JPH04195302A - Adaptive controller - Google Patents

Adaptive controller

Info

Publication number
JPH04195302A
JPH04195302A JP32872190A JP32872190A JPH04195302A JP H04195302 A JPH04195302 A JP H04195302A JP 32872190 A JP32872190 A JP 32872190A JP 32872190 A JP32872190 A JP 32872190A JP H04195302 A JPH04195302 A JP H04195302A
Authority
JP
Japan
Prior art keywords
control input
output
characteristic
input
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32872190A
Other languages
Japanese (ja)
Inventor
Kazunari Narasaki
和成 楢崎
Osamu Ito
修 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP32872190A priority Critical patent/JPH04195302A/en
Publication of JPH04195302A publication Critical patent/JPH04195302A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PURPOSE:To improve the accuracy of an arithmetic value by using differential values of an output and history values of an input and to speed up the convergence of an estimated value by providing a control input characteristic arithmetic means, a control input characteristic judging means, and a control input arithmetic means. CONSTITUTION:For the controlled system 100 of a one-input one-output first order delay system whose actual input distribution characteristic is unknown and different from a control input characteristic, the control input characteristic arithmetic means 110 performs arithmetic operation by using many differential values of the output and history values of an input to improve the accuracy of individual arithmetic values, and the estimated value can be converged fast, so that the output of the controlled system 100 can excellently follow up a target track. When the control input arithmetic means 104 is composed of a digital circuit system, the adaptive controller can easily be realized by setting time delay to an integral multiple of a sampling period and similar effect can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明ζよ 未知特性や外乱の影響が顕著な対象を制御
する適応制御装置に関するものであム従来の技術 近紙 機器やシステムの仕様は一層の高精度化と知能化
が要求されており、対象の特性が予測できない変化をす
る場合や、外乱の影響が顕著な場合に対してL 対象の
入出力信号よりこれらの未知要因を実時間で推定し さ
ら艮 その結果に基づいて制御系を実時間で調整する事
によって、機器やシステムが常に望ましい特性を発揮で
きるようにする適応制御装置が注目されていもま−1,
1988年10月発行の第31回自動制御連合講演会講
演論文集361〜362ページの楢晩 伊藤による論文
 ′°未知の入力特性を持つシステムのタイム・デイレ
イ・コントロール′″に基づいて従来の制御入力特性の
演算方式を用いたタイム・デイレイ・コントロールにつ
いて示す。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to an adaptive control device for controlling objects that are significantly affected by unknown characteristics or disturbances. High precision and intelligence are required, and in cases where the characteristics of the target change unpredictably or where the influence of external disturbances is significant, L is able to estimate these unknown factors in real time from the input/output signals of the target. Adaptive control devices that enable devices and systems to always exhibit desired characteristics by adjusting the control system in real time based on the results are attracting attention.
Paper by Ito Narayana in the Proceedings of the 31st Automatic Control Association Conference, published in October 1988, pages 361-362 Conventional control based on ``time delay control of systems with unknown input characteristics'' Time delay control using a calculation method of input characteristics will be explained.

以下図面を参照しながら従来の適応制御装置の一例につ
いて説明すも 第5図(よ 従来の適応制御装置の制御
対象の一例として取り上げるサーボモータの斜視図であ
ム 第5図において、500はサーボモータ本体 50
1はモータの回転線502は負荷支持部材、 503は
粘性摩擦部材、504は移動可能な負荷であム 第5図に示すようにサーボモータ本体500から出てい
るモータの回転軸501に負荷支持部材502が固定さ
れていも そして、主に外部に固定された粘性摩擦部材
503によって生じる未知の粘性摩擦抵抗をCとすム 
また負荷支持部材502はリニアモータとなっておりモ
ータ回転中にも負荷504を負荷支持部材502上の任
意の位置に移動させることができ、慣性モーメントが変
動可能な機構となっている。
Hereinafter, an example of a conventional adaptive control device will be described with reference to the drawings. Motor body 50
1 is a motor rotation line 502 is a load support member, 503 is a viscous friction member, and 504 is a movable load.As shown in FIG. Even if the member 502 is fixed, let C be the unknown viscous frictional resistance mainly caused by the viscous friction member 503 fixed outside.
Further, the load support member 502 is a linear motor, and the load 504 can be moved to any position on the load support member 502 even while the motor is rotating, and the moment of inertia can be varied.

このような制御対象に対し サーボモータ本体500の
入力トルクと回転角速度をそれぞれu(t)およびy 
(t)とし サーボモータの速度を制御する場合を考え
も サーボモータの運動を支配する微分方程式(よ次式の様
になム u (t)= J (t)・y (t)+c (t)・
y (t)       (1)上式は一人カー出力の
微分方程式であり係数は全てスカシであム 上式をラプ
ラス変換すムここで、 a=c/JX b=1/J  
    (3)(2)、 (3)式より制御対象は一次
遅れの系であり1/Jが変動する入力配分特性すを表わ
している。ここで、入力配分特性すは0、i=nから1
まで変動するものとすム 以上のサーボモータの速度を制御するために構成された
従来の適応制御装置のブロック線図を第4図に示す。第
4図において、 100は制御対象である第5図のサー
ボモー久 102は出力値検出手段、 104は制御入
力演算手段 106は入力印加半没 408は制御入力
特性判断手段、 410は制御入力特性演算手段であ4 以上のように構成された従来の適応制御装置についてそ
の動作を説明する。まず制御対象100であるサーボモ
ータの回転角速度及び回転角加速度はタコメータや加速
度センサやその処理回路から構成される出力値検出手段
102によって検出される。
For such a controlled object, the input torque and rotational angular velocity of the servo motor body 500 are expressed as u(t) and y, respectively.
(t) Let us consider the case where the speed of the servo motor is controlled.The differential equation governing the motion of the servo motor (mu (t) = J (t)・y (t) + c (t) )・
y (t) (1) The above equation is a differential equation for one person's car output, and all the coefficients are square. Laplace transform the above equation. Here, a=c/JX b=1/J
(3) From equations (2) and (3), the controlled object is a first-order lag system, and 1/J represents the variable input distribution characteristic. Here, the input distribution characteristic is 0, i=n to 1
FIG. 4 shows a block diagram of a conventional adaptive control device configured to control the speed of a servo motor that varies up to and over a range of 100 to 100 m. In FIG. 4, 100 is the servo motor of FIG. 5 which is the controlled object; 102 is an output value detection means; 104 is a control input calculation means; 106 is input application half-immersion; 408 is a control input characteristic judgment means; 410 is a control input characteristic calculation means. The operation of the conventional adaptive control device configured as described above will be explained. First, the rotational angular velocity and rotational angular acceleration of the servomotor, which is the controlled object 100, are detected by the output value detection means 102, which includes a tachometer, an acceleration sensor, and a processing circuit thereof.

そして、出力値検出手段102から出力された出力y 
(t)や出力の微分値y(t)と制御入力演算手段10
4内の目標軌道出力回路(図示せず)から出力される時
間軌跡によって自由に与えれる回転角速度の目標軌道y
d(t)と目標軌道の微分値yn(t)を用いて、同様
に制御入力演算手段104内の誤差算出回路(図示せず
)から次式 %式%(4) の関係を演算し誤差e(t)を出力すム そして、制御
入力演算手段104は制御入力演算手段104から出力
される目標軌道の微分仇 誤差と出力値検出手段102
から出力される出力を用いて式(5)を演算し制御入力
u (t)を求める構成となってぃも u (t)= u  (t−L)+  (V (t−L
)十 y −(t)+ k −e (t)) / b−
t     (5)上記制御入力演算手段104におい
て、Lは任意の時間遅h  u(t−L)は時刻り前に
制御対象100に印加された入力 y(t−L)は時刻
り前に制御対象100から出力値検出手段102より検
出された回転角加速&には誤差フィードバック係数b・
−1は制御入力u (t)を求めるために用いる制御入
力特性であム ここで、現在のbはわからないので、 b setの初
期値は発振しないようにbの最大値である1に設定して
いも しかLbとす、。tが太き(異なったまま制御入
力演算手段104が式(5)を演算し求めた制御入力で
は制御対象100の目標軌道に対する追従性が悪t〜 
またbは変動するので一定のす、。tでは追従性が悪い
ため現在のbの近傍にb・−1を変更する必要がある。
Then, the output y output from the output value detection means 102
(t) and the differential value y(t) of the output and the control input calculation means 10
The target trajectory y of the rotational angular velocity freely given by the time trajectory output from the target trajectory output circuit (not shown) in 4.
Using d(t) and the differential value yn(t) of the target trajectory, the error calculation circuit (not shown) in the control input calculation means 104 similarly calculates the relationship of the following formula % formula % (4) and calculates the error. Then, the control input calculation means 104 outputs the differential value of the target trajectory output from the control input calculation means 104.The error and output value detection means 102
The configuration is such that the control input u (t) is obtained by calculating equation (5) using the output output from the
) 10 y −(t)+ k −e (t)) / b−
t (5) In the control input calculating means 104, L is an arbitrary time delay h u (t-L) is the input applied to the controlled object 100 before the clock time y (t-L) is the input signal applied to the controlled object 100 before the clock clock ticks The rotational angular acceleration & detected by the output value detection means 102 from the object 100 has an error feedback coefficient b.
-1 is the control input characteristic used to find the control input u (t). Here, since the current b is unknown, the initial value of b set is set to 1, which is the maximum value of b, so as not to oscillate. It's only LB. t is large (if the control input calculation means 104 calculates equation (5) while it is different, the followability of the target trajectory of the controlled object 100 is poor t~
Also, since b fluctuates, it remains constant. Since tracking performance is poor at t, it is necessary to change b·-1 to the vicinity of the current b.

そのた数 実際の入力配分特性すを推定し制御入力特性
b setとする。
The actual input distribution characteristic is estimated and set as the control input characteristic b set.

そのためにま哄 制御入力特性判断手段408は次式を
判断し u(t) −u(t−L)> w          
    (6)ここで、Wは零で割るのを防ぎ、演算値
の精度を保つため予め設定された小さな正の値であも式
(6)が成り立てば制御入力特性演算手段410は次式
を°演算して制御入力特性の演算値b0−+(t) (
以也 演算値と言う。)を求めも さら!ミ 制御入力特性判断手段408は式(7)によ
って演算した演算値をそのまま現在の制御入力特性に変
えて新たな制御入力特性とすもb・−5(t)= b 
o−+(t)             (8)あるい
は次式に示すように演算値の平均化やLPF処理を行っ
た後(以後、処理後の演算値を推定値と言う。)、現在
の制御入力特性に変えて新たな制御入力特性とする。
For this purpose, the control input characteristic determining means 408 determines the following equation: u(t) −u(t−L)>w
(6) Here, W may be a small positive value set in advance to prevent division by zero and maintain the accuracy of the calculated value. If equation (6) holds true, the control input characteristic calculation means 410 calculates the following equation. Calculated value of control input characteristics b0-+(t) (
This is also called the calculated value. ) even if you ask for it! (iii) The control input characteristic determining means 408 directly changes the calculated value calculated by equation (7) to the current control input characteristic and determines it as a new control input characteristic b・-5(t)=b
o−+(t) (8) Or after averaging the calculated values or performing LPF processing as shown in the following equation (hereinafter, the calculated value after processing is referred to as the estimated value), the current control input characteristics are This is changed to create a new control input characteristic.

b−−1(t)=Σb−s+(t)/ n      
    (9)以上の判断を制御入力特性判断手段40
8は行う。
b--1(t)=Σb-s+(t)/n
(9) The input characteristic determining means 40 controls the above determinations.
8 will be done.

例えばその判断基準は様々考えられる力士lO個のb 
ee1のばらつきが20%以内  (1o)と言う条件
が満足されれば 現在の制御入力特性を新たな制御入力
特性に変更すム ここで、式(6)、(10)が成り立
たなければ 演算及び制御入力特性の変更は行わな(℃ そして、そのように変更可能なり・@tを用いて制御入
力演算手段104によって得られた制御入力u (t)
はアクチュエータやその駆動回路から構成される入力印
加手段106によって入力トルクu(t)へと変換され
制御対象100に印加される。そして印加された入力ト
ルクu (t)によって制御対象100の出力y(t)
を制御する目標軌道型の適応制御装置であム 発明が解決しようとする課題 しかしながら上記のような構成で(よ 以下のような課
題を有す4 [1]入力配分特性以外の未知特性の影響や無駄時間や
出力の微分値を直接検出できずに後進差分によって求め
る影響により制御入力特性の演算値のばらつきが犬きく
なん そして、求めた制御入力特性を用いて制御対象を
コントロールすると、制御対象の目標軌道に対する追従
性が悪くなったり、動作が不安定になる場合も生じも 
そこで、安定性を増すために演算値に対してLPF処理
や平均化処理を行っても個々の演算値の精度が悪いたべ
入力配分特性に近い制御入力特性(推定値)を求めるま
で時間がかかる。その収束の遅い制御入力特性を用いて
制御対象をコントロールするた数制御対象の出力が目標
軌道に良好に追従することができないという課題を有し
てい九 [2]まな −入力−出力の一次遅れ系の制御対象と同
様に一人カー出力の高次遅れ系に対しても目標軌道に良
好に追従することができないという課題を有していた [3]同様に制御対象の出力を目標軌道ではなく規範モ
デルの出力に良好に追従させることができないという課
題を有していk また 先に提案した特願平2−274.96号の適応制
御装置の推定方法自体は多入力多出力におけるものであ
り、−入力−出力においては同様の課題を有すム 本発明は上記の課題に鑑べ [1][2]実際の入力配分特性すが未知で制御入力特
性b *stと異なる[1]−入力−出力の一次遅れ慕
[2]−入力−出力の高次遅れ系の制御対象に対して、
未知入力配分特性すの個々の演算値の精度が良く推定値
の収束が速いた敢 制御対象の出力が目標軌道に良好に
追従する適応制御装置を提供するものである。
For example, there are various possible judgment criteria for the sumo wrestler lO b
If the condition that the variation in ee1 is within 20% (1o) is satisfied, the current control input characteristics are changed to new control input characteristics.Here, if equations (6) and (10) do not hold, then the calculation and Do not change the control input characteristics (°C).The control input characteristics obtained by the control input calculating means 104 using
is converted into an input torque u(t) and applied to the controlled object 100 by an input applying means 106 composed of an actuator and its drive circuit. Then, the output y(t) of the controlled object 100 is determined by the applied input torque u(t).
However, the above configuration has the following problems: 4 [1] Influence of unknown characteristics other than input distribution characteristics Variations in the calculated values of the control input characteristics become large due to the influence of the delay difference, dead time, and the inability to directly detect the differential value of the output. The ability to follow the target trajectory may deteriorate or the operation may become unstable.
Therefore, even if LPF processing or averaging processing is performed on the calculated values to increase stability, the accuracy of each calculated value is low, and it takes time to obtain control input characteristics (estimated values) close to the input distribution characteristics. . Controlling a controlled object using its slow convergence control input characteristics has the problem that the output of the controlled object cannot follow the target trajectory well. Similarly to the controlled object of the system, a high-order delayed system with a one-car output had the problem of not being able to follow the target trajectory well [3] Similarly, when the output of the controlled object was not set to the target trajectory, The problem is that it is not possible to follow the output of the reference model well.In addition, the estimation method for an adaptive control device proposed earlier in Japanese Patent Application No. 2-274.96 is for multiple inputs and multiple outputs. , - Input - Output have similar problems. In view of the above problems, the present invention [1] [2] The actual input distribution characteristic is unknown and the control input characteristic b *st is different from [1] - Input-output first-order delay [2] - For the controlled object of the input-output higher-order delay system,
The object of the present invention is to provide an adaptive control device in which the accuracy of each calculated value of unknown input distribution characteristics is high and the convergence of estimated values is quick, and the output of a controlled object follows a target trajectory well.

[3]同様に制御対象の出力が規範モデルの出力に良好
に追従する適応制御装置を提供するものであ4課題を解
決するための手段 上記課題を解決するために本発明の適応制御装置は以下
のようなそれぞれの構成を備えたものである。即板 [1]y (s)/ u (s)= b/ (s + 
a )によって表現可能な一入力一出力の制御対象に対
して、出力の微分値とその前歴値を合計2m個用〜\ 
その内の任意のm個をY1、残りのm個をY2とし 入
力とその前歴値を合計2m個用((その内Y1の各々の
時刻に対応するm個をU1、残りのm個をU2とし制御
入力特性の演算値be−+(t)をす、、 l (t)
= (Y IY2)/(U l−U 2)によって演算
する制御入力特性演算手段と、制御入力特性演算手段に
よって演算を行うか否かの判断及び制御入力特性の演算
値の処理後の値を新たな制御入力特性bea%に変更す
るか否かの判断を行う制御入力特性判断手段と、制御入
力u (t)をu (t)= u (t−L)+ [−
dy (t−L)/dt+dy m(t)/dt十に−
e (t)]/bomtJ:よッテ演算する制御入力演
算手段とを具備する構恋 [2]y (s)/ u (S)= b/ (s + 
a n−+”S ’−’+ ・・・+am)によって表
現可能な一入力一出力の制御対象に対して、出力のn階
微分値とその前歴値を合計2m個用(\ その内の任意
のm個をY1、残りのm個をY2とじ 入力とその前歴
値を合計2m個用1、)  その内Y1の各々の時刻に
対応するm個をU1、残りのm個をU2とし 制御入力
特性の演算値bO−1(t)をbom1(t)=(Yl
−Y2)/(01−U2)によって演算する制御入力特
性演算手段と、制御入力特性演算手段によって演算を行
うか否かの判断及び制御入力特性の演算値の処理後の値
を新たな制御入力特性bestに変更するか否かの判断
を行う制御入力特性判断手段と、制御入力u (t)を
u (t)= u (t−L)+[−dlly (t−
L)/dtn”+dny *(t)/dtn+ k−+
・dn−1e (t)/dtn 十”・+ k @ ・
e (t)]/bomtによって演算する制御入力演算
手段とを具備する構恋[3]y (s)/ u (s)
= b / (s + a )によって表現可能な一入
力一出力の制御対象に対して、出力の微分値とその前歴
値を合計2m個用(\ その内の任意のm個をY1、残
りのm個をY2とし 入力とその前歴値を合計2m個用
(\ その内Y1の各々の時刻に対応するm個をU1、
残りのm個をU2とし制御入力特性の演算値す、−+(
t)をb・−1(t)=(YIY2)/(U 1−U 
2)によって演算する制御入力特性演算手段と、制御入
力特性演算手段により1て演算を行うか否かの判断及び
制御入力特性の演算値の処理後の値を新たな制御入力特
性ba * tに変更するか否かの判断を行う制御入力
特性判断手段と、制御入力u(t)をu (t)= u
 (t−L)+ [−dy (t−L)/dt −a 
、・y (t)+ b−・r (t)十k −e (t
)]/bomtによって演算する制御入力演算手段とを
具備する構恋作用 本発明の上記した構成による作用(1以下のようになム
 節板 [1][2]実際の入力配分特性すが未知で制御入力特
性b e、aiと異なる[1]−入力−出力−次遅れ系
[2]−入力−出力の高次遅れ監 の制御対象に対して
、制御入力特性演算手段が出力の微分値や入力の前歴値
を多く用いて制御入力特性を演算する事により演算値の
精度が良くなるた取 推定値の収束速度が速くなり、制
御対象の出力を目標軌道に良好に追従させることができ
ることとなる。
[3] Similarly, an adaptive control device is provided in which the output of a controlled object closely follows the output of a reference model. Means for Solving the 4 Problems In order to solve the above problems, the adaptive control device of the present invention has the following features: It has the following configurations. Immediate board [1] y (s)/ u (s) = b/ (s +
For a controlled object with one input and one output that can be expressed by
Let any m of them be Y1, and the remaining m be Y2, and use the inputs and their antecedent values for a total of 2m ((among them, m that correspond to each time in Y1 are U1, and the remaining m are U2 Let the calculated value be-+(t) of the control input characteristic be, l (t)
= (Y IY2) / (U l - U 2) A control input characteristic calculation means calculates, and the control input characteristics calculation means determines whether or not to perform the calculation and calculates the value after processing of the calculated value of the control input characteristic. a control input characteristic determining means for determining whether to change to a new control input characteristic bea%;
dy (t-L)/dt+dy m(t)/dt-
e (t)]/bomtJ: a control input calculation means [2] y (s)/ u (S) = b/ (s +
For a controlled object with one input and one output that can be expressed as a Bind any m items as Y1 and the remaining m as Y2.For a total of 2m inputs and their antecedent values (1), set the m pieces corresponding to each time of Y1 as U1, and the remaining m pieces as U2.Control The calculated value bO-1(t) of the input characteristic is expressed as bom1(t)=(Yl
-Y2)/(01-U2), the control input characteristic calculation means determines whether or not to perform the calculation, and the processed value of the control input characteristic is used as a new control input. control input characteristic determining means for determining whether or not to change the characteristic to the best characteristic;
L)/dtn”+dny *(t)/dtn+ k−+
・dn-1e (t)/dtn 10”・+k @・
e (t)]/bomt [3] y (s)/u (s)
= b / (s + a) For a controlled object with one input and one output, a total of 2m output differential values and their antecedent values are used (any m of them are Y1, and the remaining Let m pieces be Y2, and use a total of 2m inputs and their antecedent values (of which, m pieces corresponding to each time of Y1 are U1,
Assuming the remaining m pieces as U2, the calculated value of the control input characteristics is −+(
t) to b・-1(t)=(YIY2)/(U 1-U
2), the control input characteristic calculation means calculates whether or not to perform the calculation, and converts the processed value of the control input characteristic into a new control input characteristic ba*t. control input characteristic determining means for determining whether to change or not;
(t-L) + [-dy (t-L)/dt -a
,・y (t)+ b−・r (t)k −e (t
)]/bomt The effect of the above-described structure of the present invention (1) The actual input distribution characteristics are unknown. [1] - input-output-order delay system [2] - input-output higher-order delay monitoring By calculating the control input characteristics using a large number of prior history values of the input and output values, the accuracy of the calculated values can be improved.The convergence speed of the estimated values is faster, and the output of the controlled object can better follow the target trajectory. becomes.

ここで、多くの前歴値を用いるために演算値を得るまで
に時間がかかる力(従来例のように前歴値を少なく用い
b oalを速く求めてL 様々な処理を行って推定値
を求めるまで時間がかかるので、最終的には個々の演算
値が良い方が速く実際の値に推定値は収束すム さら&
ミ 制御入力演算手段104が収束する前の変動する推
定値を用いた場合は入力が振動するため推定値の収束は
さらに遅くなム [3]同様に制御対象の出力を規範モデルの出力に良好
に追従させることとなム 実施例 まず、本発明の制御入力特性の演算方法の基本的な考え
方を以下説明すも 本発明の演算方法は精度の良い個々の演算値を求めるた
めにより多くの出力の微分値や入力の前歴値を用いる方
法であも 従来例と同様の制御対象を考えも ここで、 Sをラプラス演算子、yを制御対象の出力 
aを未知特ibを未知入力配分特iuを入力とすム 上式を微分方程式で表わすと次式の様になもb (t)
・u (t)= y (t)+ a (t)・y (t
)     (12)ここで、 a (t)・y (t
)を外乱d(t)と置き、時刻t−t、t−L、・・・
、 t−(2n−1)・Lを代入すると、b (t)・
u (t)−y (t)+ d (t)b (t−L)
・u (t−L)= V (t−L)+ d (t−L
)    (13)b (t−(2m−1)・L)・u
 (t−(2m−1)・L)= y (t−(2m−1
)・L)+ d (t−(2+n−1)・L)上式にお
いて、 b(t)’=b(t−L)’q、−、=b(t−(2m
−1)・L)  (14)d(t)=d(t−L)’、
、・=、==d(t−(2m−1)・L)  (15)
と置き、式(13)の2m個の方程式の1 任意のm個
を取り出し加算する。ここでは 簡単のため現在の時刻
に近い所からm個を選択すると、b (t)i u (
t)+・・−+u (t−(m−1)・L))=y(t
)+”・+y(t−(m−1)・L)+m−d(t) 
 (16)さらに 残りのm個の方程式を加算すると、
b (t)(u (t−m−L)+−−−+u (t−
(2m−1)・L))= y (t−n+−L)+・+
y (t−(2m+−1)・L)十m−d (t)(1
7)式(16)から式(17)を引き整理すると次式が
得られも b6−+(t)=b(t)= y (t)+−+y (t−(m−1)・L)−y (
t−+n−L)−・−y (t−(2m−1)・L)/
(u (t)+・−+u (t−(、m−1)・L)−
u (t−m−L)−−u (t−(2m−1)4))
    (18)以上の様にbの演算値が求まム ここ
て 理論上は式(18)が導かれるM  Lをサンプリ
ング周期とし サンプリング周期毎に入力と出力を検出
すると考えると入力u (t)を加えた影響が現われる
最も新しい出力の微分値はy(t+t、)であa 節板
 出力y(t)に対応する入力をu(t−L)と考える
と上式は入力を時刻tだけずらし b 、、 l (t)= b (t)=y (t)+・
・・+ジ(t−(m−1)・L)−y (t−m−L)
−・・= −y (t−(2n−1)−L)/ (u 
(t−L)+・・・+u (t−m−L)−u  (t
−(m+1’)・L>−−−−−u  (t−2m4)
)       (19)となる。上式のように入力と
入力の影響が現われている出力を対応させる必要があム 例えば8つ入力や入力の前歴値を用いた場合は式(19
)は次式のようになも す、、1(t)= y(t)十・・・+y (t−3L) −y  (t−
4L)−・・・−y (t−7L)/(u (t−L)
+・−・+u (t−4L)−u (t−5L)−−u
 (t−8L))yの微分値が検出不可能でyの後進差
分を用いて求めた場合は次式のようになム b−−+(t)= y (t)−2y (t−4L)+y (t−8L)/
L・(u (t−L)+−・+u (t−4L)−u 
(t−5L)−−・・−u (t−8L))     
   (21)次へ −入力−出力の高次遅れ系で表わ
される次式のような制御対象を考えも u (s)    s″+an−+・s’−’+−・+
am (22)同様に1+(i−n−1〜0)を未知特
性とすム式(22)の制御対象に対して(友 式(18
)の−階微分値を次式のようにn階微分値に置き換える
事で容易に演算値が求められも b es+(t)= b (t)= /(u (t)+−・・+u (t−(+n−1)・L
)−u (t−m・L)−・・−u (t−(2+n−
1)化))    (23)ここで、良い演算値を得る
ための条件は以下のようになる。
Here, it takes time to obtain the calculated value because many antecedent values are used (as in the conventional example, a small number of antecedent values are used to quickly obtain the b oal, and various processes are performed to obtain the estimated value). It takes time, so in the end, the better each calculated value is, the faster the estimated value will converge to the actual value.
(iii) If the control input calculating means 104 uses an estimated value that fluctuates before convergence, the input will oscillate, so the estimated value will converge even more slowly [3] Similarly, the output of the controlled object can be adjusted to the output of the reference model. Embodiment First, the basic concept of the method of calculating control input characteristics of the present invention will be explained below. Even if we use the method of using the differential value of or the antecedent value of the input, we can consider a controlled object similar to the conventional example. Here, S is the Laplace operator, and y is the output of the controlled object.
If a is an unknown characteristic, ib is an unknown input distribution characteristic, and iu is an input, the above equation can be expressed as a differential equation as shown in the following equation b (t)
・u (t)= y (t)+ a (t)・y (t
) (12) Here, a (t)・y (t
) as the disturbance d(t), and the times t-t, t-L,...
, by substituting t-(2n-1)・L, we get b (t)・
u (t)-y (t)+ d (t)b (t-L)
・u (t-L)=V (t-L)+d (t-L
) (13)b (t-(2m-1)・L)・u
(t-(2m-1)・L)=y(t-(2m-1)
)・L)+d (t-(2+n-1)・L)In the above formula, b(t)'=b(t-L)'q,-,=b(t-(2m
-1)・L) (14) d(t)=d(t-L)',
,・=,==d(t-(2m-1)・L) (15)
Then, take out any m of the 2m equations in equation (13) and add them. Here, for simplicity, we select m locations near the current time, and then b (t) i u (
t)+...-+u (t-(m-1)・L))=y(t
)+”・+y(t-(m-1)・L)+m-d(t)
(16) Furthermore, by adding the remaining m equations, we get
b (t)(u (t-m-L)+----+u (t-
(2m-1)・L))=y (t-n+-L)+・+
y (t-(2m+-1)・L) 10m-d (t)(1
7) By subtracting and rearranging equation (17) from equation (16), the following equation is obtained. )−y (
t-+n-L)-・-y (t-(2m-1)・L)/
(u (t)+・−+u (t−(, m−1)・L)−
u (t-m-L)--u (t-(2m-1)4))
(18) As above, the calculated value of b can be found. Theoretically, equation (18) is derived. Let M L be the sampling period, and if we consider that input and output are detected at each sampling period, input u (t) The differential value of the latest output that shows the effect of adding is y (t + t,).a Nodal plate If we consider that the input corresponding to the output y (t) is u (t - L), then the above equation can be calculated by dividing the input only at time t. Shift b ,, l (t)= b (t)=y (t)+・
・・+di(t-(m-1)・L)-y (t-m-L)
−・・= −y (t−(2n−1)−L)/(u
(t-L)+...+u (t-m-L)-u (t
-(m+1')・L>------u (t-2m4)
) (19). As shown in the above formula, it is necessary to match the input and the output where the influence of the input appears. For example, when using eight inputs or the previous history value of the input, the formula (19
) is written as the following formula, 1(t)=y(t)+y(t-3L)-y(t-
4L) -...-y (t-7L)/(u (t-L)
+・-・+u (t-4L)-u (t-5L)--u
(t-8L)) If the differential value of y cannot be detected and is calculated using the backward difference of y, then the following equation is obtained:b--+(t)=y(t)-2y(t- 4L)+y (t-8L)/
L・(u (t-L)+-・+u (t-4L)-u
(t-5L)--...-u (t-8L))
(21) Next - Consider a controlled object expressed by a high-order delay system of input and output as shown in the following equation u (s) s''+an-+・s'-'+-・+
am (22) Similarly, for the controlled object of the Mu equation (22) with 1+(i-n-1~0) as the unknown characteristic,
) can be easily calculated by replacing the -th differential value of (t-(+n-1)・L
)-u (t-m・L)-...-u (t-(2+n-
1))) (23) Here, the conditions for obtaining a good calculated value are as follows.

・演算式の公社 分子が大きい時に演算すム・式(20
)の増減方向が一定で滑らかに変化する場合に演算を行
う。            (25)・さらに式(2
0)の変化量の最大値あるいは最小値の近傍で演算すム
           (26)以上の条件を満足して
いる場合のみ演算を行う事によって、より良い演算値を
得も 以上の演算値を求める考え方に基づいて本発明の第一の
実施例における適応制御装置の目的は実際の入力配分特
性すが未知で制御入力特性b・―tと異なる一人カー出
力の一次遅れ系の制御対象に対して、個々の演算値の精
度が良く推定値の収束が速いたべ 制御対象の出力が目
標軌道に良好に追従する適応制御装置を提供するもので
あム 以下本発明の第一の実施例における適応制御装置
について、図面を参照しながら説明すも 第1図は本発明の第一の実施例における適応制御装置の
ブロック線図を示すものであム 第1図ニオいて、 1
00は制御対象である第5図のサーボモー久 102は
出力値検出手段 104は制御入力演算手段 106は
入力印加手段、 108は制御入力特性判断手段、 2
10は制御入力特性演算手段であム 以上のように構成された本発明の第一の実施例の適応制
御装置についてその動作を説明する。
・Corporate formula calculation formula (20
) is constant and changes smoothly. (25)・Furthermore, the formula (2
(26) The concept of obtaining a better calculated value by performing calculations only when the above conditions are satisfied. Based on this, the purpose of the adaptive control device in the first embodiment of the present invention is to: The object of the present invention is to provide an adaptive control device in which the accuracy of each calculated value is high and the estimated value converges quickly, and the output of a controlled object follows the target trajectory well. 1 is a block diagram of an adaptive control device according to a first embodiment of the present invention.
00 is the servo motor in FIG. 5 which is the controlled object; 102 is the output value detection means; 104 is the control input calculation means; 106 is the input application means; 108 is the control input characteristic judgment means; 2
Reference numeral 10 denotes control input characteristic calculation means.The operation of the adaptive control device according to the first embodiment of the present invention constructed as described above will be explained.

従来例と同様の構成と動作を行う制御対象1゜Oについ
て考えも y(s)/ u(s)= b/ (s +a)0、i=
n≦b≦1               (27)制
御対象100であるサーボモータの回転角速度及び回転
角加速度はタコメータや加速度センサやその処理回路か
ら構成される出力値検出手段1゜2によって検出されも そして、出力値検出手段102から出力された出力y 
(t)や出力の微分値y(t)と制御入力演算手段10
4内の目標軌道出力回路(図示せず)から出力される時
間軌跡によって自由に与えれる回転角速度の目標軌道y
n(t)と目標軌道の微分値Ωd(t)を用いて、同様
に制御入力演算手段104内の誤差算出回路(図示せず
)から次式 %式%(28) の関係を演算し誤差e(t)を出力すム そして、制御
入力演算手段10.4は制御入力演算手段104から出
力される目標軌道の微分籠 誤差と出力値検出手段10
2から出力される出力を用いて式(29)を演算し制御
入力u (t)を求める構成となっている。
Considering a controlled object 1°O that has the same configuration and operation as the conventional example, y(s)/u(s)=b/(s+a)0, i=
n≦b≦1 (27) The rotational angular velocity and rotational angular acceleration of the servo motor, which is the controlled object 100, are detected by the output value detection means 1゜2 consisting of a tachometer, an acceleration sensor, and a processing circuit thereof. Output y output from the detection means 102
(t) and the differential value y(t) of the output and the control input calculation means 10
The target trajectory y of the rotational angular velocity freely given by the time trajectory output from the target trajectory output circuit (not shown) in 4.
Using n(t) and the differential value Ωd(t) of the target trajectory, the error calculation circuit (not shown) in the control input calculation means 104 similarly calculates the relationship of the following formula % formula % (28) and calculates the error. Then, the control input calculation means 10.4 is a differential basket of the target trajectory output from the control input calculation means 104.The error and output value detection means 10
The configuration is such that equation (29) is calculated using the output from 2 to obtain the control input u (t).

u (t)= u (t−L)+(−V (t−L)+
 Sl dt)+  k  −e  (t))  / 
b −−t        (29)上記制御入力演算
手段104において、Lは任意の時間遅h  u(t−
L)は時刻り前に制御対象100に印加された大志 Ω
(t−L)は時刻り前に制御対象100から出力値検出
手段102より検出された回転角加速度、 kは誤差フ
ィードバック係数、b as(は制御入力u (t)を
求めるために用いる制御入力特性であム 以上の動作は従来の適応制御装置と同じである。
u (t)= u (t-L)+(-V (t-L)+
Sl dt) + k −e (t)) /
b --t (29) In the control input calculation means 104, L is an arbitrary time delay h u (t-
L) is the ambition applied to the controlled object 100 before the time Ω
(t-L) is the rotational angular acceleration detected by the output value detection means 102 from the controlled object 100 before the time, k is the error feedback coefficient, and bas( is the control input used to obtain the control input u (t) The characteristics and operations above are the same as those of conventional adaptive control devices.

本発明では式(20)の演算式を用いるために8つの出
力の微分値やその前歴値と8つ入力やその前歴値を用い
た場合番へ 制御入力特性判断手段108は次式を判断
す4 u (t−L)+・・−+u (t−4L)−u (t
−5L)−・−u (t−8L)>w  (wは小さな
正の値)(30)式(30)が成り立てば制御入力特性
演算手段110は次式を演算して制御入力特性の演算値
bo=+(t)を求めも す、自+ (1)= 9(t)+・・・+ジ(t−3L)−Ω(t−4L)−
・・・−Ω(t−7L)/(u  (t−L)+−+ 
u (t−4L)−u (t−5L)−・−u (t−
8L))そして、制御入力特性判断手段108は次式の
条件を判断すム 10個のbo1のばらつきが20%以内  (32)上
記の条件が満足されれば 制御入力特性判断手段108
はさらに次式に示すように10個の演算値を平均する。
In the present invention, in order to use the arithmetic expression (20), the control input characteristic determining means 108 determines the following equation. 4 u (t-L)+...-+u (t-4L)-u (t
−5L)−・−u (t−8L)>w (w is a small positive value) (30) If equation (30) holds true, the control input characteristic calculation means 110 calculates the control input characteristics by calculating the following equation. Also find the value bo=+(t), self+ (1)=9(t)+...+ji(t-3L)-Ω(t-4L)-
...-Ω(t-7L)/(u (t-L)+-+
u (t-4L)-u (t-5L)-・-u (t-
8L)) Then, the control input characteristic determining means 108 determines the condition of the following equation: The variation of the 10 bo1 values is within 20% (32) If the above condition is satisfied, the control input characteristic determining means 108
Further, the 10 calculated values are averaged as shown in the following equation.

b−、ai(t)=    Σ b  o−+(t)/
 10                (33)そし
て、現在の制御入力特性を新たな制御入力特性に変更す
る。ここで、式(30)、 (32)が成り立たなけれ
I′L  演算及び制御入力特性の変更は行わな(℃こ
こで、現在のbはわからないので、b estの初期値
は発振しないようにbの最大値であるlに設定している
b-, ai(t) = Σ b o-+(t)/
10 (33) Then, change the current control input characteristic to a new control input characteristic. If equations (30) and (32) do not hold, do not change the I'L calculation or control input characteristics (℃Here, since the current b is unknown, the initial value of b est is set so that b est does not oscillate. is set to l, which is the maximum value of .

そして、そのように変更可能なり estを用いて制御
入力演算手段104によって得られた制御入力u (t
)はアクチュエータやその駆動回路から構成される入力
印加手段106によって入力トルクu(t)へと変換さ
れ制御対象100に印加される。そして印加された入力
トルクu (t)によって制御対象100の出力y(t
)を制御する目標軌道型の適応制御装置である。
Then, the control input u (t
) is converted into an input torque u(t) and applied to the controlled object 100 by an input applying means 106 composed of an actuator and its drive circuit. Then, the output y(t
) is a target trajectory type adaptive control device.

以上のように本実施例によれは 実際の入力配分特性す
が未知で制御入力特性bitと異なる一人カー出カー次
遅れ系の制御対象100に対して、制御入力特性演算手
段110は出力の微分値や入力の前歴値を多く用いて演
算する事により、個々の演算値の精度が良くなり推定値
を速く収束させる事が可能となり、制御対象100の出
力を目標軌道に良好に追従させることができることとな
ムな耘 制御入力演算手段104をディジタル回路系で
構成する場合、時間遅れLをサンプリング周期の整数倍
に取ることによって、簡単に適応制御装置を実現でき同
様の効果を有することは言うまでもな(℃ さらく 出力値検出手段102が出力の微分値を直接検
出できずに出力の差分によって求めても同様の効果を有
することは言うまでもな1、%同様に本発明の第二の実
施例について説明する。
As described above, according to this embodiment, the control input characteristic calculation means 110 differentiates the output for the controlled object 100 of the one-person car output car next delay system whose actual input distribution characteristic is unknown and different from the control input characteristic bit. By performing calculations using a large number of prior history values of values and inputs, the accuracy of each calculated value improves, it becomes possible to quickly converge the estimated value, and it is possible to make the output of the controlled object 100 follow the target trajectory well. It goes without saying that when the control input calculating means 104 is configured with a digital circuit system, an adaptive control device can be easily realized by setting the time delay L to an integral multiple of the sampling period, and the same effect can be obtained. (℃) It goes without saying that the output value detection means 102 cannot directly detect the differential value of the output, but obtains the same effect by calculating the differential value of the output. Similarly, the second embodiment of the present invention will be described. do.

本発明の第二の実施例の適応制御装置の目的(よ実際の
入力配分特性すが未知で制御入力特性b・6tと異なる
一人カー出力高次遅れ系の制御対象に対して、個々の演
算値の精度が良く推定値の収束が速いた八 制御対象の
出力が目標軌道に良好に追従する適応制御装置を提供す
るものである。以下本発明の第二の実施例における適応
制御装置について、図面を参照しながら説明すも 第2図は本発明の第二の実施例における適応制御装置の
ブロック線図を示すものであム 第2図において、 2
00は制御対象 202は出力値検出手段、204は制
御入力演算手段、 106は入力印加半没 208は制
御入力特性判断手段、 210は制御入力特性演算手段
であム ここで、第一の実施例と同様の動作を行う手段には第一
の実施例と同じ番号を付けてい4以上のように構成され
た本発明の第二の実施例の適応制御装置について第一の
実施例と異なる点を中心にその動作を説明する。
The purpose of the adaptive control device according to the second embodiment of the present invention is to perform individual calculations on a controlled object of a one-person car output high-order delay system whose actual input distribution characteristics are unknown and whose control input characteristics differ from b and 6t. The purpose of the present invention is to provide an adaptive control device that has good value accuracy, fast convergence of estimated values, and allows the output of a controlled object to follow the target trajectory well.The adaptive control device in the second embodiment of the present invention will be described below. This will be explained with reference to the drawings, and FIG. 2 shows a block diagram of an adaptive control device according to a second embodiment of the present invention.
00 is the controlled object, 202 is the output value detection means, 204 is the control input calculation means, 106 is the input application half-immersion, 208 is the control input characteristic judgment means, and 210 is the control input characteristic calculation means. Means for performing operations similar to those in the first embodiment are given the same numbers as in the first embodiment, and the points different from the first embodiment regarding the adaptive control device of the second embodiment of the present invention configured as 4 or more are as follows. We will mainly explain its operation.

次式で表現可能な一人カー出力高次遅れ系の制御対象2
00を考えも y (s)/ u (s) ==b/(s’+an−+・s’−’+・・−+as)
  (34)そして、出力値検出手段202から出力さ
れた出力y (t)や出力のn階までの微分値dy (
t)/dt〜dny(t)/dtnと制御入力演算手段
204内の目標軌道出力回路(図示せず)から出力され
る時間軌跡によって自由に与えれる目標軌道ym(t)
や目標軌道のn階までの微分値dyn(t)/dtn−
dn y n(t)/dtnを用いて、同様に制御入力
演算手段204内の誤差算出回路(図示せず)から同様
に次式%式%(35) の関係を演算し出力される誤差e (t)と誤差のn−
1階までの微分値de (t)/dt−d” e (t
)/dtn−’を出力すa そして、制御入力演算手段204は式(36)を演算し
制御入力u (t)を求め出力すムu (t)= u 
(t−L)+[−d″’l (t−L)/dtn+ d
n y 4(t)/dtn+ k n−16’−’ e
 (t)/dtn−1+・・・十k m−e (t)]
]/b−−136) 上記制御入力演算手段204において、dny(t−L
)/dtnは時刻り前に制御対象200から出力値検出
手段102より検出された出力y(t)のn階微分tt
L  k + (>0、i=n−n−1〜0)は誤差フ
ィードバック係数 b−tは制御入力u (t)を求め
るために用いる制御入力特性であ4 ここで、 b・−1を変更するためにまず制御入力特性
判断手段208は次式を判断する。
Control object 2 of a single car output high-order delay system that can be expressed by the following equation
Considering 00, y (s)/ u (s) ==b/(s'+an-+・s'-'+...-+as)
(34) Then, the output y (t) output from the output value detection means 202 and the differential value dy (
t)/dt~dny(t)/dtn and the target trajectory ym(t) freely given by the time trajectory output from the target trajectory output circuit (not shown) in the control input calculating means 204.
and the differential value dyn(t)/dtn- of the target trajectory up to the nth floor.
Using dny n(t)/dtn, the error calculation circuit (not shown) in the control input calculation means 204 similarly calculates the relationship of the following formula % formula % (35) and outputs the error e. (t) and error n-
Differential value up to the first floor de (t)/dt-d” e (t
)/dtn-'a Then, the control input calculating means 204 calculates equation (36) to obtain the control input u (t) and outputs it.
(t-L)+[-d″'l (t-L)/dtn+ d
n y 4(t)/dtn+ k n-16'-' e
(t)/dtn-1+...10 km me-e (t)]
]/b--136) In the control input calculation means 204, dny(t-L
)/dtn is the nth-order differential tt of the output y(t) detected by the output value detection means 102 from the controlled object 200 before the time
L k + (>0, i=n-n-1~0) is the error feedback coefficient b-t is the control input characteristic used to obtain the control input u (t) 4 Here, b・-1 is In order to make the change, the control input characteristic determining means 208 first determines the following equation.

u (t−L)+・−・+u (t−4L)−u (t
−5L)−・−u (t−8L)>w (wは小さな正
の値)  (37)式(37)が成り立てば制御入力特
性演算手段210は次式を演算して制御入力特性の演算
値bO−+(t)を求める。
u (t-L)+・-・+u (t-4L)-u (t
−5L)−・−u (t−8L)>w (w is a small positive value) (37) If equation (37) holds, the control input characteristic calculation means 210 calculates the control input characteristics by calculating the following equation. Find the value bO-+(t).

boa+(t)= バu (t−L)+・−・+u (t−4L)−u (
t−5L)−−u (t−8L))そして、制御入力特
性判断手段208は次式の条件を判断すム 10個のbo・1のばらつきが20%以内  (39)
上記の条件が満足されれば 制御入力特性判断手段20
8はさらに次式に示すように10個の演算値を平均する
boa+(t)=boa(t-L)+・-・+u(t-4L)-u (
t-5L)--u (t-8L)) Then, the control input characteristic determining means 208 determines the condition of the following formula, and the variation of 10 bo・1 is within 20% (39)
If the above conditions are satisfied, control input characteristic determining means 20
8 further averages the ten calculated values as shown in the following equation.

b −−s(t)=  Σb−+ (t)/ 10  
      (40)そして、現在の制御入力特性を新
たな制御入力特性に変更すム ここで、式(37)、 
(39)が成り立たなければ 演算及び制御入力特性の
変更は行わな(℃そして第一の実施例と同様に得られた
制御入力u (t)は入力印加手段106によって入力
トルクU(1)へと変換され制御対象200に印加され
る。
b −−s(t)=Σb−+ (t)/10
(40) Then, change the current control input characteristic to a new control input characteristic. Here, equation (37),
If (39) does not hold, the calculation and control input characteristics are not changed (°C, and the control input u (t) obtained in the same manner as in the first embodiment is applied to the input torque U (1) by the input applying means 106. and is applied to the controlled object 200.

以上のように本実施例によれば 実際の入力配分特性す
が未知で制御入力特性b *a(と異なる一入力一出力
高次遅れ系の制御対象200に対して、制御入力特性演
算手段210は出力のn階微分値や入力の前歴値を多く
用いて演算する事により、個々の演算値の精度が良くな
り推定値を速く収束させる事が可能となり、制御対象2
00の出力を目標軌道に良好に追従させることができる
こととなる。
As described above, according to the present embodiment, the control input characteristic calculation means 210 is used for the controlled object 200 of a one-input, one-output, high-order delay system whose actual input distribution characteristic is unknown and which differs from the control input characteristic b *a (. By calculating using many nth-order differential values of the output and prior history values of the input, the accuracy of each calculated value improves, and it becomes possible to quickly converge the estimated value.
This means that the output of 00 can be made to follow the target trajectory well.

同様に本発明の第三の実施例について説明す4本発明の
第三の実施例の適応制御装置の目的は実際の入力配分特
性すが未知で制御入力特性す。
Similarly, the third embodiment of the present invention will be described.The purpose of the adaptive control device of the third embodiment of the present invention is to control the control input characteristics because the actual input distribution characteristics are unknown.

tと異なる一人カー出カー次遅れ系の制御対象に対して
、個々の演算値の精度が良く推定値の収束が速いたム 
制御対象の出力が規範モデルの出力に良好に追従する適
応制御装置を提供するものである。以下本発明の第三の
実施例における適応制御装置について、図面を参照しな
がら説明すも第3図は本発明の第三の実施例における適
応制御装置のブロック線図を示すものであも 第3図に
おいて、 100は制御対象である第5図のサーボモー
久 102は出力値検出手段 304は制御入力特性手
i  106は入力印加手巨 108は制御入力特性別
断手比 110は制御入力特性演算手段であ4 ここで
、第一の実施例と同様の動作を行う手段には第一の実施
例と同じ番号を付けていも 以上のように構成された本発明の第三の実施例の適応制
御装置について第一の実施例と異なる点を中心にその動
作を説明すも 第一の実施例と同様の構成と動作を行う制御対象100
に対し 同様に出力や出力の微分値が出力値検出手段1
02によって検出される。そして制御入力演算手段30
4内の規範モデル応答出力回路(図示せず)はa(bs
を規範モデルの係数、r(s)を規範モデルの入力とし
て、 ym(s)/ r (s)= bm/ (s + am
)       (41)によって定義される一入力−
出力の規範モデルの出力Y@(S)を出力すム さらに
制御入力演算手段304内の誤差算出回路(図示せず)
は規範モデルの出力ym(t)と制御対象の出力y (
t)の差e (t)=  y 鋤(t) −y (t)
                    (42)を
演算し誤差を出力す4 そして、制御入力演算手段30
4は式(43)を演算し制御入力u(t)を求め出力す
ム u (t)= u (t−L)+ (−’/ (t−L
) −am・’t (t)十す、・r (t)+ k 
−e (t)) / b、、t  (43)ここで、 
b s、aiを変更するためにまず制御入力特性判断手
段108は次式を判断すム u (t−L)+−・−+u (t−4L)−u (t
−5L)−・”−u (t−8L)>w  (wは小さ
な正の値) (44)式(44)が成り立てば制御入力
特性演算手段110は次式を演算して制御入力特性の演
算値b・、ai(t)を求めも b−−+(t)= y (t)+・・・+V (t−3L)弓(t−4L)
−・・・−憂(t−7L)/(u  (t−L)十−−
−十u (t−4L)−u  (t−5L)=−−−u
 (t−8L))そして、制御入力特性判断手段108
は次式の条件を判断する。
For the controlled object of the one-person car output car next delay system that differs from t, the accuracy of each calculated value is high and the convergence of the estimated value is fast.
The present invention provides an adaptive control device in which the output of a controlled object closely follows the output of a reference model. The adaptive control device according to the third embodiment of the present invention will be explained below with reference to the drawings, but FIG. 3 shows a block diagram of the adaptive control device according to the third embodiment of the present invention. 3, 100 is the servo motor of FIG. 5 which is the controlled object, 102 is the output value detection means, 304 is the control input characteristic hand i, 106 is the input application hand, 108 is the stump ratio for each control input characteristic, and 110 is the control input characteristic calculation. Here, the same numbers as in the first embodiment are given to the means for performing the same operations as in the first embodiment, but the adaptation of the third embodiment of the present invention configured as above is The operation of the control device will be explained with a focus on the differences from the first embodiment, but a controlled object 100 having the same configuration and operation as the first embodiment will be described.
Similarly, the output or the differential value of the output is the output value detection means 1
Detected by 02. and control input calculation means 30
The reference model response output circuit (not shown) in 4 is a(bs
is the coefficient of the normative model and r(s) is the input of the normative model, ym(s)/r (s) = bm/ (s + am
) One input defined by (41) −
An error calculation circuit (not shown) in the control input calculation means 304 outputs the output Y@(S) of the output reference model.
is the output ym(t) of the reference model and the output y of the controlled object (
t) difference e (t) = y plow (t) −y (t)
(42) and outputs the error 4 And the control input calculation means 30
4 calculates the control input u(t) by calculating equation (43) and outputs it.
) −am・'t (t) tensu,・r (t)+k
−e (t)) / b,,t (43) where,
In order to change b s, ai, the control input characteristic determining means 108 first determines the following formula: mu (t-L)+-.-+u (t-4L)-u (t
−5L)−・”−u (t−8L)>w (w is a small positive value) (44) If equation (44) holds, the control input characteristic calculating means 110 calculates the following equation to calculate the control input characteristic. Calculating the calculated value b・, ai(t), b−−+(t)=y(t)+…+V(t−3L)bow(t−4L)
--- Sadness (t-7L)/(u (t-L) ten--
-10u (t-4L)-u (t-5L)=---u
(t-8L)) And control input characteristic determining means 108
determines the condition of the following equation.

10個のb o−1のばらつきが20%以内  (46
)上記の条件が満足されれば 制御入力特性演算手段1
08はさらに次式に示すように10個の演算値を平均す
も b s、ai(t)=  Σb o−+(t)/ 10
        (47)そして、現在の制御入力特性
を新たな制御入力特性に変更すム ここで、式(44)
、 (46)が成り立たなければ 演算及び制御入力特
性の変更は行わな1、%そして、そのように変更可能な
り・・tを用いて制御入力演算手段304によって得ら
れた制御入力u (t)は入力印加手段106によって
入力トルクU(1)へと変換され制御対象100に印加
される。
The variation of 10 b o-1 is within 20% (46
) If the above conditions are satisfied, control input characteristic calculation means 1
08 further averages the 10 calculated values as shown in the following formula: b s, ai(t) = Σb o-+(t)/10
(47) Then, change the current control input characteristic to a new control input characteristic. Here, equation (44)
, If (46) does not hold, the calculation and control input characteristics will not be changed.1,% And if such changes are possible...The control input u (t) obtained by the control input calculation means 304 using t. is converted into an input torque U(1) by the input applying means 106 and applied to the controlled object 100.

そして印加された入力トルクu (t)によって制御対
象100の出力y(t)を制御する規範モデル型の適応
制御装置で゛ある。
It is a reference model type adaptive control device that controls the output y(t) of the controlled object 100 based on the applied input torque u(t).

以上のように本実施例によれば 実際の入力配分特性す
が未知で制御入力特性す、。tと異なる一入力一出力−
次遅れ系の制御対象100に対して、制御入力特性演算
手段!10は出力の微分値や入力の前歴値を多く用いて
演算する事により、個々の演算値の精度が良くなり推定
値を速く収束させる事が可能となム そして求めた制御
入力特性を用いた制御入力演算手段304を演算し制御
入力u(t)を求め出力する事により制御対象100の
出力を規範モデルの出力に良好に追従させることができ
ることとなム な耘 第二の実施例と同様に一人カー出力高次遅れ系の
制御対象に対しても同様の効果を有することは言うまで
もな1、X。
As described above, according to this embodiment, the actual input distribution characteristics are unknown and the control input characteristics are unknown. One input and one output different from t -
Control input characteristic calculation means for the controlled object 100 of the next lag system! 10, by performing calculations using many output differential values and input history values, the accuracy of each calculated value improves and it is possible to quickly converge the estimated value. Then, the obtained control input characteristics were used. By calculating the control input calculation means 304 to obtain and output the control input u(t), it is possible to make the output of the controlled object 100 closely follow the output of the reference model. It goes without saying that the same effect can be had on the controlled object of a high-order delay system with a one-person car output of 1.X.

発明の効果 以上のように本発明(訳 下記の効果を持つ。Effect of the invention As described above, the present invention has the following effects.

y(s)/u(s)=b/ (s+a)によって表現可
能な一人カー出力の制御対象に対して、出力の微分値と
その前歴値を合計2m個用(\ その内の任意のm個を
Y1、残りのm個をY2とし 入力とその前歴値を合計
2m個用t、X、その内Y1の各々の時刻に対応するm
個をU1、残りのm個をU2とし 制御入力特性の演算
値b0−+(t)をbo、+(t)=(Yl−Y2)/
(Ul−U2)によって演算する制御入力特性演算手段
と、制御入力特性演算手段によって演算を行うか否かの
判断及び制御入力特性の演算値の処理後の値を新たな制
御入力特性b・・tに変更するか否かの判断を行う制御
入力特性判断手段と、制御入力u (t)をu (t)
= u (t−L)+ [−dy (t−L)/dt+
 dy *(t)/dt+ k −e (t)コ/ b
−tによって演算する制御入力演算手段とを設けること
により、出力の微分値や入力の前歴値を多く用いて制御
入力特性を演算する事により演算値の精度が良くなるた
数 推定値の収束が速くなる。そしてその制御入力特性
を用いて制御入力特性演算手段は制御入力を演算するた
め制御対象の出力を目標軌道に良好に追従させることが
できる。
y(s)/u(s)=b/(s+a) For the controlled object of one-person car output, a total of 2m differential values of the output and its antecedent values are used (\any m of them) Let Y1 be Y1, and let Y2 be the remaining m inputs. For a total of 2m inputs and their antecedent values, t, X, and m corresponding to each time of Y1.
The number is U1, the remaining m number is U2, the calculated value b0-+(t) of the control input characteristic is bo, +(t)=(Yl-Y2)/
(Ul-U2), the control input characteristic calculation means determines whether or not to perform the calculation, and the calculated value of the control input characteristic is converted into a new control input characteristic b... control input characteristic determining means for determining whether to change the control input u (t) to u (t);
= u (t-L)+ [-dy (t-L)/dt+
dy *(t)/dt+ k -e (t)ko/b
By providing a control input calculation means that calculates based on −t, the accuracy of the calculated values is improved by calculating the control input characteristics using many output differential values and input previous history values. It gets faster. Since the control input characteristic calculation means calculates the control input using the control input characteristics, it is possible to cause the output of the controlled object to follow the target trajectory well.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第一の実施例における適応制御装置の
ブロック線図 第2図は本発明の第二の実施例における
適応制御装置のブロック線図 第3図は本発明の第三の
実施例における適応制御装置のブロック線図 第4図は
従来例における適応制御装置のブロック線は 第5図は
適応制御装置の制御対象の一例として取り上げるサーボ
モータの斜視図であム 100・・・サーボモー久 102・・・出力値検出半
没 104、204、3o4・・・制御入力演算手段、
 106・・・入力印加早秋 108.208・・・制
御入力特性別断手i  110、210・・・制御入力
特性演算手段 代理人の氏名 弁理士 小鍜治 明 ほか2名 9θ・−ブーχSモータ本体 5θ/ −モータの@に軸 fOZ−一一胃Xr支吟帥材 弘3− 粘性R脚帥材 5ρ4− 停動可能rJ負荷 第5図
FIG. 1 is a block diagram of an adaptive control device according to a first embodiment of the present invention. FIG. 2 is a block diagram of an adaptive control device according to a second embodiment of the present invention. FIG. 3 is a block diagram of an adaptive control device according to a second embodiment of the present invention. FIG. 4 is a block diagram of the adaptive control device in the embodiment. FIG. 5 is a perspective view of a servo motor taken as an example of the object to be controlled by the adaptive control device. Servo motor 102... Output value detection half-immersion 104, 204, 3o4... Control input calculation means,
106... Input application early fall 108.208... Control input characteristic-specific stamp i 110, 210... Name of control input characteristic calculation means agent Patent attorney Akira Kokaji and two others 9θ・-BooxS motor body 5θ/ - Axis fOZ to the motor @ - Single stomach

Claims (3)

【特許請求の範囲】[Claims] (1)sをラプラス演算子、y(s)を出力、u(s)
を入力、aを未知特性、bを未知入力配分特性として、
y(s)/u(s)=b/(s+a)によって表現可能
な一入力一出力の制御対象に対して、tを時刻、y_d
(t)を前記出力の目標軌道、e(t)をe(t)=y
_d(t)−y(t)によって定義される誤差、k(>
0)を誤差フィードバック係数、de(t)/dt=−
k・e(t)を目標誤差特性、b_o_m_tを制御入
力特性とする時、前記制御対象の出力y(t)や出力の
微分値dy(t)/dtを出力する出力値検出手段と、
前記出力の微分値とその前歴値を合計2m個用い、その
内の任意のm個をY1、残りのm個をY2とし、前記入
力とその前歴値を合計2m個用い、その内Y1の各々の
時刻に対応するm個をU1、残りのm個をU2とし、制
御入力特性の演算値b_o_m_1(t)をb_o_m
_1(t)=(Y1−Y2)/(U1−U2)によって
演算する制御入力特性演算手段と、前記制御入力特性演
算手段によって演算を行うか否かの判断及び前記制御入
力特性の演算値の処理後の値を新たな前記制御入力特性
b_o_m_tに変更するか否かの判断を行う制御入力
特性判断手段と、制御入力u(t)をu(t)=u(t
−L)+[−dy(t−L)/dt+dy_d(t)/
dt+k・e(t)]/b_o_m_tによって演算す
る制御入力演算手段と、前記制御入力演算手段によって
得られた前記制御入力u(t)を前記制御対象に印加す
る入力印加手段とを具備することを特徴とする適応制御
装置。
(1) s is Laplace operator, y(s) is output, u(s)
As input, a is the unknown characteristic, and b is the unknown input distribution characteristic,
For a controlled object with one input and one output that can be expressed as y(s)/u(s)=b/(s+a), t is time and y_d
(t) is the target trajectory of the output, e(t) is e(t)=y
Error defined by _d(t)-y(t), k(>
0) is the error feedback coefficient, de(t)/dt=-
When k·e(t) is a target error characteristic and b_o_m_t is a control input characteristic, an output value detection means for outputting the output y(t) of the controlled object and the differential value dy(t)/dt of the output;
A total of 2m differential values of the output and its antecedent values are used, any m of them are designated as Y1, and the remaining m are designated as Y2, a total of 2m of the input and its antecedent values are used, and each of Y1 among them is used. The m pieces corresponding to the time of 1 are U1, the remaining m pieces are U2, and the calculated value b_o_m_1(t) of the control input characteristic is b_o_m
A control input characteristic calculating means that calculates by _1(t)=(Y1-Y2)/(U1-U2), and determining whether or not to perform the calculation by the control input characteristic calculating means and determining the calculated value of the control input characteristic. control input characteristic determining means for determining whether or not to change the processed value to the new control input characteristic b_o_m_t;
-L)+[-dy(t-L)/dt+dy_d(t)/
dt+k·e(t)]/b_o_m_t; and input applying means for applying the control input u(t) obtained by the control input calculating means to the controlled object. Features adaptive control device.
(2)sをラプラス演算子、y(s)を出力、u(s)
を入力、a_i(i=n−1〜0)を未知特性、bを未
知入力配分特性として、y(s)/u(s)=b/(s
^n+a_n_−_1・s^n^−^1+・・・+a_
m)によって表現可能な一入力一出力の制御対象に対し
て、tを時刻、y_d(t)を前記出力の目標軌道、e
(t)をe(t)=y_d(t)−y(t)によって定
義される誤差、k_i(>0、i=n−1〜0)を誤差
フィードバック係数、d^ne(t)/dt^n=−k
_n_−_1・d^n^−^1e(t)/dt^n^−
^1−・・・−k_m・e(t)を目標誤差特性、b_
o_m_tを制御入力特性とする時、前記制御対象の出
力y(t)や出力のn階までの微分値dy(t)/dt
〜d^ny(t)/dt^nを出力する出力値検出手段
と、前記出力のn階微分値とその前歴値を合計2m個用
い、その内の任意のm個をY1、残りのm個をY2とし
、前記入力とその前歴値を合計2m個用い、その内Y1
の各々の時刻に対応するm個をU1、残りのm個をU2
とし、制御入力特性の演算値b_o_m_1(t)をb
_o_m_1(t)=(Y1−Y2)/(U1−U2)
によって演算する制御入力特性演算手段と、前記制御入
力特性演算手段によって演算を行うか否かの判断及び前
記制御入力特性の演算値の処理後の値を新たな前記制御
入力特性b_o_m_tに変更するか否かの判断を行う
制御入力特性判断手段と、制御入力u(t)をu(t)
=u(t−L)+[−d^ny(t−L)/dt^n+
d^ny_d(t)/dt^n+k_n_−_1・d^
n^−^1e(t)/dt^n^−^1+・・・+k_
m・e(t)]/b_o_m_tによって演算する制御
入力演算手段と、前記制御入力演算手段によって得られ
た前記制御入力u(t)を前記制御対象に印加する入力
印加手段とを具備することを特徴とする適応制御装置。
(2) s is Laplace operator, y(s) is output, u(s)
is input, a_i (i=n-1~0) is an unknown characteristic, and b is an unknown input distribution characteristic, y(s)/u(s)=b/(s
^n+a_n_-_1・s^n^-^1+...+a_
m), where t is the time, y_d(t) is the target trajectory of the output, and e
(t) is the error defined by e(t) = y_d(t) - y(t), k_i (>0, i = n-1~0) is the error feedback coefficient, d^ne(t)/dt ^n=-k
_n_-_1・d^n^-^1e(t)/dt^n^-
^1-...-k_m・e(t) is the target error characteristic, b_
When o_m_t is the control input characteristic, the output y(t) of the controlled object and the differential value dy(t)/dt of the output up to the nth order
Using an output value detection means that outputs ~d^ny(t)/dt^n, a total of 2m nth-order differential values of the output and its antecedent values, any m of them are set as Y1, and the remaining m Let Y2 be the input, and use a total of 2m of the inputs and their previous history values, of which Y1
The m pieces corresponding to each time of are U1, and the remaining m pieces are U2.
and the calculated value b_o_m_1(t) of the control input characteristic is b
_o_m_1(t)=(Y1-Y2)/(U1-U2)
control input characteristic calculation means for calculating, and determining whether or not to perform calculation by the control input characteristic calculation means, and changing the processed value of the calculated value of the control input characteristic to the new control input characteristic b_o_m_t. control input characteristic determining means for determining whether the control input u(t) is
=u(t-L)+[-d^ny(t-L)/dt^n+
d^ny_d(t)/dt^n+k_n_-_1・d^
n^-^1e(t)/dt^n^-^1+...+k_
m・e(t)]/b_o_m_t; and input applying means for applying the control input u(t) obtained by the control input calculating means to the controlled object. Features adaptive control device.
(3)sをラプラス演算子、y(s)を出力、u(s)
を入力、aを未知特性、bを未知入力配分特性として、
y(s)/u(s)=b/(s+a)によって表現可能
な一入力一出力の制御対象に対して、a_m、b_mを
規範モデルの係数として、y_m(s)/r(s)=b
_m/(s+a_m)によって定義される一入力一出力
の規範モデルの入力をr(s)、出力をy_m(s)と
して、tを時刻、e(t)をe(t)=y_m(t)−
y(t)によって定義される誤差、k(>0)を誤差フ
ィードバック係数、de(t)/dt=−(a_m+k
)・e(t)を目標誤差特性、b_o_m_tを制御入
力特性とする時、前記制御対象の出力y(t)や出力の
微分値dy(t)/dtを出力する出力値検出手段と、
前記出力の微分値とその前歴値を合計2m個用い、その
内の任意のm個をY1、残りのm個をY2とし、前記入
力とその前歴値を合計2m個用い、その内Y1の各々の
時刻に対応するm個をU1、残りのm個をU2とし、制
御入力特性の演算値b_o_m_1(t)をb_o_m
_1(t)=(Y1−Y2)/(U1−U2)によって
演算する制御入力特性演算手段と、前記制御入力特性演
算手段によって演算を行うか否かの判断及び前記制御入
力特性の演算値の処理後の値を新たな前記制御入力特性
b_o_m_tに変更するか否かの判断を行う制御入力
特性判断手段と、制御入力u(t)をu(t)=u(t
−L)+[−dy(t−L)/dt−a_m・y(t)
+b_m・r(t)+k・e(t)]/b_o_m_t
によって演算する制御入力演算手段と、前記制御入力演
算手段によって得られた前記制御入力u(t)を前記制
御対象に印加する入力印加手段とを具備することを特徴
とする適応制御装置。
(3) s is Laplace operator, y(s) is output, u(s)
As input, a is the unknown characteristic, and b is the unknown input distribution characteristic,
For a controlled object with one input and one output that can be expressed by y(s)/u(s)=b/(s+a), with a_m and b_m as coefficients of the reference model, y_m(s)/r(s)= b
The input of the one-input, one-output normative model defined by _m/(s+a_m) is r(s), the output is y_m(s), t is time, and e(t) is e(t)=y_m(t). −
Error defined by y(t), k(>0) as error feedback coefficient, de(t)/dt=-(a_m+k
)・e(t) is a target error characteristic and b_o_m_t is a control input characteristic, an output value detection means for outputting the output y(t) of the controlled object and the differential value dy(t)/dt of the output;
A total of 2m differential values of the output and its antecedent values are used, any m of them are designated as Y1, and the remaining m are designated as Y2, a total of 2m of the input and its antecedent values are used, and each of Y1 among them is used. The m pieces corresponding to the time of 1 are U1, the remaining m pieces are U2, and the calculated value b_o_m_1(t) of the control input characteristic is b_o_m
A control input characteristic calculating means that calculates by _1(t)=(Y1-Y2)/(U1-U2), and determining whether or not to perform the calculation by the control input characteristic calculating means and determining the calculated value of the control input characteristic. control input characteristic determining means for determining whether or not to change the processed value to the new control input characteristic b_o_m_t;
-L)+[-dy(t-L)/dt-a_m・y(t)
+b_m・r(t)+k・e(t)]/b_o_m_t
1. An adaptive control device comprising: a control input calculation means for calculating the control input by the control input calculation means; and an input application means for applying the control input u(t) obtained by the control input calculation means to the controlled object.
JP32872190A 1990-11-27 1990-11-27 Adaptive controller Pending JPH04195302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32872190A JPH04195302A (en) 1990-11-27 1990-11-27 Adaptive controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32872190A JPH04195302A (en) 1990-11-27 1990-11-27 Adaptive controller

Publications (1)

Publication Number Publication Date
JPH04195302A true JPH04195302A (en) 1992-07-15

Family

ID=18213440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32872190A Pending JPH04195302A (en) 1990-11-27 1990-11-27 Adaptive controller

Country Status (1)

Country Link
JP (1) JPH04195302A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110303526A (en) * 2018-03-27 2019-10-08 博朗有限公司 Personal care device
JP2019171049A (en) * 2018-03-27 2019-10-10 ブラウン ゲーエムベーハー Personal care device
JP2019171051A (en) * 2018-03-27 2019-10-10 ブラウン ゲーエムベーハー Body hair removal device
US11097437B2 (en) 2018-03-27 2021-08-24 Braun Gmbh Personal care device
US11298839B2 (en) 2018-03-27 2022-04-12 Braun Gmbh Hair removal device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110303526A (en) * 2018-03-27 2019-10-08 博朗有限公司 Personal care device
JP2019171049A (en) * 2018-03-27 2019-10-10 ブラウン ゲーエムベーハー Personal care device
JP2019171060A (en) * 2018-03-27 2019-10-10 ブラウン ゲーエムベーハー Personal care device
JP2019171051A (en) * 2018-03-27 2019-10-10 ブラウン ゲーエムベーハー Body hair removal device
US11027442B2 (en) 2018-03-27 2021-06-08 Braun Gmbh Personal care device
US11097437B2 (en) 2018-03-27 2021-08-24 Braun Gmbh Personal care device
JP2022008085A (en) * 2018-03-27 2022-01-13 ブラウン ゲーエムベーハー Personal care device
US11298839B2 (en) 2018-03-27 2022-04-12 Braun Gmbh Hair removal device
US11548177B2 (en) 2018-03-27 2023-01-10 Braun Gmbh Personal care device

Similar Documents

Publication Publication Date Title
CN108189036B (en) Torque control method and device, robot and storage medium
JP6517567B2 (en) Servo motor control device and collision detection method
JPH05216504A (en) Adaptive sliding mode control system for control object including spring system
KR940702661A (en) Adaptive PI Control Method
JPH04233001A (en) Time-delay controlling method
Hsia et al. Robust independent robot joint control: Design and experimentation
CN113589689A (en) Sliding mode controller design method based on multi-parameter adaptive neural network
JPH04195302A (en) Adaptive controller
US4737905A (en) Apparatus employing coordinate system and nonlinear transformations for moving a driven member in response to an operating member
Das et al. UDE based backstepping design for ship autopilot
JPS63197202A (en) Dynamic servo system
KR20050073964A (en) Position control equipment and method of pmsm
JPS6364102A (en) Learning control system
JP2906255B2 (en) Servo control device
JPS60256815A (en) Servo control method
JPH0285902A (en) Feedforward controller
JPS61163406A (en) Robot control device
Márton et al. Passive bilateral teleoperation with bounded control signals
JPH06104307B2 (en) Control device for articulated manipulator
CN114035436B (en) Backstepping control method, storage medium and device based on saturation adaptive law
Sinha et al. Transputer-based real-time parallel and network inferential control of robots
Junger et al. Static sliding-motion phenomena in dynamical systems
Chen et al. A current-mode circuit for Euclidean distance calculation
KR20010104008A (en) Robust controller for position, speed and other signal
Hamerlain Robust control with reduced knowledge of unmodeled dynamics using sliding mode: application to robot manipulators