JPH04192376A - Tandem organic solar battery - Google Patents

Tandem organic solar battery

Info

Publication number
JPH04192376A
JPH04192376A JP2320389A JP32038990A JPH04192376A JP H04192376 A JPH04192376 A JP H04192376A JP 2320389 A JP2320389 A JP 2320389A JP 32038990 A JP32038990 A JP 32038990A JP H04192376 A JPH04192376 A JP H04192376A
Authority
JP
Japan
Prior art keywords
electrode side
layer
unit cell
coloring matter
transparent electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2320389A
Other languages
Japanese (ja)
Inventor
Minoru Suezaki
穣 末崎
Norishige Shichiri
徳重 七里
Takeshi Inoue
健 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2320389A priority Critical patent/JPH04192376A/en
Publication of JPH04192376A publication Critical patent/JPH04192376A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • H10K30/57Photovoltaic [PV] devices comprising multiple junctions, e.g. tandem PV cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To manufacture the title tandem organic solar battery having high energy conversion efficiency exhibiting stable performances with minimum electrode short-circuiting, etc., by a method wherein the unit cell on a transparent electrode side is composed of a composite layer comprising cadmium sulfide, perylene coloring matter and phthalocyanine coloring matter while the unit cell on an opposite electrode side is composed of a composite layer comprising perylene coloring matter an phthalocyanine coloring matter. CONSTITUTION:The unit cell on a transparent electrode side is composed of a composite layer of successive laminates of a first layer comprising a cadmium sulfide, a second layer comprising perylene coloring matter and a third layer comprising phthalocyanine coloring matter from the transparent electrode side to the opposite electrode side. On the other hand, the unit cell on the opposite electrode side is composed of a composite layer of successive laminates of a first layer comprising a perylene coloring matter film, a second layer comprising a phthalocyanine coloring matter film. Accordingly, when the unit cell is irradiated with light from the transparent electrode side, the light in the photoabsorption region of the perylene coloring matter in the unit cell on the transparent electrode side is hardly attenuated and is used in the unit cell on the opposite electrode side. Resultantly, the title tandem organic solar battery high in energy conversion efficiency and further generating high voltage can be manufactured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はタンデム型有機太陽電池に関し、詳しくは透明
電極と対向電極との間に有機化合物を主体とする2個の
異なる単位セルが設けられているタンデム型有機太陽電
池に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a tandem organic solar cell, and more specifically, two different unit cells mainly made of organic compounds are provided between a transparent electrode and a counter electrode. Regarding tandem organic solar cells.

(従来の技術) 太陽電池材料として有機化合物を使用した有機太陽電池
は、無機半導体を使用した太陽電池に比べ、コスト、大
面積化、製造工程の容易さ等の点で優れており、従来よ
り、有機化合物が太陽電池材料として使用された種々の
構成の有機太陽電池が提案されている。
(Conventional technology) Organic solar cells that use organic compounds as solar cell materials are superior to solar cells that use inorganic semiconductors in terms of cost, large area, and ease of manufacturing process, and are more cost effective than conventional solar cells. Organic solar cells of various configurations using organic compounds as solar cell materials have been proposed.

例えば、フタロシアニン銅とペリレン系色素の積層膜を
使用した有機太陽電池が、Applied  Phys
ics  Letters (1986゜Vol、48
.P、183)に記載されており、この有機太陽電池の
エネルギー換効率は1%程度であると報告されている。
For example, an organic solar cell using a laminated film of copper phthalocyanine and perylene dyes is being
ics Letters (1986°Vol, 48
.. P, 183), and the energy conversion efficiency of this organic solar cell is reported to be about 1%.

しかし、上記有機太陽電池においては、その高いエネル
ギー変換効率を得るためには、半導体層である色素層の
膜厚を薄くしなければならない。そのため膜にピンホー
ルが生じ易く、電極が短絡する欠点があった。
However, in the organic solar cell described above, in order to obtain high energy conversion efficiency, the thickness of the dye layer, which is a semiconductor layer, must be made thin. As a result, pinholes are likely to form in the film, resulting in short circuits between the electrodes.

一方、太陽電池のエネルギー変換効率を高めるために複
数個の単位セルを積層したタンデム型太陽電池が提案さ
れており、有機太陽電池に応用した例が、CHEMIS
TRY  LETTER3(1990、P、327)に
記載されているが、積層数が増すにしたがって光透過性
が減少してエネルギー変換効率が低下し、単位セルの積
層効果が認められないという欠点を有していた。
On the other hand, a tandem solar cell in which multiple unit cells are stacked has been proposed to increase the energy conversion efficiency of the solar cell, and an example of its application to an organic solar cell is CHEMIS.
It is described in TRY LETTER 3 (1990, P, 327), but it has the disadvantage that as the number of laminated layers increases, the light transmittance decreases, the energy conversion efficiency decreases, and the laminated effect of the unit cell is not recognized. was.

(発明が解決しようとする課題) 本発明は、上記欠点を解決するためになされたものであ
り、その目的は、エネルギー変換効率が高く、しかも電
極の短絡等の少ない、性能の安定したタンデム型有機太
陽電池を提供することにある。
(Problems to be Solved by the Invention) The present invention was made in order to solve the above-mentioned drawbacks, and its purpose is to provide a tandem type with high energy conversion efficiency and stable performance with few electrode short circuits. Our goal is to provide organic solar cells.

(課題を解決するための手段) 本発明で使用される透明電極は、可視光が透過可能なも
のであれば特に限定されるものではないが、通常は、透
明基板上に透明導電膜が設けられたものが好適に使用さ
れる。
(Means for Solving the Problems) The transparent electrode used in the present invention is not particularly limited as long as it can transmit visible light, but usually a transparent conductive film is provided on a transparent substrate. Those obtained are preferably used.

上記透明基板に使用される材料としては、例えば、ガラ
スおよびアクリル系、ビニル系、ポリオレフィン系、ポ
リエステル系、ポリアミド系、ポリカーボネート系等の
高分子があげられる。
Examples of materials used for the transparent substrate include glass and polymers such as acrylic, vinyl, polyolefin, polyester, polyamide, and polycarbonate.

上記透明導電膜に使用される材料としては、例えば、ス
ズがドープされた酸化インジウム(以下、丁TOという
)、酸化スズ、酸化インジウム等があげられ、特にIT
Oが好ましい。
Examples of the material used for the transparent conductive film include tin-doped indium oxide (hereinafter referred to as D-TO), tin oxide, indium oxide, etc.
O is preferred.

本発明で使用される対向電極は、公知の電極材料を用い
て形成され、該電極材料としては、例えば、金、銀、白
金等の仕事関数の大きな金属があげられる。
The counter electrode used in the present invention is formed using a known electrode material, and examples of the electrode material include metals with a high work function such as gold, silver, and platinum.

本発明で使用される2個の異なる単位セルのうち、透明
電極側の単位セルは、透明電極側から対向電極側に向け
て、硫化カドミウムからなる第1層、ペリレン系色素か
らなる第2層およびフタロシアニン系色素からなる第3
層が順次積層されている複合層となされている。
Of the two different unit cells used in the present invention, the unit cell on the transparent electrode side has a first layer made of cadmium sulfide and a second layer made of perylene dye, from the transparent electrode side to the counter electrode side. and a third one consisting of a phthalocyanine pigment.
It is a composite layer in which the layers are laminated one after another.

上記硫化カドミウムからなる第1層の膜厚は特に限定さ
れるものではないが、薄くなるとピンホールが発生しや
すくなり、厚(なると光透過率の低下および膜の電気抵
抗の増加のためにエネルギー変換効率が低下するので、
100〜500人が好ましい。
The thickness of the first layer made of cadmium sulfide is not particularly limited, but as it becomes thinner, pinholes are more likely to occur. As the conversion efficiency decreases,
Preferably 100 to 500 people.

上記第2層で使用されるペリレン系色素としては、例え
ば、ペリレンテトラカルボン酸ビスベンゾイミダゾール
、N、N’−ジメチルペリレンテトラカルボン酸ジイミ
ド、N、N’−ジフェニルペリレンテトラカルボン酸ジ
イミド等があげられ、これらは、単独で使用してもよい
し、二種以上併用されてもよい。
Examples of the perylene dye used in the second layer include perylenetetracarboxylic acid bisbenzimidazole, N,N'-dimethylperylenetetracarboxylic acid diimide, N,N'-diphenylperylenetetracarboxylic acid diimide, etc. These may be used alone or in combination of two or more.

上記第2層は、ごく薄い膜であっても十分な起電力を生
じさせることができ、膜中にピンホールを有していたり
、膜が不連続な状態になっていても同様の効果を発揮す
る。その膜厚は特に限定されるものではないが、薄くな
ると十分な起電力を生じさせることができなくなり、厚
くなるとペリレン系色素の光吸収波長領域(450〜6
00nm)での光吸収が大きくなりすぎ、透明電極側の
単位セル中を光が透過するとき光が減衰して対向電極側
の単位セルでの起電力が低下するので、10〜100人
が好ましい。
The second layer can generate a sufficient electromotive force even if it is a very thin film, and the same effect can be achieved even if the film has pinholes or is discontinuous. Demonstrate. The thickness of the film is not particularly limited, but if it becomes thin, sufficient electromotive force cannot be generated, and if it becomes thick, the light absorption wavelength range of perylene dyes (450 to 6
00 nm) becomes too large, and when light passes through the unit cell on the transparent electrode side, the light attenuates and the electromotive force in the unit cell on the counter electrode side decreases, so 10 to 100 people is preferable. .

上記第3層で使用されるフタロシアニン系色素としては
、例えば、無金属フタロシアニン、金属フタロシアニン
およびそれらの誘導体等があげられる。
Examples of the phthalocyanine dye used in the third layer include metal-free phthalocyanine, metal phthalocyanine, and derivatives thereof.

上記金属フタロシアニンとしては、例えば、中心原子が
、銅、マグネシウム、亜鉛、アルミニウム、スズ、クロ
ム、マンガン、鉄、コバルト、ロジウム、パラジウム、
白金等の金属、3価以上の原子価を有する金属のハロゲ
ン化物などで形成されているものがあげられる。
Examples of the metal phthalocyanine include copper, magnesium, zinc, aluminum, tin, chromium, manganese, iron, cobalt, rhodium, palladium,
Examples include metals such as platinum, halides of metals with a valence of 3 or more, and the like.

上記誘導体としては、例えば、フタロシアニン分子中の
水素原子が、スルホン基、ニトロ基、シアノ基、カルボ
キシル基、ハロゲン原子等で置換された誘導体があげら
れる。
Examples of the above derivatives include derivatives in which a hydrogen atom in a phthalocyanine molecule is substituted with a sulfone group, a nitro group, a cyano group, a carboxyl group, a halogen atom, or the like.

上記第3層の膜厚は特に限定されるものではないが、薄
くなるとピンホールが発生しやすくなり、厚くなると光
透過率の低下および膜の電気抵抗の増加のためにエネル
ギー変換効率が低下するので、400〜1000八が好
ましい。
The thickness of the third layer is not particularly limited, but as it becomes thinner, pinholes are more likely to occur, and as it becomes thicker, energy conversion efficiency decreases due to a decrease in light transmittance and an increase in the electrical resistance of the film. Therefore, 400 to 1000 is preferable.

本発明で使用される2個の異なる単位セルのうち、対向
電極側の単位セルは、透明電極側から対向電極側に向け
て、ペリレン系色素からなる第1層およびフタロシアニ
ン系色素からなる第2層が順次積層されている複合層と
なされている。
Of the two different unit cells used in the present invention, the unit cell on the counter electrode side has a first layer made of perylene dye and a second layer made of phthalocyanine dye from the transparent electrode side to the counter electrode side. It is a composite layer in which the layers are laminated one after another.

上記対向電極側の単位セルの′s1層に使用されるペリ
レン系色素としては、前記ペリレン系色素が使用できる
As the perylene dye used in the 's1 layer of the unit cell on the counter electrode side, the above-mentioned perylene dye can be used.

なお、上記対向電極側の単位セルの第1層に使用される
ペリレン系色素は、透明電極側の単位セルの第2層に使
用したものと同じものを用いてもよいし、異なるものを
用いてもよい。
The perylene dye used in the first layer of the unit cell on the opposite electrode side may be the same as that used in the second layer of the unit cell on the transparent electrode side, or a different one may be used. It's okay.

上記対向電極側の単位セルの第1層の膜厚は特に限定さ
れるものではないが、薄くなるとピンホールが発生しや
すくなり、厚くなると光透過率の低下および膜の電気抵
抗の増加のためにエネルギー変換効率が低下するので、
400〜1000人が好ましい。
The film thickness of the first layer of the unit cell on the counter electrode side is not particularly limited, but as it becomes thinner, pinholes are more likely to occur, and as it becomes thicker, the light transmittance decreases and the electrical resistance of the film increases. Since the energy conversion efficiency decreases,
Preferably 400 to 1000 people.

上記対向電極側の単位セルの第2層に使用されるフタロ
シアニン系色素としては、前記フタロシアニン系色素が
使用できる。
As the phthalocyanine dye used in the second layer of the unit cell on the counter electrode side, the above phthalocyanine dye can be used.

なお、上記対向電極側の単位セルの第2層に使用される
フタロシアニン系色素は、透明電極側の単位セルの第3
層に使用したものと同じものを用いてもよいし、異なる
ものを用いてもよい。
Note that the phthalocyanine dye used in the second layer of the unit cell on the opposite electrode side is used in the third layer of the unit cell on the transparent electrode side.
The same material as that used for the layer may be used, or a different material may be used.

上記対向電極側の単位セルの第2層の膜厚は特に限定さ
れるものではないが、薄くなるとピンホールが発生しや
すくなり、厚くなると膜の電気抵抗の増加のためにエネ
ルギー変換効率が低下するので、500〜3000人が
好ましい。
The film thickness of the second layer of the unit cell on the counter electrode side is not particularly limited, but as it becomes thinner, pinholes are more likely to occur, and as it becomes thicker, the energy conversion efficiency decreases due to an increase in the electrical resistance of the film. Therefore, 500 to 3000 people is preferable.

本発明のタンデム型有機太陽電池においては、前記透明
電極および対向電極の間に、上記2個の異なる単位セル
が設けられており、該単位セル間は金属層で接合されて
いる。
In the tandem organic solar cell of the present invention, the two different unit cells are provided between the transparent electrode and the counter electrode, and the unit cells are connected by a metal layer.

上記金属層に使用される金属としては、倒えば、金、銀
等があげられ、その膜厚は、薄くなると単位セル同志を
オーミックに接合する効果が低下し、厚くなると光透過
率が低下するので、10〜100人が好ましく、15〜
30人がより好ましい。
Metals used for the metal layer include gold, silver, etc. As the film thickness becomes thinner, the effect of ohmic bonding between unit cells decreases, and as it becomes thicker, the light transmittance decreases. Therefore, 10 to 100 people is preferable, and 15 to 100 people.
30 people is more preferable.

上記各層の形成方法は任意の方法が採用されてよく、例
えば、真空蒸着法、スパッタリング法、イオンブレーテ
ィング法等の各方法があげられる。
Any method may be used to form the above-mentioned layers, and examples thereof include vacuum evaporation, sputtering, ion blasting, and the like.

本発明のタンデム型有機太陽電池を製造するには、例え
ば、透明基板上に透明導電膜が真空蒸着された透明電極
の透明導電膜上に、硫化カドミウム膜をスパッタリング
法により形成した後、ペリレン系色素膜およびフタロシ
アニン系色素膜を真空蒸着法により順次積層して透明電
極側の単位セルを形成し、次に、真空蒸着法により金属
層を形成し、さらにペリレン系色素膜およびフタロシア
ニン系色素膜を真空蒸着法により順次積層して対向電極
側の単位セルを形成し、その上に対向電極を設ければよ
い。
To manufacture the tandem organic solar cell of the present invention, for example, a cadmium sulfide film is formed by sputtering on a transparent conductive film of a transparent electrode, in which a transparent conductive film is vacuum-deposited on a transparent substrate, and then a perylene-based A dye film and a phthalocyanine dye film are sequentially laminated by vacuum evaporation to form a unit cell on the transparent electrode side, then a metal layer is formed by vacuum evaporation, and a perylene dye film and a phthalocyanine dye film are further layered. They may be sequentially laminated by vacuum evaporation to form a unit cell on the counter electrode side, and a counter electrode may be provided thereon.

(実施例) 以下、本発明を実施例により説明する。(Example) The present invention will be explained below using examples.

実施例I ITOを蒸着した透明導電ガラス基板を高周波スパッタ
リング装置の真空容器内に設置し、キャリアガスとして
Arガスを用い、容器内を5×1O−3Torrとして
、ITO膜上に、300人の厚さの硫化カドミウム膜を
スパッタリングした。
Example I A transparent conductive glass substrate on which ITO was vapor-deposited was placed in a vacuum chamber of a high-frequency sputtering device, Ar gas was used as a carrier gas, and the inside of the chamber was set at 5×1 O-3 Torr. A cadmium sulfide film was sputtered.

次いで、硫化カドミウム膜が形成された透明導電ガラス
基板を真空蒸着装置の真空容器内に設置してI X I
 0−5Torrに減圧し、ペリレンテトラカルボン酸
ビスベンゾイミダゾールをアルミナ坩堝中で抵抗加熱し
て、硫化カドミウム膜上に、30人の厚さのペリレンテ
トラカルボン酸ビスベンゾイミダゾール膜を蒸着した。
Next, the transparent conductive glass substrate on which the cadmium sulfide film was formed was placed in a vacuum container of a vacuum evaporation device, and I
The pressure was reduced to 0-5 Torr, and perylenetetracarboxylic acid bisbenzimidazole was resistance heated in an alumina crucible to deposit a 30-layer thick perylenetetracarboxylic acid bisbenzimidazole film on the cadmium sulfide film.

次いで、この膜の上に、ペリレンテトラカルボン酸ビス
ベンゾイミダゾール膜を形成したのと同様にして、50
’OAの厚さの無金属フタロシアニン膜を積層して一段
目の単位セルを得た。
Next, in the same manner as the perylenetetracarboxylic acid bisbenzimidazole film was formed on this film, 50%
A first-stage unit cell was obtained by laminating metal-free phthalocyanine films with a thickness of OA.

得られた一段目の単位セル上に、1 x 10−’T。1 x 10-'T on the obtained first stage unit cell.

r’rの減圧下で金を20人の厚さに真空蒸着した後、
上記−段目の単位セル中のペリレンテトラカルボン酸ビ
スベンゾイミダゾール膜を形成したのと同様にして、7
00人の厚さのN、N’−ジメチルペリレンテトラカル
ボン酸ジイミド膜および1000人の厚さの無金属フタ
ロシアニン膜を順次積層して二段目の単位セルを得た。
After vacuum deposition of gold to a thickness of 20 mm under reduced pressure of r'r,
7 in the same manner as in forming the perylenetetracarboxylic acid bisbenzimidazole film in the unit cell of the -th stage.
A second-stage unit cell was obtained by sequentially laminating an N,N'-dimethylperylenetetracarboxylic acid diimide film with a thickness of 0.000 μm and a metal-free phthalocyanine film with a thickness of 1000 μm.

得られた二段目の単位セル上に、l x 10−’T。On the obtained second stage unit cell, l x 10-'T.

rrの減圧下で金を真空蒸着し、2m1T12の大きさ
で300人の厚さの対向電極を形成してタンデム型有機
太陽電池を得た。
Gold was vacuum deposited under a reduced pressure of rr to form a counter electrode with a size of 2 m 1 T12 and a thickness of 300 mm to obtain a tandem organic solar cell.

得られたタンデム型有機太陽電池のITO透明電極側か
らエアマス2 (AM2)光(75mW/cnりを照射
し、電流−電圧特性を測定して光電変換特性〔開放端電
圧(Voc)、短絡電流密度(Jsc)、フィルファク
ター(ff)及びエネルギー変換効率(η)〕を評価し
、結果を第1表に示した。
Air mass 2 (AM2) light (75 mW/cn) was irradiated from the ITO transparent electrode side of the obtained tandem organic solar cell, and the current-voltage characteristics were measured to determine the photoelectric conversion characteristics [open circuit voltage (Voc), short circuit current Density (Jsc), fill factor (ff), and energy conversion efficiency (η)] were evaluated, and the results are shown in Table 1.

K凰旦ユ 実施例1の一段目の単位セルにおいて、ペリレンテトラ
カルボン酸ビスベンゾイミダゾールの膜厚を70人とし
た以外は、実施例1と同様にして、タンデム型有機太陽
電池を得た。
A tandem organic solar cell was obtained in the same manner as in Example 1, except that the film thickness of bisbenzimidazole perylenetetracarboxylate in the first stage unit cell of Example 1 was changed to 70.

得られたタンデム型有機太陽電池を用いて、実施例1と
同様にして光電変換特性を評価し、結果を第1表に示し
た。
Using the obtained tandem type organic solar cell, the photoelectric conversion characteristics were evaluated in the same manner as in Example 1, and the results are shown in Table 1.

実施例3 実施例1の一段目の単位セルにおいて、ペリレンテトラ
カルボン酸ビスベンゾイミダゾールのかわりにN、N’
−ジメチルペリレンテトラカルボン酸ジイミドを用いた
以外は、実施例1と同様にして、タンデム型有機太陽電
池を得た。
Example 3 In the first stage unit cell of Example 1, N, N' was used instead of perylenetetracarboxylic acid bisbenzimidazole.
A tandem type organic solar cell was obtained in the same manner as in Example 1 except that -dimethylperylenetetracarboxylic acid diimide was used.

得られたタンデム型有機太陽電池を用いて、実施例1と
同様にして光電変換特性を評価し、結果を第1表に示し
た。
Using the obtained tandem type organic solar cell, the photoelectric conversion characteristics were evaluated in the same manner as in Example 1, and the results are shown in Table 1.

ル較■ユ 実施例1において、金蒸着層及び二段目の単位セルを取
り去った以外は、実施例1と同様にして、有機太陽電池
を得た。
An organic solar cell was obtained in the same manner as in Example 1, except that the gold vapor deposited layer and the second-stage unit cell were removed.

得られた有機太陽電池を用いて、実施例1と同様にして
光電変換特性を評価し、結果を第1表に示した。
Using the obtained organic solar cell, the photoelectric conversion characteristics were evaluated in the same manner as in Example 1, and the results are shown in Table 1.

(以下余白) 第1表 (以下余白) (発明の効果) 本発明のタンデム型有機太陽電池においては、透明電極
と対向電極の間に、金属層でオーミ・νり接合された異
なる2個の単位セルが設けられており、上記単位セルの
うち、透明電極側の単位セルが、透明電極側から対向電
極側に向けて、硫化カドミウム膜からなる第1層、ペリ
レン系色素薄膜からなる第2層およびフタロシアニン系
色素膜からなる第3層が順次積層されている複合層とな
っており、対向電極側の単位セルが、ペリレン系色素膜
からなる第X層およびフタロシアニン系色素膜からなる
第2層が順次積層されている複合層となっているから、
透明電極側から光を照射したとき、上記透明電極側の単
位セル中でペリレン系色素の光吸収領域(450〜60
0 nm)での光の減衰が殆どなく、その波長領域の光
を対向電極側の単位セルで利用でき、その結果、上記タ
ンデム型有機太陽電池は、エネルギー変換効率が優れ、
しがも高電圧を得ることができる。また、単位セルの積
層によりピンホールが発生しにくくなり、電極間の短絡
のない性能の安定したタンデム型有機太陽電池となる。
(Hereinafter in the margins) Table 1 (hereinafter in the margins) (Effects of the invention) In the tandem type organic solar cell of the present invention, two different types of solar cells are ohm-v-joined with a metal layer between the transparent electrode and the counter electrode. Unit cells are provided, and among the unit cells, the unit cell on the transparent electrode side has a first layer made of a cadmium sulfide film and a second layer made of a perylene dye thin film from the transparent electrode side to the counter electrode side. It is a composite layer in which a third layer consisting of a perylene dye film and a third layer consisting of a phthalocyanine dye film are sequentially laminated, and the unit cell on the counter electrode side is a layer X consisting of a perylene dye film and a second layer consisting of a phthalocyanine dye film. Because it is a composite layer with layers stacked one after another,
When light is irradiated from the transparent electrode side, the light absorption region of the perylene dye (450 to 60
0 nm), and the light in that wavelength range can be used in the unit cell on the opposite electrode side. As a result, the tandem organic solar cell has excellent energy conversion efficiency.
However, high voltage can be obtained. Additionally, the stacking of unit cells makes pinholes less likely to occur, resulting in a tandem organic solar cell with stable performance and no short circuit between electrodes.

なお、上記タンデム型有機太陽電池は、液晶表示素子等
の駆動用電池として好適に使用される。
The tandem organic solar cell described above is suitably used as a battery for driving liquid crystal display elements and the like.

畠願大 積水化学工業株式会社 代表者 廣 1) 馨Hatakegandai Sekisui Chemical Co., Ltd. Representative Hiroshi 1) Kaoru

Claims (1)

【特許請求の範囲】[Claims] 1、透明電極と対向電極の間に2個の単位セルを有し、
該単位セル間に金属薄膜が設けられているタンデム型有
機太陽電池において、上記単位セルのうち、透明電極側
の単位セルが、透明電極側から対向電極側に向けて、硫
化カドミウムからなる第1層、ペリレン系色素からなる
第2層およびフタロシアニン系色素からなる第3層が順
次積層されている複合層であり、対向電極側の単位セル
が、透明電極側から対向電極側に向けて、ペリレン系色
素からなる第1層およびフタロシアニン系色素からなる
第2層が順次積層されている複合層であることを特徴と
するタンデム型有機太陽電池。
1. Having two unit cells between the transparent electrode and the counter electrode,
In the tandem organic solar cell in which a metal thin film is provided between the unit cells, among the unit cells, the unit cell on the transparent electrode side has a first layer made of cadmium sulfide from the transparent electrode side to the counter electrode side. It is a composite layer in which a second layer consisting of a perylene dye and a third layer consisting of a phthalocyanine dye are sequentially laminated. A tandem organic solar cell characterized in that it is a composite layer in which a first layer made of a phthalocyanine-based dye and a second layer made of a phthalocyanine-based dye are sequentially laminated.
JP2320389A 1990-11-22 1990-11-22 Tandem organic solar battery Pending JPH04192376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2320389A JPH04192376A (en) 1990-11-22 1990-11-22 Tandem organic solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2320389A JPH04192376A (en) 1990-11-22 1990-11-22 Tandem organic solar battery

Publications (1)

Publication Number Publication Date
JPH04192376A true JPH04192376A (en) 1992-07-10

Family

ID=18120925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2320389A Pending JPH04192376A (en) 1990-11-22 1990-11-22 Tandem organic solar battery

Country Status (1)

Country Link
JP (1) JPH04192376A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515933A (en) * 1999-11-26 2003-05-07 ザ、トラスティーズ オブ プリンストン ユニバーシティ Organic photosensitive optoelectronic devices with exciton blocking layers
JP2003264085A (en) * 2001-12-05 2003-09-19 Semiconductor Energy Lab Co Ltd Organic semiconductor element, organic electroluminescence element and organic solar cell
EP1396033A1 (en) * 2001-06-11 2004-03-10 The Trustees Of Princeton University Organic photovoltaic devices
JP2004281371A (en) * 2002-10-09 2004-10-07 Eastman Kodak Co Cascaded organic electroluminescent device having improved voltage stability
WO2006025260A1 (en) * 2004-08-31 2006-03-09 Kyoto University Stacked organic-inorganic hybrid high efficiency solar cell
US7057209B2 (en) 2001-12-28 2006-06-06 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, method of manufacturing the same and manufacturing apparatus therefor
JP2006279011A (en) * 2005-03-04 2006-10-12 Matsushita Electric Works Ltd Stacked organic solar cell
US7199521B2 (en) 2003-01-29 2007-04-03 Semiconductor Energy Laboratory Co., Ltd. Electroluminescence device
US7239081B2 (en) 2002-08-09 2007-07-03 Semiconductor Energy Laboratory Co., Ltd. Organic electroluminescent device
US7420203B2 (en) 2001-12-05 2008-09-02 Semiconductor Energy Laboratory Co., Ltd. Organic semiconductor element
US7535440B2 (en) 2002-04-09 2009-05-19 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7772485B2 (en) 2005-07-14 2010-08-10 Konarka Technologies, Inc. Polymers with low band gaps and high charge mobility
US7781673B2 (en) 2005-07-14 2010-08-24 Konarka Technologies, Inc. Polymers with low band gaps and high charge mobility
JP2010192931A (en) * 1998-08-19 2010-09-02 Trustees Of Princeton Univ Organic photosensitive photoelectric device
US8008421B2 (en) 2006-10-11 2011-08-30 Konarka Technologies, Inc. Photovoltaic cell with silole-containing polymer
US8008424B2 (en) 2006-10-11 2011-08-30 Konarka Technologies, Inc. Photovoltaic cell with thiazole-containing polymer
US8080934B2 (en) 2002-03-26 2011-12-20 Rohm Company, Ltd. Organic electroluminescent device having an electrically insulating charge generation layer
US8154193B2 (en) 2002-08-09 2012-04-10 Semiconductor Energy Laboratory Co., Ltd. Organic electroluminescent device
US8158881B2 (en) 2005-07-14 2012-04-17 Konarka Technologies, Inc. Tandem photovoltaic cells
US8183559B2 (en) 2002-05-21 2012-05-22 Semiconductor Energy Laboratory Co., Ltd. Organic field effect transistor
US8455606B2 (en) 2008-08-07 2013-06-04 Merck Patent Gmbh Photoactive polymers

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011205157A (en) * 1998-08-19 2011-10-13 Trustees Of Princeton Univ Organic photosensitive optoelectronic device
JP2014170953A (en) * 1998-08-19 2014-09-18 Trustees Of Princeton Univ Organic photosensitive photoelectric device
JP2010192931A (en) * 1998-08-19 2010-09-02 Trustees Of Princeton Univ Organic photosensitive photoelectric device
JP2011187984A (en) * 1998-08-19 2011-09-22 Trustees Of Princeton Univ Organic photosensitive photoelectric device
JP2014158047A (en) * 1998-08-19 2014-08-28 Trustees Of Princeton Univ Organic photosensitive optoelectronic device
JP2011205160A (en) * 1998-08-19 2011-10-13 Trustees Of Princeton Univ Organic photosensitive optoelectronic device
JP2011205159A (en) * 1998-08-19 2011-10-13 Trustees Of Princeton Univ Organic photosensitive optoelectronic device
JP2011205158A (en) * 1998-08-19 2011-10-13 Trustees Of Princeton Univ Organic photosensitive optoelectronic device
JP2016105510A (en) * 1998-08-19 2016-06-09 ザ、トラスティーズ オブ プリンストン ユニバーシティ Organic photosensitive photoelectric device
JP2003515933A (en) * 1999-11-26 2003-05-07 ザ、トラスティーズ オブ プリンストン ユニバーシティ Organic photosensitive optoelectronic devices with exciton blocking layers
EP1396033A4 (en) * 2001-06-11 2011-05-18 Univ Princeton Organic photovoltaic devices
EP1396033A1 (en) * 2001-06-11 2004-03-10 The Trustees Of Princeton University Organic photovoltaic devices
US7420203B2 (en) 2001-12-05 2008-09-02 Semiconductor Energy Laboratory Co., Ltd. Organic semiconductor element
US9312507B2 (en) 2001-12-05 2016-04-12 Semiconductor Energy Laboratory Co., Ltd. Organic semiconductor element
US7473923B2 (en) 2001-12-05 2009-01-06 Semiconductor Energy Laboratory Co., Ltd. Organic semiconductor element
JP2003264085A (en) * 2001-12-05 2003-09-19 Semiconductor Energy Lab Co Ltd Organic semiconductor element, organic electroluminescence element and organic solar cell
US8941096B2 (en) 2001-12-05 2015-01-27 Semiconductor Energy Laboratory Co., Ltd. Organic semiconductor element
JP2009267433A (en) * 2001-12-05 2009-11-12 Semiconductor Energy Lab Co Ltd Organic solar battery
US11217764B2 (en) 2001-12-05 2022-01-04 Semiconductor Energy Laboratory Co., Ltd. Organic semiconductor element
US9450030B2 (en) 2001-12-28 2016-09-20 Semiconductor Energy Laboratory Co., Ltd. Active matrix light-emitting device with overlapping electroluminescent layers
US9048203B2 (en) 2001-12-28 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, method of manufacturing the same, and manufacturing apparatus therefor
US7719014B2 (en) 2001-12-28 2010-05-18 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, method of manufacturing the same, and manufacturing apparatus therefor
US7982206B2 (en) 2001-12-28 2011-07-19 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, method of manufacturing the same, and manufacturing apparatus therefor
US7420210B2 (en) 2001-12-28 2008-09-02 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, method of manufacturing the same, and manufacturing apparatus therefor
US10497755B2 (en) 2001-12-28 2019-12-03 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, method of manufacturing the same, and manufacturing apparatus therefor
US7057209B2 (en) 2001-12-28 2006-06-06 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, method of manufacturing the same and manufacturing apparatus therefor
US8080934B2 (en) 2002-03-26 2011-12-20 Rohm Company, Ltd. Organic electroluminescent device having an electrically insulating charge generation layer
US10217967B2 (en) 2002-03-26 2019-02-26 Rohm Co., Ltd. Organic electroluminescent device
US10312474B2 (en) 2002-03-26 2019-06-04 Rohm Co., Ltd. Organic electroluminescent device comprising a plurality of light emissive units
US10319949B2 (en) 2002-03-26 2019-06-11 Rohm Co., Ltd. Organic electroluminescent device
US10998527B2 (en) 2002-03-26 2021-05-04 Rohm Co., Ltd. Organic electroluminescent device
US7535440B2 (en) 2002-04-09 2009-05-19 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US8183559B2 (en) 2002-05-21 2012-05-22 Semiconductor Energy Laboratory Co., Ltd. Organic field effect transistor
US8890404B2 (en) 2002-08-09 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Organic electroluminescent device
US7239081B2 (en) 2002-08-09 2007-07-03 Semiconductor Energy Laboratory Co., Ltd. Organic electroluminescent device
US9650245B2 (en) 2002-08-09 2017-05-16 Semiconductor Energy Laboratory Co., Ltd. Organic electroluminescent device
US8339036B2 (en) 2002-08-09 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Organic electroluminescent device
US9209419B2 (en) 2002-08-09 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Organic electroluminescent device
US8154193B2 (en) 2002-08-09 2012-04-10 Semiconductor Energy Laboratory Co., Ltd. Organic electroluminescent device
JP4570017B2 (en) * 2002-10-09 2010-10-27 グローバル オーエルイーディー テクノロジー リミティド ライアビリティ カンパニー Cascade organic electroluminescent device with improved voltage stability
JP2004281371A (en) * 2002-10-09 2004-10-07 Eastman Kodak Co Cascaded organic electroluminescent device having improved voltage stability
US7548022B2 (en) 2003-01-29 2009-06-16 Semiconductor Energy Laboratory Co., Ltd. Electroluminescence device
US7199521B2 (en) 2003-01-29 2007-04-03 Semiconductor Energy Laboratory Co., Ltd. Electroluminescence device
US8207665B2 (en) 2003-01-29 2012-06-26 Semiconductor Energy Laboratory Co., Ltd. Electroluminescence device
WO2006025260A1 (en) * 2004-08-31 2006-03-09 Kyoto University Stacked organic-inorganic hybrid high efficiency solar cell
JPWO2006025260A1 (en) * 2004-08-31 2008-05-08 国立大学法人京都大学 Stacked organic-inorganic hybrid high efficiency solar cell
JP2006279011A (en) * 2005-03-04 2006-10-12 Matsushita Electric Works Ltd Stacked organic solar cell
US8158881B2 (en) 2005-07-14 2012-04-17 Konarka Technologies, Inc. Tandem photovoltaic cells
US7772485B2 (en) 2005-07-14 2010-08-10 Konarka Technologies, Inc. Polymers with low band gaps and high charge mobility
US7781673B2 (en) 2005-07-14 2010-08-24 Konarka Technologies, Inc. Polymers with low band gaps and high charge mobility
US8058550B2 (en) 2005-07-14 2011-11-15 Konarka Technologies, Inc. Polymers with low band gaps and high charge mobility
US9123895B2 (en) 2006-10-11 2015-09-01 Merck Patent Gmbh Photovoltaic cell with thiazole-containing polymer
US8008424B2 (en) 2006-10-11 2011-08-30 Konarka Technologies, Inc. Photovoltaic cell with thiazole-containing polymer
US8563678B2 (en) 2006-10-11 2013-10-22 Merck Patent Gmbh Photovoltaic cell with thiazole-containing polymer
US8962783B2 (en) 2006-10-11 2015-02-24 Merck Patent Gmbh Photovoltaic cell with silole-containing polymer
US8008421B2 (en) 2006-10-11 2011-08-30 Konarka Technologies, Inc. Photovoltaic cell with silole-containing polymer
US8455606B2 (en) 2008-08-07 2013-06-04 Merck Patent Gmbh Photoactive polymers

Similar Documents

Publication Publication Date Title
JPH04192376A (en) Tandem organic solar battery
TWI390743B (en) Pigment for a dye-sensitized solar cell, an electrode for a dye-sensitized solar cell, and a method of manufacturing the same
CN1846288B (en) Tandem dye-sensitised solar cell and method of its production
JP2003123859A (en) Organic dye sensitized metal oxide semiconductor electrode, and solar battery having the semiconductor electrode
JPH05335614A (en) Photoelectric conversion element
JP4848666B2 (en) Oxide semiconductor electrode transfer material, dye-sensitized solar cell substrate, dye-sensitized solar cell, and methods for producing the same
Han et al. Enhancement in photoelectric conversion properties of the dye-sensitized nanocrystalline solar cells based on the hybrid TiO2 electrode
JPH11339868A (en) Charge transporting material, photoelectric conversion element and light regenerative photo-electro-chemical battery
Uchiyama et al. An increase in energy conversion efficiency by decreasing cobalt redox electrolyte diffusion resistance in dye-sensitized solar cells
JPH04192374A (en) Tandem organic solar battery
JP2000108244A (en) Transparent conductive film, its manufacture, and base having transparent conductive film
JPH0410576A (en) Organic solar cell
JPH04192375A (en) Tandem organic solar battery
JPH04337673A (en) Tandem-type organic solar cell
JP2007149600A (en) Laminated film for dye-sensitized solar cell and electrode for dye-sensitized solar cell using it
JPH04337674A (en) Organic solar cell
JP5031997B2 (en) Electrode for dye-sensitized solar cell and method for producing the same
JP2002075479A (en) Pigment sensitized solar cell
JPH04216681A (en) Manufacture of organic solar cell
JPH0831615B2 (en) Organic solar cells
Tominaga et al. Construction of a ‘sequential potential field’by [Cu (pc)]/[Zn (pc)] double-layered thin film: application to electrochromic and electroluminescent devices
JP2003197282A (en) Dye sensitized solar battery
JP4104108B2 (en) Organic dye-sensitized metal oxide semiconductor electrode and solar cell having the semiconductor electrode
JP4922568B2 (en) Dye-sensitized solar cell electrode
JP4984440B2 (en) Metal oxide film and dye-sensitized solar cell