JPH04190991A - Laser beam machine - Google Patents

Laser beam machine

Info

Publication number
JPH04190991A
JPH04190991A JP2320711A JP32071190A JPH04190991A JP H04190991 A JPH04190991 A JP H04190991A JP 2320711 A JP2320711 A JP 2320711A JP 32071190 A JP32071190 A JP 32071190A JP H04190991 A JPH04190991 A JP H04190991A
Authority
JP
Japan
Prior art keywords
workpiece
interference
laser
prism
machined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2320711A
Other languages
Japanese (ja)
Inventor
Koichi Ozaki
公一 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2320711A priority Critical patent/JPH04190991A/en
Publication of JPH04190991A publication Critical patent/JPH04190991A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To observe a machining state in the direction of depth of a material to be machined which is at work in a real time by establishing an interference optics section in an observation optics system of a laser beam machine. CONSTITUTION:Illumination from an illuminating lamp 21 is changed by a polarizer 29 into a linear polarization and after the azimuth of this linear polarization is converted by a lambda/4 plate 31 into a desired azimuth, the illumination is made incident on a prism 28. The linear polarization which enters the prism 28 is divided into two beams in which oscillating surfaces are at right angle with each other and the material 15 to be machined is illuminated. The bisected laser beams are reflected by the material 15 to be machined, enter the prism 28 again and are joined as the oscillating directions are orthogonally crossed. An analyzer 30 is inserted into an observation optical path provided with a camera 25, takes out common oscillation components of the beam outgoing from the prism 28 to cause interference. An interference contrast is obtained by the material 15 to be machined and the material 15 to be machined can be observed cubically by an interference contrast image reflected to a surface state of the material 15 to be machined.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザ加工装置に係わり、特に光学系に特徴を
もったレーザ加工装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a laser processing device, and particularly to a laser processing device having features in an optical system.

〔従来の技術〕[Conventional technology]

従来のレーザ加工装置は、第6図に示すように、し・−
ザ発振器1とレーザ光に対しては全反射ミラーとして働
き、可視光に対してはハーフミラ−として働くグイクロ
イックミラー2と、レーザ光を被加工物3上へ集光させ
る対物レンズ4と、加ゴ二壱を照明するための照明ラン
プ5と、被加工物3からの反射像をカメラ(T〜′カメ
ラあるいはCCDカメラ)6の受光面へ結像するための
結像レンズ7と、照明ランプ5からの照明光を透過させ
被加工物3からの反射像をカメラ6へ導くためのハーフ
ミラ−8を備えた構成となっている。なお、照明ランプ
5とハーフミラ−8との間にはコンデンサレンズ9が配
置されている。
Conventional laser processing equipment, as shown in Figure 6,...
a laser oscillator 1, a gyroic mirror 2 that functions as a total reflection mirror for the laser beam and a half mirror for visible light, and an objective lens 4 that focuses the laser beam onto the workpiece 3; An illumination lamp 5 for illuminating the workpiece 3, an imaging lens 7 for focusing the reflected image from the workpiece 3 onto the light receiving surface of the camera (T~' camera or CCD camera) 6, and the illumination The structure includes a half mirror 8 for transmitting the illumination light from the lamp 5 and guiding the reflected image from the workpiece 3 to the camera 6. Note that a condenser lens 9 is arranged between the illumination lamp 5 and the half mirror 8.

レーザ発振器1から出射したレーザ光は、グイクロイッ
クミラー2で反射され、対物レンズ4により被加工物3
上へ集光される。加工中の被加工物3の加工点はカメラ
6により撮像され、TVモニタ10によりリアルタイム
に加工点を観察することができる。また、TVモニタ1
oの倍率は分かっているので、加工後の被加工物3のX
SY方向の加工幅を推定することができる。
The laser beam emitted from the laser oscillator 1 is reflected by the guichroic mirror 2, and is directed to the workpiece 3 by the objective lens 4.
The light is focused upwards. The processing point of the workpiece 3 during processing is imaged by the camera 6, and the processing point can be observed in real time on the TV monitor 10. Also, TV monitor 1
Since the magnification of o is known, the X of workpiece 3 after machining is
The machining width in the SY direction can be estimated.

〔発明が解決しようとする課題〕1 しかしながら、この従来のレーザ加工装置では、観察光
学系が具備されているものの、明視野像による表面観察
しかできない。このため、ガラス板上の異なる2層膜の
加工を考えた場合、同じ場所を異なるビーム径で各々の
膜を加工すると、加工中では膜の深さ方向に関する状態
を知ることができず、各々の膜がどのような形状で加工
されでいるのかが分からないという問題があった。また
加工点の断面形状を観察するためには被加工物3を切断
し、その断面を観察しなければならないという問題もあ
った。
[Problems to be Solved by the Invention] 1 However, although this conventional laser processing apparatus is equipped with an observation optical system, it is only possible to observe the surface using a bright field image. For this reason, when considering the processing of different two-layer films on a glass plate, if each film is processed at the same location with different beam diameters, the state of the film in the depth direction cannot be known during processing, and each There was a problem in that it was not clear what shape the film was processed into. Another problem is that in order to observe the cross-sectional shape of a processing point, it is necessary to cut the workpiece 3 and observe the cross-section.

本発明の目的は上述した問題に鑑みなされたもので、加
工中に被加工物の深さ方向の状態をその場で観察するこ
とのできるレーザ加工装置を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention has been made in view of the above-mentioned problems, and is to provide a laser processing apparatus that allows the condition of a workpiece in the depth direction to be observed on the spot during processing.

〔課題を解決するための手段〕[Means to solve the problem]

請求項1の発明は、レーザ光を発振するレーザ発振器と
、このレーザ発振器に電力を供給し動作制御を行うコン
トローラと、前記レーザ発振器から出射されたレーザ光
を被加工物上へ照射する光学部と、被加工物を保持しモ
ータによりこの被加工物をX、Y方向に移動させる機構
を有する載置台と、この載置台の動作を制御するコント
ローラを使えブーレーザ加工装置におし)で、光学部は
、レーザ光を被加工物上へ集光させる対物レンズと、被
加工物上の加工点を照らす照明ランプとコンデンサレン
ズから構成される照明光学部と、被加工物のレーザ加工
状態を観察可能なカメラと結像レンズとTVモニタから
構成される観察光学部と、被加工物の表面状態に応じて
干渉による明暗コントラストを生じさせる干渉光学部と
を備えた構成としたものである。
The invention according to claim 1 provides a laser oscillator that oscillates a laser beam, a controller that supplies power to the laser oscillator and controls its operation, and an optical section that irradiates a workpiece with the laser beam emitted from the laser oscillator. In addition, a mounting table with a mechanism for holding the workpiece and moving the workpiece in the X and Y directions using a motor, and a controller that controls the operation of this mounting table are used to create an optical laser processing device. The section consists of an objective lens that focuses the laser beam onto the workpiece, an illumination optical section that consists of an illumination lamp and a condenser lens that illuminate the processing point on the workpiece, and an optical system that observes the laser processing status of the workpiece. The observation optical section includes an optical camera, an imaging lens, and a TV monitor, and an interference optical section that generates brightness and darkness contrast by interference depending on the surface condition of the workpiece.

請求項2の発明は、干渉光学部を、光が入射すると異常
光線と常光線に分離する複屈折性を有するくさび状に研
摩した結晶を互いに光軸が垂直になるように接合したプ
リズムと、光の偏光状態の中より特定な方位角の直線偏
光を選択的に取り出せる偏光子と、入射する直線偏光の
方位角を検出する検光子とを備えた構成としたものであ
る。
The invention as claimed in claim 2 provides an interference optical section including a prism in which wedge-shaped polished crystals having birefringence that separate incident light into extraordinary rays and ordinary rays are joined together so that their optical axes are perpendicular to each other; This configuration includes a polarizer that can selectively extract linearly polarized light with a specific azimuth from among the polarization states of light, and an analyzer that detects the azimuth of the incident linearly polarized light.

請求項3の発明は、光がレーザ加工中における被加工物
の像を干渉光学部を通し、この干渉光学部から得られる
干渉コントラスト像を画像処理装置に送り、干渉コント
ラスト像を画像処理装置により明暗のレベル信号に処理
し、この信号をレーザ発振器にフィードバックさせるよ
う構成したものである。
In the invention of claim 3, the image of the workpiece during laser processing is passed through an interference optical section, the interference contrast image obtained from the interference optical section is sent to an image processing device, and the interference contrast image is processed by the image processing device. It is configured to process bright and dark level signals and feed this signal back to the laser oscillator.

〔作用〕[Effect]

このように本発明によれば、従来のレーザ加工装置の観
察光学系に干渉光学部を設けることにより、加工中の被
加工物の深さ方向に対する加工状態を干渉による明暗の
コントラストで鮮明にし、その像を丁■モニタによりリ
アルタイムで観察することが可能となる。このように、
被加工物の深さ方向の加工状態に応じた干渉による明暗
コントラストが得られることにより、例えば多層膜にお
いて各膜を選択的に加工する場合、被加工物を破壊する
ことなく非接触状態で3次元的な加工状態をその場で観
察することができる。
As described above, according to the present invention, by providing an interference optical section in the observation optical system of a conventional laser processing device, the processing state in the depth direction of the workpiece being processed is made clear by the contrast of brightness and darkness caused by the interference. The image can be observed in real time on a digital monitor. in this way,
By obtaining a bright and dark contrast due to interference depending on the processing state in the depth direction of the workpiece, for example, when selectively processing each film in a multilayer film, it is possible to process three layers in a non-contact state without destroying the workpiece. Dimensional machining conditions can be observed on the spot.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明に係わるレーザ加工装置の一実施例を示
す構成ブロック図である。レーザ光を発振出射するレー
ザ発振器11は、レーザ発振器コントローラ電源12に
よりレーザ発振器11への電力供給や動作制御が行われ
るよう構成されている。また、レーザ発振器11から出
射されたレーザ光は光学部13へ導かれ、光学部13か
ら出射したレーザ光は載置台14上に固定された被加工
物15上へ集光されるようになっている。この載置台1
4はボールネジ16を介してモータ17に直結されてお
り、モータコントローラ18の制御により載置台14を
直線方向に移動させることができる。これによって、載
置台14上に固定された被加工物15を直線状に加工す
ることができるようになっている。
FIG. 1 is a block diagram showing an embodiment of a laser processing apparatus according to the present invention. The laser oscillator 11 that oscillates and emits laser light is configured such that a laser oscillator controller power supply 12 supplies power to the laser oscillator 11 and controls its operation. Further, the laser beam emitted from the laser oscillator 11 is guided to the optical section 13, and the laser beam emitted from the optical section 13 is focused onto the workpiece 15 fixed on the mounting table 14. There is. This mounting table 1
4 is directly connected to a motor 17 via a ball screw 16, and the mounting table 14 can be moved in a linear direction under the control of a motor controller 18. Thereby, the workpiece 15 fixed on the mounting table 14 can be processed into a straight line.

第2図は光学部13の構成ブロック図である。FIG. 2 is a block diagram of the configuration of the optical section 13.

レーザ発振器11より出射されたレーザ光は、レーザ光
に対しては全反射し、可視光に対しては透過するグイク
ロイックミラー19により反射され、対物レンズ20を
通って被加工物15上へ集光されるようになっている。
The laser beam emitted from the laser oscillator 11 is reflected by the guichroic mirror 19, which totally reflects the laser beam and transmits visible light, and passes through the objective lens 20 onto the workpiece 15. The light is focused.

照明ランプ21による照明光はコンデンサレンズ22で
集光され、ハーフミラ−23により反射され被加工物1
5上へ照らされる。この被加工物15からの反射像は、
ハーフミラ−23を透過し、結像レンズ24によりカメ
ラ(TVカメラあるいはCCDカメラ)25の受光面へ
結像され、カメラ25に接続されたTVモニタ26に誹
り被加工物15の加工状態を観察することが可能となっ
ている。1 干渉光学部27は、光が入射すると異常光線と常光線に
分離する複屈折性を有するくさび状に研摩した結晶を互
いに光軸が垂直になるように接合し、平行平面な形状と
したプリズム28と、光、つ偏光状態の中より特定な方
位角の直線偏光を選択的に取り出せる偏光子29と、入
射する直線偏光の方位角を検出する検光子30とを備え
ている1゜すなわち、照明ランプ21からの照明光は偏
光子29により特定な方位角の直線偏光となり、27′
4板31により、こゾ)直線偏光の方位角を所望の方位
角に変換した後、プリズム28に入射させる。
Illumination light from the illumination lamp 21 is condensed by a condenser lens 22, reflected by a half mirror 23, and directed toward the workpiece 1.
5 Illuminated upwards. The reflected image from this workpiece 15 is
It passes through the half mirror 23 and is imaged by the imaging lens 24 onto the light-receiving surface of a camera (TV camera or CCD camera) 25, and the processing state of the workpiece 15 is observed on the TV monitor 26 connected to the camera 25. It is now possible. 1 The interference optics section 27 is a prism formed into parallel planes by joining wedge-shaped polished crystals that have birefringence, which separates light into extraordinary and ordinary rays when incident, so that their optical axes are perpendicular to each other. 28, a polarizer 29 that can selectively take out linearly polarized light with a specific azimuth among the polarization states, and an analyzer 30 that detects the azimuth of the incident linearly polarized light. The illumination light from the illumination lamp 21 becomes linearly polarized light with a specific azimuth angle by the polarizer 29,
After converting the azimuth of the linearly polarized light into a desired azimuth using the four plates 31, the linearly polarized light is made incident on the prism 28.

このプリズム28に入射した直線偏光は振動面が互いに
直交した2つの光に分離され、被加工物15を照明する
The linearly polarized light incident on the prism 28 is separated into two lights whose vibration planes are perpendicular to each other, and illuminate the workpiece 15.

2分された光は被加工物15て反射され、再びプリズム
28に入射し、振動方向が直交した状態のまま結合する
。検光子30は、カメラ25が配置されただ観察光路に
挿入され、プリズム28から出射した“光の共通の振動
成分を取り出し、干渉を引き起こさせるようにしている
The split light is reflected by the workpiece 15, enters the prism 28 again, and is combined with the vibration directions perpendicular to each other. The analyzer 30 is inserted into the observation optical path where the camera 25 is arranged, and extracts a common vibrational component of the light emitted from the prism 28 to cause interference.

被加工物15が第3図に示すように、その一部分15a
が凸状に高さhだけ突出している場合、入射光の波面W
は凸状部分15aが2h進んだ波面となり、入射光はわ
ずかに波面の横ずれした2つの光に分かれる。
As shown in FIG. 3, the workpiece 15 has a portion 15a thereof.
If it protrudes convexly by a height h, the wavefront W of the incident light
becomes a wavefront where the convex portion 15a has advanced by 2h, and the incident light is split into two lights whose wavefronts are slightly shifted laterally.

第4図は、被加工物15に光を当てた場合の光学的厚さ
の変化である。被加工物15のC1とC7の領域に対す
る位相差を各々δ1、C2とし、入射光波面Wの横ずれ
量を△とする。わずかに横ずれされた2つの波面は、第
4図にある光学的厚さの変化している被加工物15の領
域CI、C2の部分では各々δ1、C2の位相差を生じ
る。被加工物15の領域A、Bでは2つの波面の間での
位相差は生じないので、干渉による干渉色の明暗コント
ラストは得られないCc、 、C2の部分では各々δ1
、δ、の位相差が生じているので、干渉による明暗コン
トラストが得られ、それはC5、C2に依存する。位相
差δ1 、C2は各々δ1 =△(aW/cJX )、
 、C2= △(a W/ a X )2で与えられる
。δW/δXは波面W (7) ?@分係数であり、こ
の微分係数の変化により位相差が変化し、被加工物15
のC+ 、C2部分て干渉コントラストが得られ、被加
工物15の表面状態に反映した干渉コントラスト像によ
り立体的に被加工物15を観察できる。
FIG. 4 shows the change in optical thickness when the workpiece 15 is irradiated with light. Let the phase difference between the regions C1 and C7 of the workpiece 15 be δ1 and C2, respectively, and the amount of lateral shift of the incident light wavefront W be Δ. The two slightly laterally shifted wavefronts produce phase differences of δ1 and C2, respectively, in regions CI and C2 of the workpiece 15 where the optical thickness changes as shown in FIG. In regions A and B of the workpiece 15, there is no phase difference between the two wavefronts, so no brightness contrast of the interference color due to interference can be obtained.
, δ, resulting in brightness and darkness contrast due to interference, which depends on C5 and C2. The phase difference δ1 and C2 are respectively δ1 = △(aW/cJX),
, C2=Δ(a W/a X )2. δW/δX is the wavefront W (7)? @ differential coefficient, and the phase difference changes due to the change in this differential coefficient, and the workpiece 15
An interference contrast is obtained at the C+ and C2 portions, and the workpiece 15 can be observed three-dimensionally by the interference contrast image reflected on the surface condition of the workpiece 15.

第5図は本発明の第2の実施例を示す構成ブロック図で
ある。本実施例では、レーザ加工中における被加工物1
5の像を干渉光学部27を通121、干渉光学部27が
ら得られる干渉コントラスト像を画像処理装置32に送
り、画像処理装置32(ごより干渉コントラスト像を明
暗のレベル信号に処理する。次に、この信号を信号ライ
ン33を介してレーザ発振器11にフィードバックさせ
るよう構成している。このような構成から成るレーザ加
工装置では、レーザ発振器11にフィードバックさせる
干渉コントラスト像の明暗レベル信号を制御することに
より、被加工物15の加工状態を3次元的に制御するこ
とができる。なお、グイクロイックミラー19、対物レ
ンズ20、カメラ25等その他の構成は上述した第1実
施例と同じであるので、その説明は省略する。
FIG. 5 is a block diagram showing a second embodiment of the present invention. In this example, the workpiece 1 during laser processing
The interference contrast image obtained from the interference optical unit 27 is sent to the image processing device 32, and the interference contrast image is processed into bright and dark level signals by the image processing device 32. This signal is then fed back to the laser oscillator 11 via the signal line 33. In the laser processing apparatus having such a structure, the brightness level signal of the interference contrast image fed back to the laser oscillator 11 is controlled. As a result, the processing state of the workpiece 15 can be controlled three-dimensionally.The other configurations such as the microscopic mirror 19, the objective lens 20, and the camera 25 are the same as in the first embodiment described above. Therefore, its explanation will be omitted.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明に係わるレーザ加工装置によ
れば、従来のレーザ加工装置の観察光学系に干渉光学部
を具備した構成としたことにより、加工中の被加工物の
深さ方向に対する加工状態を干渉による明暗のコントラ
ストで鮮明にし、その像をTVモニタによりリアルタイ
ムで観察することができる。このように、被加工物の深
さ方向の加工状態に応じた干渉による明暗コントラスト
を得られることにより、例えば多層膜において各膜を選
択的に加工する場合、被加工物を破壊することなく非接
触状態で3次元的な加工状態をその場で観察することが
できるという効果を奏する。
As explained above, according to the laser processing apparatus according to the present invention, since the observation optical system of the conventional laser processing apparatus is configured to include an interference optical section, it is possible to perform processing in the depth direction of the workpiece being processed. The state is made clear by the contrast between light and dark caused by interference, and the image can be observed in real time on a TV monitor. In this way, it is possible to obtain a bright and dark contrast by interference depending on the processing condition in the depth direction of the workpiece, so that, for example, when selectively processing each film in a multilayer film, it is possible to do so without destroying the workpiece. The effect is that the three-dimensional processing state can be observed on the spot in a contact state.

また、請求項3の発明のように、被加工物の凹凸状態に
応じた干渉による明暗コントラストの像を画像処理装置
に送り、そこからの信号をレーザ加工装置にフィードバ
ックさせる構成とすることにより、被加工物の加工状態
を3次元的に制御でき、安定した加工状態を常に得るこ
とができる。
Further, as in the invention of claim 3, by sending an image of brightness and darkness contrast due to interference according to the uneven state of the workpiece to the image processing device, and feeding back the signal from there to the laser processing device, The machining state of the workpiece can be controlled three-dimensionally, and a stable machining state can always be obtained.

以上のことから、加工中の被加工物のその場観察により
、従来に比べ評価を含袷た加工時間の短縮化を図ること
ができ、装置の稼働率を向上させることができるという
効果を奏する。
From the above, by in-situ observation of the workpiece being processed, it is possible to shorten the processing time including evaluation compared to the conventional method, and it has the effect of improving the operating rate of the equipment. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わるレーザ加工装置の一実施例を示
す構成ブロック図、第2図は光学部の構成ブロック図、
第3図は被加工物の構成図、第4図は光学的厚さの変化
に対する被加工物の構成図、第5図は本発明に係わるレ
ーザ加工装置の他の実施例を示す構成ブロック図、第6
図は従来のレーザ加工装置の一例を示す構成ブロック図
である。 11・・・・・・レーザ発振器、 12・・・・・・レーザ発振器コントローラ電源、13
・・・・・・光学部、 14・・・・・・載置台、 15・・・・・・被加工物、 18・・・・・・モータコントローラ、19・・・・・
・グイクロイックミラー、20・・・・・・対物レンズ
、 21・・・・・・照明ランプ、 22・・・・・・コンデンサレンズ、 24・・・・・・結像レンズ、 25・・・・・・カメラ、26・・・・・・TVモニタ
、27・・・・・・干渉光学部、28・・・・・・プリ
ズム、29・・・・・・偏光子、30・・・・・・検光
子、32・・・・・・画像処理装置。
FIG. 1 is a configuration block diagram showing an embodiment of a laser processing device according to the present invention, FIG. 2 is a configuration block diagram of an optical section,
FIG. 3 is a configuration diagram of the workpiece, FIG. 4 is a configuration diagram of the workpiece with respect to changes in optical thickness, and FIG. 5 is a configuration block diagram showing another embodiment of the laser processing apparatus according to the present invention. , 6th
The figure is a configuration block diagram showing an example of a conventional laser processing device. 11... Laser oscillator, 12... Laser oscillator controller power supply, 13
...Optical section, 14... Mounting table, 15... Workpiece, 18... Motor controller, 19...
- Gicroic mirror, 20... Objective lens, 21... Illumination lamp, 22... Condenser lens, 24... Imaging lens, 25... ... Camera, 26 ... TV monitor, 27 ... Interference optics section, 28 ... Prism, 29 ... Polarizer, 30 ... ...Analyzer, 32...Image processing device.

Claims (1)

【特許請求の範囲】 1、レーザ光を発振するレーザ発振器と、このレーザ発
振器に電力を供給し動作制御を行うコントローラと、前
記レーザ発振器から出射されたレーザ光を被加工物上へ
照射する光学部と、被加工物を保持しモータによりこの
被加工物をX、Y方向に移動させる機構を有する載置台
と、この載置台の動作を制御するコントローラを備えた
レーザ加工装置において、前記光学部は、レーザ光を被
加工物上へ集光させる対物レンズと、被加工物上の加工
点を照らす照明ランプとコンデンサレンズから構成され
る照明光学部と、前記被加工物のレーザ加工状態を観察
可能なカメラと結像レンズとTVモニタから構成される
観察光学部と、被加工物の表面状態に応じて干渉による
明暗コントラストを生じさせる干渉光学部とを備えたこ
とを特徴とするレーザ加工装置。 2、干渉光学部は、光が入射すると異常光線と常光線に
分離する複屈折性を有するくさび状に研摩した結晶を互
いに光軸が垂直になるように接合したプリズムと、光の
偏光状態の中より特定な方位角の直線偏光を選択的に取
り出せる偏光子と、入射する直線偏光の方位角を検出す
る検光子とを備えて成る請求項1記載のレーザ加工装置
。 3、レーザ加工中における被加工物の像を干渉光学部を
通し、この干渉光学部から得られる干渉コントラスト像
を画像処理装置に送り、干渉コントラスト像を画像処理
装置により明暗のレベル信号に処理し、この信号をレー
ザ発振器にフィードバックさせるよう構成して成る請求
項1記載のレーザ加工装置。
[Claims] 1. A laser oscillator that oscillates a laser beam, a controller that supplies power to the laser oscillator and controls its operation, and an optical system that irradiates a workpiece with the laser beam emitted from the laser oscillator. In the laser processing apparatus, the laser processing apparatus includes a part, a mounting table having a mechanism for holding a workpiece and moving the workpiece in X and Y directions by a motor, and a controller for controlling the operation of the mounting table. The system includes an illumination optical section consisting of an objective lens that focuses the laser beam onto the workpiece, an illumination lamp and a condenser lens that illuminates the processing point on the workpiece, and an optical system that observes the laser processing state of the workpiece. A laser processing device characterized by being equipped with an observation optical section consisting of an optical camera, an imaging lens, and a TV monitor, and an interference optical section that generates brightness and darkness contrast by interference depending on the surface condition of a workpiece. . 2. The interference optics section consists of a prism in which wedge-shaped polished crystals with birefringence, which separate light into extraordinary and ordinary rays when incident, are joined together so that the optical axes are perpendicular to each other, and a prism that separates the light into extraordinary and ordinary rays. 2. The laser processing apparatus according to claim 1, comprising: a polarizer capable of selectively extracting linearly polarized light having a specific azimuth; and an analyzer detecting the azimuth of the incident linearly polarized light. 3. The image of the workpiece during laser processing is passed through an interference optics section, and the interference contrast image obtained from this interference optics section is sent to an image processing device, which processes the interference contrast image into bright and dark level signals. , and is configured to feed back this signal to a laser oscillator.
JP2320711A 1990-11-27 1990-11-27 Laser beam machine Pending JPH04190991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2320711A JPH04190991A (en) 1990-11-27 1990-11-27 Laser beam machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2320711A JPH04190991A (en) 1990-11-27 1990-11-27 Laser beam machine

Publications (1)

Publication Number Publication Date
JPH04190991A true JPH04190991A (en) 1992-07-09

Family

ID=18124480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2320711A Pending JPH04190991A (en) 1990-11-27 1990-11-27 Laser beam machine

Country Status (1)

Country Link
JP (1) JPH04190991A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009175441A (en) * 2008-01-24 2009-08-06 Hamamatsu Photonics Kk Observing device
US7767928B2 (en) 2001-09-05 2010-08-03 Lasertec Gmbh Depth measurement and depth control or automatic depth control for a hollow to be produced by a laser processing device
US8307058B2 (en) 2008-09-16 2012-11-06 Ricoh Company, Ltd. Apparatus, method, and computer program product for processing information

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7767928B2 (en) 2001-09-05 2010-08-03 Lasertec Gmbh Depth measurement and depth control or automatic depth control for a hollow to be produced by a laser processing device
JP2009175441A (en) * 2008-01-24 2009-08-06 Hamamatsu Photonics Kk Observing device
US8307058B2 (en) 2008-09-16 2012-11-06 Ricoh Company, Ltd. Apparatus, method, and computer program product for processing information

Similar Documents

Publication Publication Date Title
KR100300212B1 (en) Method and apparatus for inspecting high-precision patterns
KR20210027349A (en) Laser processing equipment
US6167148A (en) Method and system for inspecting the surface of a wafer
US7746552B2 (en) Illumination module for evanescent illumination and microscope
JPH04190991A (en) Laser beam machine
KR101239409B1 (en) 2d shape and 3d shape measuring apparatus and method based on phase shifting interferometry
WO2003060589A1 (en) Auto focussing device and method
CN111761203B (en) High-magnification online real-time imaging device for laser processing
EP0173345B1 (en) Method and apparatus for simultaneously observing a transparent object from two directions
JPH1058179A (en) Laser beam machine
JPH0919784A (en) Device and method for laser patterning
JPH10176906A (en) Measuring device
EP3677942B1 (en) Observation device, observation method, and observation device control program
JPH0588072A (en) Automatic focusing device
JPH0222505A (en) Laser interference measuring instrument
JP2018187684A (en) Laser processing apparatus
JP3379928B2 (en) measuring device
JP2512050Y2 (en) Observation device in non-contact detection device
EP1204860A1 (en) Variable angle illumination wafer inspection system
JPH07270716A (en) Optical device
JPH03230544A (en) Apparatus for inspecting appearance of wafer
JP2949847B2 (en) Optical surface roughness measuring device
JP2000035540A (en) Differential interference microscope
JPH1164159A (en) Method and apparatus for inspecting surface of phase grating
JPH05232378A (en) Automatic focusing device