity may be desired depending on the application or in the combination of the same porous solid polymer membrane and an ionic conductor. In some cases, filling was difficult.

そこで、本発明はこのような問題を解決することを目的
とする。
Therefore, the present invention aims to solve such problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記課題を解決するために、固体高分子多孔
性薄膜の空孔中にイオン導電体を充填してなる電解質薄
膜において、該固体高分子多孔性薄膜の空孔表面が界面
活性剤で処理されていることを特徴とする。
In order to solve the above problems, the present invention provides an electrolyte thin film formed by filling the pores of a porous solid polymer thin film with an ionic conductor, in which the surface of the pores of the porous solid polymer thin film contains a surfactant. It is characterized by being processed.

本発明で用いる固体高分子多孔性薄膜としては、限定す
るわけではないが、膜厚が0.1p〜50声、空孔率が
40%〜90%、破断強度が200kg/cut以上、
平均貫通孔径がO,0OIJ−〜0.7pのものが好ま
しく使用される。
The solid polymer porous thin film used in the present invention is not limited to, but has a thickness of 0.1p to 50p, a porosity of 40% to 90%, and a breaking strength of 200kg/cut or more;
Those having an average through-hole diameter of O.0OIJ- to 0.7p are preferably used.

薄膜の厚さは一般に0.1廁〜50力であり、好ましく
は0.1p〜25廂である。厚さが0.1側未満では支
持膜としての機械的強度の低下および取り扱い性の面か
ら実用に供することが難しい。一方、50戸を超える場
合に実効抵抗を低く抑えるという観点から好ましくない
。多孔性薄膜の空孔率は、40%〜90%とするのがよ
く、好ましくは60%〜90%の範囲である。空孔率が
40%未満では電解質としてのイオン導電性が不十分と
なり、一方90%を超えると支持膜としての機能的強度
が小さくなり実用に供することが難しい。
The thickness of the thin film is generally 0.1 to 50 m, preferably 0.1 to 25 m. If the thickness is less than 0.1, it is difficult to put it to practical use because of the reduced mechanical strength as a support film and the ease of handling. On the other hand, if the number of houses exceeds 50, it is not preferable from the viewpoint of keeping the effective resistance low. The porosity of the porous thin film is preferably in the range of 40% to 90%, preferably in the range of 60% to 90%. If the porosity is less than 40%, the ionic conductivity as an electrolyte will be insufficient, while if it exceeds 90%, the functional strength as a support membrane will be low, making it difficult to put it into practical use.

平均貫通孔径は、空孔中にイオン導電体を固定化できれ
ばよいが、一般に0. OOC〜0.7側である。好ま
しい平均貫通孔径は高分子膜の材質や孔の形状にもよる
。高分子膜の破断強度は一般に200kg / c++
I以上、より好ましくは500kg/Cn!以上を有す
ることにより支持膜としての実用化に好適である。
The average diameter of the through-holes is generally 0.5mm, as long as the ionic conductor can be immobilized in the pores. It is on the OOC~0.7 side. The preferred average through-hole diameter depends on the material of the polymer membrane and the shape of the pores. The breaking strength of polymer membranes is generally 200kg/c++
I or more, preferably 500kg/Cn! Having the above properties makes it suitable for practical use as a support membrane.

本発明に用いる多孔性薄膜は上記のようなイオン導電体
の支持体としての機能をもち、機械的強度のすぐれた高
分子材料からなる。
The porous thin film used in the present invention functions as a support for the ion conductor as described above, and is made of a polymeric material with excellent mechanical strength.

化学的安定性の観点から、例えばポリオレフィン、ポリ
テトラフルオロエチレン、ポリフッ化ヒニリデンを用い
ることができるが、本発明の多孔構造の設計や薄膜化と
機械的強度の両立の容易さの観点から好適な高分子材料
の1例は、特に重量平均分子量が5×105以上のポリ
オレフィンである。すなわち、オレフィンの単独重合体
または共重合体の、結晶性の線状ポリオレフィンで、そ
の重量平均分子量が5×105以上、好ましくは1×1
06〜1×107のものである。例えば、ポリエチレン
、ポリプロピレン、エチレン−プロピレン共重合体、ポ
リブテン−1、ポリ4−メチルペンテン−1などがあげ
られる。これらのうちでは重量平均分子量が5×105
以上のポリエチレンまたはポリプロピレンが好ましい。
From the viewpoint of chemical stability, for example, polyolefin, polytetrafluoroethylene, polyhynylidene fluoride can be used, but from the viewpoint of the design of the porous structure of the present invention and the ease of achieving both thin film thickness and mechanical strength, suitable materials are used. One example of a polymeric material is a polyolefin, especially one with a weight average molecular weight of 5 x 105 or more. That is, a crystalline linear polyolefin, which is an olefin homopolymer or copolymer, and whose weight average molecular weight is 5 x 105 or more, preferably 1 x 1
06 to 1×107. Examples include polyethylene, polypropylene, ethylene-propylene copolymer, polybutene-1, poly-4-methylpentene-1, and the like. Among these, the weight average molecular weight is 5 x 105
The above polyethylene or polypropylene is preferred.

ポリオレフィンの重量平均分子量は、得られる透過膜の
機械的強度に影響する。超高分子量ポリオレフィンは、
超延伸により極薄で高強度の製膜を可能とし、実効抵抗
の低い高イオン導電性薄膜の支持体とする。重量平均分
子量が5×105未満のポリオレフィンを同時に用いる
ことができるが、重量平均分子量が5×105以上のポ
リオレフィンを含まない系では、超延伸による極薄高強
度の膜が得られない。
The weight average molecular weight of the polyolefin influences the mechanical strength of the resulting permeable membrane. Ultra-high molecular weight polyolefins are
Ultra-stretching enables the formation of ultra-thin and high-strength films, which can be used as supports for highly ionic conductive thin films with low effective resistance. Although a polyolefin having a weight average molecular weight of less than 5 x 10 5 can be used at the same time, an ultra-thin and high strength film cannot be obtained by ultra-stretching in a system that does not contain a polyolefin having a weight average molecular weight of 5 x 10 5 or more.

上記のような多孔性薄膜は次のような方法で製造できる
。超高分子量ポリオレフィンを流動パラフィンのような
溶媒中に1重量%〜15重量%を加熱溶解して均一な溶
液とする。この溶液からシートを形成し、急冷してゲル
状シートとする。このゲル状シート中に含まれる溶媒量
を、塩化メチレンのような揮発性溶剤で抽出処理して1
0重量%〜90重量%とする。このゲル状シートをポリ
オレフィンの融点以下の温度で加熱し、面倍率で10倍
以上に延伸する。この延伸膜中に含まれる溶媒を、塩化
メチレンのような揮発性溶剤で抽出除去した後に乾燥す
る。
The porous thin film as described above can be manufactured by the following method. Ultra-high molecular weight polyolefin is heated and dissolved in a solvent such as liquid paraffin in an amount of 1% to 15% by weight to form a uniform solution. A sheet is formed from this solution and rapidly cooled to form a gel-like sheet. The amount of solvent contained in this gel-like sheet is extracted with a volatile solvent such as methylene chloride.
0% to 90% by weight. This gel-like sheet is heated at a temperature below the melting point of the polyolefin and stretched to an areal magnification of 10 times or more. The solvent contained in this stretched film is extracted and removed with a volatile solvent such as methylene chloride, and then dried.

別の好適な高分子材料の例はポリカーボネートで、この
場合の固体高分子多孔性薄膜はポリカーボネート薄膜に
対し原子炉中で荷電粒子を照射し、荷電粒子が通過した
飛跡をアルカリエツチングして孔を形成する方法で作製
することもできる。このような薄膜は例えばニュークリ
ポアー・メンブレンとしてポリカーボネート及びポリエ
ステル製品が上布されている。
Another example of a suitable polymeric material is polycarbonate, in which the solid polymer porous thin film is made by irradiating the polycarbonate thin film with charged particles in a nuclear reactor and etching the tracks of the charged particles with alkali to form pores. It can also be produced by a method of forming. Such membranes are coated with polycarbonate and polyester products, for example as Nuclepore membranes.

そのほか、ポリエステル、ポリメタアクリレート、ポリ
アセタール、ポリ塩化ビニリデン、テトラフルオロポリ
エチレン等を用いることができる。
In addition, polyester, polymethacrylate, polyacetal, polyvinylidene chloride, tetrafluoropolyethylene, etc. can be used.

本発明は、このような固体高分子多孔性薄膜の空孔表面
を界面活性剤で処理することを特徴としている。空孔表
面を界面活性剤で処理する方法としては■多孔性薄膜の
製造時に界面活性剤を練込む方法、■製薄後に、空孔内
表面を界面活性剤で処理する方法、等によることができ
る。
The present invention is characterized in that the pore surface of such a solid polymer porous thin film is treated with a surfactant. Methods for treating the surface of the pores with a surfactant include: (1) kneading a surfactant during the production of a porous thin film, (2) treating the inner surface of the pores with a surfactant after thin film production, etc. can.

界面活性剤としては、限定されないが非イオン型界面活
性剤が好ましく使用でき、例えばソルビトーノヘペンタ
エリスリトーノペグリセリン、グリコール及びこれらの
高級脂肪酸エステノペあるいはアルキレンオキサイドの
脂肪酸エステル、パーフルオロアルキルアミンオキサイ
ドなどを挙げることができる。
As the surfactant, nonionic surfactants can be preferably used, although there are no limitations, such as sorbitonohepentaerythritonopeglycerin, glycols, fatty acid esters of higher fatty acids or alkylene oxides, and perfluoroalkylamine oxides. etc. can be mentioned.

このような界面活性剤で処理することにより、固体高分
子多孔性薄膜の空孔表面の表面活性が増大し、電解液に
よる濡れが改善され、電解質の移動性が向上すると共に
、エチレンカーボネート等の従来充填が困難であった溶
媒の使用も容易化される、等の効果がある。
Treatment with such a surfactant increases the surface activity of the pore surface of the solid polymer porous thin film, improves wetting by the electrolyte, and improves the mobility of the electrolyte. There are effects such as ease of use of solvents that were difficult to fill in the past.

本発明で用いるイオン導電体としてはアルカリ金属塩ま
たはプロトン酸と、ポリエーテル、ポリエステル、ポリ
イミン等の極性高分子との複合体、あるいはこれらの高
分子をセグメントとして含有する網目状、又は架橋状高
分子との複合体を用いることかできる。ポリエーテルベ
例えばポリエチレングリコールまたはポリプロピレング
リコールあるいはそれらの共重合体は分子量および重合
度の異なる液状および粉末状の試薬が市販されており、
簡便に用いることができる。すなわち、ポリエチレング
リコール、ポリエチレングリコールφモノエーテル、ポ
リエチレングリコール・ジエーテノペポリプロピレング
リコール、ポリプロピレングリコール・モノエーテル、
ポリプロピレングリコール・ジエーテル等のポリエーテ
ル類、またはこれらのポリエーテル類の共重合体である
ポリ(オキシエチレン・オキシプロピレン)グリコーノ
ペポリ (オキシエチレン・オキシプロピレン)グリコ
ール・モノエーテル、またはポリ くオキシエチレン・
オキシプロピレン)グリコール・ジエーテノペこれらの
ポリオキシアルキレン類と、エチレンジアミンとの縮合
物、りん酸エステルや飽和脂肪酸または芳香族エステル
等を用いることができる。さらにポリエチレングリコー
ルとジアルキルシロキサンの共重合体(例えば、成瀬ら
、Polymer Preprints、  Japa
n Vol、34.  No、7. 2021〜202
4 (1985)、および特開昭60−217263号
公報)、ポリエチレングリコールと無水マレイン酸の共
重合体(例えばC,C,Leeら、Polymer、 
1982. Vow。
The ionic conductor used in the present invention is a composite of an alkali metal salt or protonic acid and a polar polymer such as polyether, polyester, or polyimine, or a network or crosslinked polymer containing these polymers as segments. Complexes with molecules can also be used. Polyether solvents such as polyethylene glycol, polypropylene glycol, or copolymers thereof are commercially available in liquid and powder forms with different molecular weights and degrees of polymerization.
It can be used easily. That is, polyethylene glycol, polyethylene glycol φ monoether, polyethylene glycol dietenopepolypropylene glycol, polypropylene glycol monoether,
Polyethers such as polypropylene glycol diether, or copolymers of these polyethers such as poly(oxyethylene/oxypropylene) glyconepoly (oxyethylene/oxypropylene) glycol monoether, or poly(oxyethylene/oxypropylene) glycol monoether;
(oxypropylene) glycol, dietenope, condensates of these polyoxyalkylenes and ethylenediamine, phosphoric acid esters, saturated fatty acids, aromatic esters, etc. can be used. Furthermore, copolymers of polyethylene glycol and dialkyl siloxane (for example, Naruse et al., Polymer Preprints, Japan
n Vol, 34. No, 7. 2021-202
4 (1985) and JP-A-60-217263), copolymers of polyethylene glycol and maleic anhydride (e.g. C, C, Lee et al., Polymer,
1982. Vow.

23 May 681〜689)、およびポリエチレン
グリコールのモノメチルエーテルとメタクリル酸との共
重合体く例えば、N、Kobayashi  ら、J、
Physical Chem−istry、 Vol、
89. No、6.987〜9901985))はそれ
ぞれアルカリ金属イオンとの複合体を形成し、室温での
イオン伝導度が10−5〜10 ’ S −cm−’で
あることが知られており、本発明に有用な薄膜電解質を
構成する材料として好適である。
23 May 681-689), and copolymers of monomethyl ether of polyethylene glycol and methacrylic acid, e.g., N., Kobayashi et al., J.
Physical Chem-istry, Vol.
89. No. 6.987-9901985)) are known to form complexes with alkali metal ions and have ionic conductivities of 10-5 to 10'S-cm-' at room temperature, and this study It is suitable as a material constituting a thin film electrolyte useful in the invention.

上記のポリエーテル類は分子量150以上の低分子量の
ものであってよく、また上記高分子にはプロピレンカー
ボネート、T−ブチロラクトン、エチレンカーボネート
、メチルフラン、ジメトキシエタン、ジオキソラン、テ
トラヒドロフラン、アセトニトリル、ジメチルホルムア
ミド、ジメチルサルホキシト、メチルテトラヒドロフラ
ン、スルホラン、メチルチオフェン、メチルチアゾール
、エトキシメトキシエタンの1種またそれ以上の溶媒を
加えて用いてもよい。
The above-mentioned polyethers may have a low molecular weight of 150 or more, and the above-mentioned polymers include propylene carbonate, T-butyrolactone, ethylene carbonate, methylfuran, dimethoxyethane, dioxolane, tetrahydrofuran, acetonitrile, dimethylformamide, One or more solvents such as dimethylsulfoxide, methyltetrahydrofuran, sulfolane, methylthiophene, methylthiazole, and ethoxymethoxyethane may be added.

これらの高分子化合物と複合体を形成するものとしては
、アルカリ金属またはアルカリ土類金属塩またはプロト
ン酸を用いることができる。陰イオンとしてはハロゲン
イオン、過塩素酸イオン、チオシアン酸イオン、トリフ
ッ化メタンスルホン酸イオン、ホウフッ化イオン等があ
る。フッ化リチウム(LiF) 、ヨウ化ナトリウム(
NaI) 、ヨウ化リチウム(LiI) 、過塩素酸リ
チウム(L+Cj204)、チオシアン酸ナトリウム(
NaSCN) 、)リッツ化メタンスルホン酸リチウム
(LiCF3SO3)、ホウフッ化リチウム(LIBF
4) 、ヘキサフッ化りん酸リチウム(LIPF6) 
、りん酸(■3P03)、硫酸(H2SO,) 、)リ
ッツ化メタンスルホン酸、テトラフッ化エチレンスルホ
ル酸[:C2F、(SO31t)2 ) 、ヘキサフッ
化ブタンスルホン酸〔C4F6(SO311)4 〕、
などを具体例として挙げることができる。
An alkali metal or alkaline earth metal salt or a protonic acid can be used to form a complex with these polymer compounds. Examples of anions include halogen ions, perchlorate ions, thiocyanate ions, trifluoromethanesulfonate ions, and borofluoride ions. Lithium fluoride (LiF), sodium iodide (
NaI), lithium iodide (LiI), lithium perchlorate (L+Cj204), sodium thiocyanate (
NaSCN),) Lithium methanesulfonate (LiCF3SO3), Lithium borofluoride (LIBF)
4) Lithium hexafluorophosphate (LIPF6)
, phosphoric acid (■3P03), sulfuric acid (H2SO,) , ) litzated methanesulfonic acid, tetrafluorinated ethylene sulfonic acid [:C2F, (SO31t)2 ), hexafluorinated butanesulfonic acid [C4F6 (SO311)4 ],
Specific examples include:

高分子薄膜中にイオン導電体を充填する方法としては、
■溶媒に溶解させたイオン導電体、または溶媒中にゾル
状またはゲル状に微分散させたイオン導電体を固体高分
子多孔性薄膜に包浸させるか、塗布またはスプレーした
後溶剤を除去する、■多孔性薄膜の製造工程でイオン導
電体の溶液または、そのゾルまたはゲル状の分散溶液を
混合した後製膜する、■イオン導電体の単量体や可溶性
プレカーサーを固体高分子多孔性薄膜に包浸させるか、
塗布またはスプレーした後、空孔内で反応させる、等の
方法を用いることができる。
As a method of filling ionic conductors into a polymer thin film,
■Remove the solvent after immersing, coating or spraying an ionic conductor dissolved in a solvent, or an ionic conductor finely dispersed in a solvent in the form of a sol or gel, into a solid polymer porous thin film; ■In the manufacturing process of porous thin films, a film is formed after mixing a solution of an ionic conductor or its sol or gel-like dispersion solution. ■A monomer or soluble precursor of an ionic conductor is made into a solid polymer porous thin film. Or immerse it in
A method such as applying or spraying and then reacting within the pores can be used.

〔実施例〕〔Example〕

実施例1 水とインプロパツール混合溶媒(混合比4:1容量比)
に5重量%のパーフルオロアルキルアミンオキシドを溶
解させた溶液にポリエチレン微多孔膜(25R1厚)を
2時間浸漬した後純水で洗浄する。同腹を50℃、真空
中で乾燥させ表面処理膜を得た。同腹にプロピレンカー
ボネートとジメトキシエタン混合液(混合比1:1容量
比)にLiCβ04を溶解させ1moR/f!濃度とし
た電解液を充填した。
Example 1 Water and Improper Tool mixed solvent (mixing ratio 4:1 volume ratio)
A microporous polyethylene membrane (25R1 thickness) was immersed in a solution containing 5% by weight of perfluoroalkylamine oxide for 2 hours, and then washed with pure water. The same litter was dried at 50° C. in vacuum to obtain a surface-treated film. For the same litter, dissolve LiCβ04 in a mixed solution of propylene carbonate and dimethoxyethane (mixing ratio 1:1 volume ratio) and obtain 1 moR/f! It was filled with an electrolyte solution with a certain concentration.

この膜のイオン伝導率は3.2 X40−3Ω−1cm
’−1であった。
The ionic conductivity of this membrane is 3.2 x 40-3Ω-1cm
'-1.

比較例 実施例1の方法で表面処理を行わない膜ではイオン伝導
率は6. OXl0−’Ω−1cm lであった。
Comparative Example The ionic conductivity of a membrane that was not surface-treated by the method of Example 1 was 6. OXl0-'Ω-1 cm l.

実施例2 1i例1の方法でパーフルオロアルキルアミンのエチレ
ンオキシド付加物(C8H,7SO2NF−C112−
(CH20)、lI)で表面処理を行ったポリエチレン
微多孔膜に、エチレンカーボネートとジメトキシエタン
混合液(混合比7:3容量比)にL+PFsを溶解させ
1moff/l濃度とした電解液を充填した。この膜の
イオン伝導率は1.9 Xl0−3Ω−1c m−1で
あった。
Example 2 1i Ethylene oxide adduct of perfluoroalkylamine (C8H,7SO2NF-C112-
A polyethylene microporous membrane surface-treated with (CH20), lI) was filled with an electrolytic solution in which L+PFs was dissolved in a mixed solution of ethylene carbonate and dimethoxyethane (mixing ratio 7:3 by volume) to a concentration of 1 moff/l. . The ionic conductivity of this membrane was 1.9 Xl0-3Ω-1cm-1.

比較例2 実施例2の方法で表面処理を行わない膜では電解液を充
填することが出来なかった。
Comparative Example 2 A membrane that was not surface-treated by the method of Example 2 could not be filled with an electrolyte.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、固体高分子多孔性薄膜の空孔表面を界
面活性剤で処理したことにより、充填されるイオン導電
体の移動性が向上して電解質薄膜のイオン導電率が向上
するほか、従来は充填が困難であった電解液の充填が容
易化される等の効果がある。
According to the present invention, by treating the surface of the pores of the solid polymer porous thin film with a surfactant, the mobility of the filled ionic conductor is improved, and the ionic conductivity of the electrolyte thin film is improved. There are effects such as facilitating the filling of the electrolytic solution, which was difficult to fill in the past.

Claims (2)

【特許請求の範囲】[Claims] 1.固体高分子多孔性薄膜の空孔中にイオン導電体を充
填してなる電解質薄膜において、該固体高分子多孔性薄
膜の空孔表面が界面活性剤で処理されていることを特徴
とする電解質薄膜。
1. An electrolyte thin film formed by filling the pores of a solid polymer porous thin film with an ionic conductor, characterized in that the pore surface of the solid polymer porous thin film is treated with a surfactant. .
2.前記固体高分子多孔性薄膜がポリオレフィンである
請求項1記載の電解質薄膜。
2. The electrolyte thin film according to claim 1, wherein the solid polymer porous thin film is a polyolefin.
JP2329888A 1990-11-30 1990-11-30 Electrolytic thin film Pending JPH04204522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2329888A JPH04204522A (en) 1990-11-30 1990-11-30 Electrolytic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2329888A JPH04204522A (en) 1990-11-30 1990-11-30 Electrolytic thin film

Publications (1)

Publication Number Publication Date
JPH04204522A true JPH04204522A (en) 1992-07-24

Family

ID=18226376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2329888A Pending JPH04204522A (en) 1990-11-30 1990-11-30 Electrolytic thin film

Country Status (1)

Country Link
JP (1) JPH04204522A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2704099A1 (en) * 1993-04-15 1994-10-21 Centre Nat Etd Spatiales Electrolyte for an electrical storage cell
WO1997018596A1 (en) * 1995-11-15 1997-05-22 Asahi Kasei Kogyo Kabushiki Kaisha Composite polymer solid electrolyte and nonaqueous electrochemical device
FR2760292A1 (en) * 1997-03-03 1998-09-04 Alsthom Cge Alcatel METHOD FOR MANUFACTURING AN ORGANIC ELECTROLYTE ELECTROCHEMICAL GENERATOR HAVING A UNIT STRUCTURE
WO1999016138A1 (en) * 1997-09-22 1999-04-01 W.L. Gore & Associates Gmbh An electrochemical energy storage means
EP1174940A1 (en) * 2000-07-17 2002-01-23 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrochemical apparatus
US6402363B1 (en) 1995-12-11 2002-06-11 Stephen B. Maguire Weigh scale blender
JP2002373705A (en) * 2002-05-13 2002-12-26 Japan Storage Battery Co Ltd Lithium ion conductive polymer and lithium ion conductive polymer electrolyte
JP2005172855A (en) * 2003-12-05 2005-06-30 Toppan Forms Co Ltd Electrochromic element
KR100552661B1 (en) * 2001-10-26 2006-02-20 삼성에스디아이 주식회사 Conductive inorganic nano-particle with good ion conductivity, ion conductive polymer membrane comprising the same and preparing method thereof
JP2006302598A (en) * 2005-04-19 2006-11-02 Nitto Denko Corp Electrolyte film and its manufacturing method
US7550216B2 (en) 1999-03-03 2009-06-23 Foster-Miller, Inc. Composite solid polymer electrolyte membranes
US7601448B2 (en) 2001-07-03 2009-10-13 Sumitomo Chemical Company, Limited Polymer electrolyte membrane and fuel cell

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2704099A1 (en) * 1993-04-15 1994-10-21 Centre Nat Etd Spatiales Electrolyte for an electrical storage cell
WO1997018596A1 (en) * 1995-11-15 1997-05-22 Asahi Kasei Kogyo Kabushiki Kaisha Composite polymer solid electrolyte and nonaqueous electrochemical device
AU703077B2 (en) * 1995-11-15 1999-03-11 Asahi Kasei Emd Corporation Hybrid polymeric electrolyte and non-aqueous electrochemical device comprising the same
US6284412B1 (en) 1995-11-15 2001-09-04 Asahi Kasei Kogyo Kabushiki Kaisha Hybrid polymeric electrolyte and non-aqueous electrochemical device comprising the same
US6402363B1 (en) 1995-12-11 2002-06-11 Stephen B. Maguire Weigh scale blender
FR2760292A1 (en) * 1997-03-03 1998-09-04 Alsthom Cge Alcatel METHOD FOR MANUFACTURING AN ORGANIC ELECTROLYTE ELECTROCHEMICAL GENERATOR HAVING A UNIT STRUCTURE
US7670720B1 (en) 1997-09-22 2010-03-02 W. L. Gore & Associates Gmbh Electrochemical energy storage means
WO1999016138A1 (en) * 1997-09-22 1999-04-01 W.L. Gore & Associates Gmbh An electrochemical energy storage means
US7550216B2 (en) 1999-03-03 2009-06-23 Foster-Miller, Inc. Composite solid polymer electrolyte membranes
EP1174940A1 (en) * 2000-07-17 2002-01-23 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrochemical apparatus
US6958198B2 (en) 2000-07-17 2005-10-25 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrochemical apparatus
US7601448B2 (en) 2001-07-03 2009-10-13 Sumitomo Chemical Company, Limited Polymer electrolyte membrane and fuel cell
KR100552661B1 (en) * 2001-10-26 2006-02-20 삼성에스디아이 주식회사 Conductive inorganic nano-particle with good ion conductivity, ion conductive polymer membrane comprising the same and preparing method thereof
JP2002373705A (en) * 2002-05-13 2002-12-26 Japan Storage Battery Co Ltd Lithium ion conductive polymer and lithium ion conductive polymer electrolyte
JP2005172855A (en) * 2003-12-05 2005-06-30 Toppan Forms Co Ltd Electrochromic element
JP4503274B2 (en) * 2003-12-05 2010-07-14 トッパン・フォームズ株式会社 Electrochromic element
JP2006302598A (en) * 2005-04-19 2006-11-02 Nitto Denko Corp Electrolyte film and its manufacturing method

Similar Documents

Publication Publication Date Title
DE69918107T2 (en) IONOMIC AND ION-LEADING COMPOSITIONS
US4849311A (en) Immobilized electrolyte membrane
US5858264A (en) Composite polymer electrolyte membrane
US6033804A (en) Highly conductive ion exchange polymer and process
US9252456B2 (en) Polymer solid electrolyte for flexible batteries
US4740433A (en) Nonaqueous battery with special separator
JPH04204522A (en) Electrolytic thin film
KR20000041210A (en) Porous polymer electrolyte
US6214251B1 (en) Polymer electrolyte composition
KR20130130002A (en) Lithium-air battery
CN111313083A (en) Composite solid electrolyte film and preparation and application thereof
Xie et al. The high performance of polydopamine-coated electrospun poly (ether sulfone) nanofibrous separator for lithium-ion batteries
CN109923699A (en) Negative electrode for lithium ion battery and lithium ion battery
CN106654368A (en) Preparation method of gel electrolyte and gel electrolyte prepared with preparation method
JP3098248B2 (en) Ion conductor or electrolyte for batteries
JPH11135129A (en) Polymer binder for organic electrolyte battery electrode
JP3348513B2 (en) Polymer solid electrolyte battery
JP2008222957A (en) Porous membrane comprising alkyleneoxide polymer and polymer solid electrolyte using the same as base material
CN115966759A (en) Polyethylene oxide solid electrolyte and preparation method and application thereof
JPH02291607A (en) Thin film electrolyte
JP2000036219A (en) Polymeric solid electrolytic thin film and manufacture thereof
JPH0387096A (en) Porous conducting film and immobilized liquid film conductor
JPH03145005A (en) Electrolyte membrane
JP3028824B2 (en) Immobilized liquid film conductor and battery using the same
JPH05217416A (en) Electrolytic thin film and manufacture thereof