JPH04190642A - System for judging fault section of transmission line - Google Patents

System for judging fault section of transmission line

Info

Publication number
JPH04190642A
JPH04190642A JP2316557A JP31655790A JPH04190642A JP H04190642 A JPH04190642 A JP H04190642A JP 2316557 A JP2316557 A JP 2316557A JP 31655790 A JP31655790 A JP 31655790A JP H04190642 A JPH04190642 A JP H04190642A
Authority
JP
Japan
Prior art keywords
fault
zero
optical
underground
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2316557A
Other languages
Japanese (ja)
Other versions
JP2885932B2 (en
Inventor
Katsuro Shinoda
篠田 克郎
Hiroyuki Katsukawa
裕幸 勝川
Satoru Kato
悟 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2316557A priority Critical patent/JP2885932B2/en
Publication of JPH04190642A publication Critical patent/JPH04190642A/en
Application granted granted Critical
Publication of JP2885932B2 publication Critical patent/JP2885932B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/20Systems supporting electrical power generation, transmission or distribution using protection elements, arrangements or systems

Abstract

PURPOSE:To judge a fault in a bushing part as a fault on the underground line side correctly, by mounting optical CTs on voltage applied parts of the overhead line side and mounting a voltage sensor on the underground line side, and by judging the direction of a fault point through the output signals of the CTs and the sensor when the fault is generated. CONSTITUTION:On voltage applied parts of the side of overhead lines 2 above bushings 5, optical CTs 6 are mounted, and the currents of the conductors of the respective phase on the side of the overhead liens 2 can be sensed. That is, the light signals taken out from the optical CTs 6 of the respective phases are converted to electrical signals by optical sensors 8, and thereafter, the signals are combined by a zero-phase combiner 9. As a result, usually the respective phase currents are canceled by each other, and the output of the zero-phase combiner 9 after combining becomes zero. However, when a fault is generated in one of phases, the balance among the three phases is lost, and since the output of the zero-phase combiner 9 is not zero, this output level is sensed by a level sensor 10. Also, on the underground lines 3 side, a voltage sensor 11 is mounted, and by the phase differences between the sensed voltage and the currents sensed by the optical CTs 6, the direction of a fault current can be judged too.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は架空線路と地中線路とが接続されている送電線
において地絡事故が発生した際に、故障点が架空線路側
か地中線路側かを遠隔地から容易に知ることができるよ
うにした送電線故障区間判別システムに関するものであ
る。
Detailed Description of the Invention (Industrial Field of Application) The present invention provides a method for determining whether a fault point is on the overhead line side or underground when a ground fault occurs in a power transmission line where an overhead line and an underground line are connected. The present invention relates to a power transmission line failure section determination system that makes it possible to easily determine from a remote location whether the transmission line is on the track side or not.

(従来の技術) 架空線路と地中線路とが接続されている送電線において
地絡事故が発生し回路遮断器が作動したとき、地中線路
側で故障が発生した場合には地中ケーブルの絶縁破壊を
伴っていると考えられるので再投入を行うと事故の拡大
を招く危険がある。
(Prior art) When a ground fault occurs on a power transmission line that connects an overhead line and an underground line and a circuit breaker is activated, if a fault occurs on the underground line side, the underground cable is Since it is thought that dielectric breakdown has occurred, there is a risk that the accident will escalate if the power is turned on again.

これに対して架空線路側で故障が発生した場合には直ち
に再投入を行い停電の早期復旧を図る必要がある。
On the other hand, if a failure occurs on the overhead line side, it is necessary to immediately turn on the power again to restore the power outage as soon as possible.

このため、事故区間が地中線路側と架空線路側のいずれ
であるかを遠隔の監視所等において直ちに判別できるシ
ステムが望まれている。
Therefore, there is a need for a system that can immediately determine at a remote monitoring station whether the accident section is on the underground track side or the overhead track side.

ところが、従来のシステムにおいては両者の接続部に設
けられたブッシングの地中線路側に電流センサを取付け
ていたため、接続部のブッシングの内部で故障が発生し
た場合にはその電流センサよりも架空線路側で事故が発
生したとの判断がなされる。このためにブッシングの内
部における事故を架空線路側の事故と誤認してただちに
電源の再投入が行われ、事故を拡大してしまうおそれが
あった。
However, in the conventional system, the current sensor was installed on the underground line side of the bushing provided at the connection between the two, so if a failure occurred inside the bushing at the connection, the current sensor was installed on the overhead line rather than the current sensor. It is determined that an accident occurred on the side. For this reason, an accident inside the bushing would be mistakenly recognized as an accident on the overhead line, and the power would be immediately turned on again, potentially exacerbating the accident.

(発明が解決しようとする課題) 本発明は上記したように従来の故障区間判別システムに
おいて盲点となっていたブッシング部分における故障を
正しく地中線路側の故障と判別できるようにし、これに
よって電源の再投入によるブッシング事故の拡大を防止
することができる送電線故障区間判別システムを提供す
ることを目的として完成されたものである。
(Problems to be Solved by the Invention) As described above, the present invention makes it possible to correctly determine a failure in the bushing part, which was a blind spot in the conventional failure section discrimination system, as a failure on the underground line side, and thereby It was completed with the aim of providing a faulty section determination system for power transmission lines that can prevent the spread of bushing accidents due to reinsertion.

(課題を解決するための手段) 上記の課題を解決するためになされた本発明は、送電線
を架空線路からブッシングを介して地中線路へ接続する
部分の架空線路側の課電部に光CTを取付けるとともに
、地中線路側に電圧センサを取付け、これらの出力信号
により故障が発生した際の故障点の方向を判別すること
を特徴とするものである。
(Means for Solving the Problems) The present invention, which has been made to solve the above problems, provides a power supply section on the overhead line side of the part where the power transmission line is connected from the overhead line to the underground line via the bushing. The system is characterized in that a CT is installed and a voltage sensor is installed on the underground line side, and the direction of the failure point when a failure occurs is determined based on these output signals.

以下に本発明を図示の実施例により更に詳細に説明する
The present invention will be explained in more detail below with reference to illustrated embodiments.

(実施例) 第1図は送電線路の全体を概念的に示す図であり、(1
)は電源、(2)は架空線路、(3)は地中線路、(4
)は負荷であり、架空線路(2ンと地中線路(3)との
接続部分にはブッシング(5)が設けられている。
(Example) Figure 1 is a diagram conceptually showing the entire power transmission line.
) is the power supply, (2) is the overhead line, (3) is the underground line, (4
) is a load, and a bushing (5) is provided at the connection between the overhead line (2) and the underground line (3).

第2図は本発明の故障区間判別システムの要部を示すも
のであり、図示のようにブッシング(5)よりも上方の
架空線路(2)側の課電部に、光CT (61が取付け
られている。光CT (61は課電部の導体に流れる電
流によって発生する磁界の強さをBSOのようなファラ
デイー素子により光信号に変換し、光ファイバ(7)を
通じて光検出器(8)へ取出すことができるもので、架
空線路(2)側の各相の導体の電流を検出することがで
きる。実施例では光CT (6)は光フアイバ内蔵碍子
(8)の上端に支持されており、光ファイバ(7)は碍
子内部を貫通して接地側に引き出されている。各相の光
CT (6)から取出された光信号は光検出器(8)に
より電気信号に変換されたうえで零相合成器(9)で零
相合成される。この結果、平常時には各相の電流が互い
に打ち消し合って零相合成後の出力はゼロとなるが、い
ずれかの相で事故が発生すると三相のバランスが崩れ、
零相合成器(9)からの出力がゼロとはならないのでこ
れをレベル検出器QOIでレベル検出する。このように
して架空線路(2)側の光CT (6)により事故発生
が検出できる。
Fig. 2 shows the main part of the fault section determination system of the present invention. Optical CT (61 converts the strength of the magnetic field generated by the current flowing through the conductor of the charged part into an optical signal using a Faraday element such as a BSO, and transmits the signal to a photodetector (8) through an optical fiber (7). It is possible to detect the current in the conductor of each phase on the overhead line (2) side.In the embodiment, the optical CT (6) is supported on the upper end of the insulator (8) with a built-in optical fiber. The optical fiber (7) passes through the inside of the insulator and is led out to the ground side.The optical signals extracted from the optical CT (6) of each phase are converted into electrical signals by the photodetector (8). Then, the zero phases are combined in the zero phase combiner (9).As a result, under normal conditions, the currents of each phase cancel each other out and the output after zero phase combination becomes zero, but if a fault occurs in one of the phases. Then, the balance of the three phases collapses,
Since the output from the zero-phase synthesizer (9) is not zero, its level is detected by the level detector QOI. In this way, the occurrence of an accident can be detected by the optical CT (6) on the overhead line (2) side.

また地中線路(3)側に電圧センサaυが取付けられて
いる。その出力は検出部aのを介して上記の光CT(6
)からの出力とともに表示部α3に表示され、公知の通
信手段によって遠隔の監視所等へ伝送される。
Further, a voltage sensor aυ is attached to the underground line (3) side. The output is sent to the above-mentioned optical CT (6
) is displayed on the display section α3 together with the output from the 3rd party, and is transmitted to a remote monitoring station or the like by a known communication means.

(作用) このように構成きれた本発明の送電線故障区間判別シス
テムにおいては、地中線路(3)において地絡事故が発
生したときにもブッシング(5)の内部で地絡事故が発
生したときにも架空線路(2)に事故電流が流れ光CT
 (6)により検出される。これに対して架空線路(2
)において地絡事故が発生したときには光CT (6)
は電流を検出しない。従って本発明によれば架空線路(
2)側の事故が地中線路(3)側の事故かを正確に判別
できることは勿論のこと、ブッシング(5)の内部にお
いて地絡事故を生じた場合にはこれを電源の再投入を行
わない地中線路(3)側の事故と判別することとなる。
(Function) In the power transmission line failure section determination system of the present invention configured as described above, even when a ground fault occurs in the underground line (3), it is possible to detect that a ground fault has occurred inside the bushing (5). Occasionally, a fault current flows through the overhead line (2) and optical CT
(6) is detected. In contrast, the overhead line (2
) when a ground fault occurs, optical CT (6)
does not detect current. Therefore, according to the present invention, the overhead line (
It goes without saying that it is possible to accurately determine whether an accident on the 2) side is an accident on the underground line (3) side, and if a ground fault occurs inside the bushing (5), the power can be turned on again. The accident is determined to have occurred on the underground track (3) side, where there was no accident.

このため、ブッシング(5)の内部で地絡事故が生じた
時に架空線路(2)側の事故と誤認して電源の再投入を
行うことがなく、事故の拡大を防止できる。
Therefore, when a ground fault occurs inside the bushing (5), there is no need to turn on the power again because the ground fault occurs on the overhead line (2) side, thereby preventing the accident from spreading.

また本発明においては地中線路(3)側に電圧センサ0
υを取付けであるので電流と電圧との位相差によって事
故電流の流れる方向を判別することができ、負荷側が事
故を生じたものとは別の糸路により電源に接続されてお
り、架空線路(2)の事故点に向かって事故電流が負荷
側から流れるような場合にも、事故区間が架空線路(2
)側か地中線路(3)側かを正確に判別することができ
る。なお電圧センサaυを地中線路(3)側に設けたの
は絶縁や取付けが容易であり、設備コストを低減できる
ためである。
In addition, in the present invention, the voltage sensor 0 is installed on the underground line (3) side.
Since υ is attached, the direction in which the fault current flows can be determined based on the phase difference between current and voltage. Even in the case where the fault current flows from the load side toward the fault point in 2), the fault section is connected to the overhead line (2).
) side or the underground track (3) side can be accurately determined. Note that the voltage sensor aυ is provided on the underground line (3) side because it is easy to insulate and install, and the equipment cost can be reduced.

(発明の効果) 本発明は以上に説明したように、従来の故障区間判別シ
テスムにおいて盲点となっていたブッシングの内部にお
ける地絡事故を地中線路側の事故と正しく判別すること
ができるものであり、従来のようにブッシング内部の事
故を誤って、架空線路側の事故と判別し、電源を再投入
して事故を拡大するおそれを防止することができる。ま
た本発明では電圧センサを地中線路側に取付けたので、
光CTにより検出された電流と電圧センサにより検出さ
れた電圧との位相差によって事故電流の方向をも正しく
判別できるうえ、電圧センサをも架空線路側に設置した
場合に比較して全体としての設備コストを低減すること
ができる。よって、本発明は従来の問題点を一掃した送
電線故障区間判別システムとして、産業の発展に寄与す
るところは極めて大である。
(Effects of the Invention) As explained above, the present invention is capable of correctly distinguishing a ground fault inside a bushing, which was a blind spot in the conventional failure section discrimination system, from an accident on the underground line side. This makes it possible to prevent an accident inside the bushing from being erroneously determined as an accident on the overhead line and turning the power back on, which would aggravate the accident, as was the case in the past. In addition, in the present invention, since the voltage sensor is installed on the underground line side,
The direction of the fault current can be correctly determined based on the phase difference between the current detected by optical CT and the voltage detected by the voltage sensor, and the equipment as a whole is simpler than when the voltage sensor is also installed on the overhead line side. Cost can be reduced. Therefore, the present invention greatly contributes to the development of industry as a power transmission line failure section determination system that eliminates the problems of the conventional system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は送電線路の全体を概念的に示す系統図、第2図
は本発明の実施例の要部を示すブロック図である。 (2):架空線路、(3):地中線路、(5):ブッシ
ング、(6) :光CT、αυ:電圧センサ。 特許出願人  日本碍子株式会社 代  理  人   名  嶋  明  部間    
     綿  貫  達  離間         
山  本  文  夫11面
FIG. 1 is a system diagram conceptually showing the entire power transmission line, and FIG. 2 is a block diagram showing the main parts of an embodiment of the present invention. (2): Overhead line, (3): Underground line, (5): Bushing, (6): Optical CT, αυ: Voltage sensor. Patent applicant: Nippon Insulator Co., Ltd. Representative name: Akira Shima Buma
Watanuki Tatsu Separation
Fumi Yamamoto page 11

Claims (1)

【特許請求の範囲】[Claims] 送電線を架空線路からブッシングを介して地中線路へ接
続する部分の架空線路側の課電部に光CTを取付けると
ともに、地中線路側に電圧センサを取付け、これらの出
力信号により故障が発生した際の故障点の方向を判別す
ることを特徴とする送電線故障区間判別システム。
An optical CT is installed on the power charging section on the overhead line side where the power transmission line is connected to the underground line via a bushing, and a voltage sensor is installed on the underground line side, and these output signals cause failures. A power transmission line failure section determination system that determines the direction of a failure point when a failure occurs.
JP2316557A 1990-11-21 1990-11-21 Transmission line fault section identification system Expired - Lifetime JP2885932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2316557A JP2885932B2 (en) 1990-11-21 1990-11-21 Transmission line fault section identification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2316557A JP2885932B2 (en) 1990-11-21 1990-11-21 Transmission line fault section identification system

Publications (2)

Publication Number Publication Date
JPH04190642A true JPH04190642A (en) 1992-07-09
JP2885932B2 JP2885932B2 (en) 1999-04-26

Family

ID=18078427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2316557A Expired - Lifetime JP2885932B2 (en) 1990-11-21 1990-11-21 Transmission line fault section identification system

Country Status (1)

Country Link
JP (1) JP2885932B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160144188A (en) * 2015-06-08 2016-12-16 한국전력공사 Apparatus and method for detecting fault line
GB2548863A (en) * 2016-03-31 2017-10-04 4Eco Ltd Contactless system for measuring power flow direction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160144188A (en) * 2015-06-08 2016-12-16 한국전력공사 Apparatus and method for detecting fault line
GB2548863A (en) * 2016-03-31 2017-10-04 4Eco Ltd Contactless system for measuring power flow direction

Also Published As

Publication number Publication date
JP2885932B2 (en) 1999-04-26

Similar Documents

Publication Publication Date Title
US5825599A (en) Ground fault circuit interrupter system with uncommitted contacts
US5886861A (en) Apparatus providing response to arc faults in a power distribution cable protected by cable limiters
CN86102108A (en) Gas-insulated switchgear device
KR20060132419A (en) Pilot ground fault protective relaying scheme in traction power supply system
EP1074849A2 (en) Fault detection in electrical transmission lines
EP0519249A2 (en) Apparatus for detecting short-circuit for use in bi-polar d.c. transmission system
JPH04190642A (en) System for judging fault section of transmission line
US20020080535A1 (en) Multiple ground fault trip function system and method for same
EP0905849A1 (en) Switching device for managing a multi-phase alternating-voltage network having a number of load units
JP4420259B2 (en) Detection method of ground fault in two parallel underground transmission lines
JP2000292475A (en) Method and apparatus for detecting ground fault accident of underground branch transmission line nd apparatus
JPS59203967A (en) Detection system for wire breaking of ungrounded system distribution line
JP2866172B2 (en) Transmission line fault direction locating method
FI115093B (en) Protection relay arrangement for short circuit and earth fault protection of power distribution network
JP2891695B1 (en) Failure detection device for switching switches for AC electric railways
JP2578550B2 (en) Ground fault line selection protection relay
JPS63223575A (en) Device for locating accident section of transmission/ distribution line
JPH09251051A (en) Method for detecting grounding direction of transmission and distribution line
JPH0283467A (en) Apparatus for detecting distribution line accident section
JPH0580108A (en) Ground shortcircuit sensing device
JPH0627761B2 (en) Electric power cable fault detection method
JP2600348B2 (en) Road lighting fixture insulation monitoring device
JPS6199874A (en) Fault current detecting and displaying device
JPH05219645A (en) Ground fault direction detecting method for transmission /distribution line
JPH0694778A (en) Fault section locating method