JPH04190200A - Multiple layer film mirror for vacuum ultra-violet region and its fabrication - Google Patents

Multiple layer film mirror for vacuum ultra-violet region and its fabrication

Info

Publication number
JPH04190200A
JPH04190200A JP31980590A JP31980590A JPH04190200A JP H04190200 A JPH04190200 A JP H04190200A JP 31980590 A JP31980590 A JP 31980590A JP 31980590 A JP31980590 A JP 31980590A JP H04190200 A JPH04190200 A JP H04190200A
Authority
JP
Japan
Prior art keywords
light
layer
dispersed
particles
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31980590A
Other languages
Japanese (ja)
Inventor
Nobuo Matsuki
信雄 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP31980590A priority Critical patent/JPH04190200A/en
Publication of JPH04190200A publication Critical patent/JPH04190200A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE:To enable realization of high reflection rate and easy fabrication by repeating overlay of optical crystal films transparent for vacuum ultra-violet light and dispersed reflection layers where evaporation particles of metal with high reflection rate is dispersed very thin one by one. CONSTITUTION:A multi-layered mirror 14 with the thickness of 1/2lambda is constituted of optical crystal films 11 transparent for vacuum ultra-violet light and dispersed reflection layers 13 where evaporation particles 12 of metal with high reflection rate is dispersed very thin and multiple layers are formed by repeating overlaying the crystal film 11 and the reflection layer 13 one by one like the mirrors 15, 16.... When an ultra-violet light with the wavelength lambda of below 200nm comes in the multiple layers mirror, the light having penetrated the first layer crystal film 11 and reached the particles in the reflection layer 13, almost reflects and partly penetrates the particles 12. As the particles 12 are dispersed very thin, very little light penetrates because of very thin particles 12 layer. When light penetrates in between particles 12 the light wave the comes uniform due to minimum gaps d. The light having penetrated the first layer repeats reflection and operation below the second layer in the same phase. As the light reflected by each mirror layer gathers to be reflection light, the reflection rate is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、波長が2000rAより短い真空紫外光領
域用の多層膜ミラー及びその製法に関し、2つの透明な
光学結晶を用いる従来法では製作できなかったこの波長
領域の多層膜ミラーを実現し、簡単に作ることを可能と
したものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a multilayer mirror for use in the vacuum ultraviolet region with a wavelength shorter than 2000 rA, and a method for manufacturing the same, which cannot be manufactured by the conventional method using two transparent optical crystals. We have realized a multilayer mirror in this wavelength range, which was previously unavailable, and made it possible to easily manufacture it.

〔従来の技術〕[Conventional technology]

近年、直径が10ff1以下の比較的小型の粒子加速器
としてシンクロトロンが開発されつつあり、このシンク
ロトロンからの放射光(SOR光)の利用分野の一つに
赤外・可視からX線に至る広い範囲の連続スペクトルを
持っSOR光を利用する真空紫外光領域の分光研究なと
かあり、従来の安定した連続光源を得ることがてきない
という問題が解決され、飛躍的な発展を遂げている。
In recent years, synchrotrons have been developed as relatively small particle accelerators with a diameter of 10ff1 or less, and synchrotron radiation (SOR light) can be used in a wide range of fields, from infrared and visible to X-rays. There is spectroscopic research in the vacuum ultraviolet light region that uses SOR light with a continuous spectrum over a wide range, which has solved the problem of not being able to obtain a stable continuous light source and is making dramatic progress.

このような真空紫外光領域は、可視・紫外光領域に比べ
て空気によって強く吸収されることから光源を含む光学
系を真空中に置かねばならず、しかも1100n以下の
真空紫外光を透過させる窓材がないことあり、光学系を
透過式のものでなく反射光学系で構成しなければならな
いことも多い。
Since this vacuum ultraviolet light region is more strongly absorbed by air than the visible and ultraviolet light regions, the optical system including the light source must be placed in a vacuum, and a window that transmits vacuum ultraviolet light of 1100 nm or less must be installed. Because of the lack of materials, the optical system often has to be constructed with a reflective optical system rather than a transmissive one.

この反射光学系を高効率にするには、反射率の高いミラ
ーが必要であり、高反射率のミラーとして多層膜ミラー
が良く知られている。
In order to make this reflective optical system highly efficient, a mirror with high reflectance is required, and a multilayer mirror is well known as a mirror with high reflectance.

現在、この真空紫外光領域以外での多層膜ミラーは、2
種類の光学結晶を繰返し重ねて多層に形成し、上の層で
反射されずに透過した光を次の層で反射させることを繰
り返して反射率を高めるようにしている。
Currently, multilayer mirrors for use outside of this vacuum ultraviolet light region are
Different types of optical crystals are repeatedly stacked to form multiple layers, and the light that passes through the upper layer without being reflected is reflected by the next layer, increasing the reflectance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、真空紫外光領域については、従来と同様の2
種類の光学結晶膜を繰返し重ねて多層に形成する方法で
、高反射率の多層膜ミラーを製作することが出来ないと
いう問題がある。
However, in the vacuum ultraviolet region, the same 2
There is a problem in that a multilayer mirror with high reflectance cannot be manufactured using a method in which different types of optical crystal films are repeatedly stacked to form a multilayer film.

一方、この真空紫外光領域での反射率が高いとされるミ
ラーにアルミニウムなどの金属膜を用いるものがあるが
、アルミニウムの均一な膜を蒸着法で作ろうとしても最
低10nm程度の厚さが必要であり、この厚さの金属膜
では、上の層を透過する光のほとんどが吸収されてしま
い、多層膜ミラーにしても次の層からの反射による反射
効率の向上か図れないという問題がある。
On the other hand, some mirrors that are said to have a high reflectance in the vacuum ultraviolet region use a metal film such as aluminum, but even if you try to make a uniform film of aluminum by vapor deposition, the thickness is at least 10 nm. However, with a metal film of this thickness, most of the light that passes through the upper layer is absorbed, and even with a multilayer mirror, there is a problem that it is not possible to improve the reflection efficiency by reflecting from the next layer. be.

二の発明は、前記従来技術における問題点を解決して、
真空紫外光領域における高反射率の多層膜ミラーを実現
する二と及び簡単に作ることかできる真空紫外光領域用
の多層膜ミラー及びその製法を提供しようとするもので
ある。
The second invention solves the problems in the prior art,
The present invention aims to provide a multilayer mirror for the vacuum ultraviolet region that can be easily produced, and a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

二の発明の真空紫外光領域用の多層膜ミラーは、真空紫
外光に対し透明な光学結晶膜と高反射率の金属材料の蒸
着粒子を極薄く分散させた分散反射層とを交互に繰返し
て多層にしたことを特徴とするものである。
The multilayer mirror for use in the vacuum ultraviolet light region of the second invention consists of alternately repeating an optical crystal film transparent to vacuum ultraviolet light and a dispersed reflection layer in which vapor-deposited particles of a highly reflective metal material are dispersed extremely thinly. It is characterized by having multiple layers.

また、この発明の真空紫外光領域用の多層膜ミラーの製
法は、真空紫外光領域用の多層膜ミラーを製作するに際
し、透明な光学結晶膜表面に高反射率の金属材料の蒸着
粒子を極薄く分散させて分散反射層としたのち、前記光
学結晶膜と前記分散反射層を繰返し形成して多層にする
ようにしたことを特徴とするものである。
In addition, in the method for manufacturing a multilayer mirror for use in the vacuum ultraviolet light region of the present invention, when manufacturing a multilayer film mirror for use in the vacuum ultraviolet light region, vapor-deposited particles of a metal material with high reflectance are extremely applied to the surface of a transparent optical crystal film. The present invention is characterized in that after the optical crystal film is thinly dispersed to form a dispersed reflective layer, the optical crystal film and the dispersed reflective layer are repeatedly formed to form a multilayer.

〔作 用〕[For production]

この発明の真空紫外光領域用の多層膜ミラーによれば、
Mg F、やCa F 2なとのぶつ化物などの透明の
光学結晶膜と、アルミニウムなどの金属材料の粒子径゛
が例えばl nlIi度の蒸着粒子を極薄く蒸着・分散
した分散反射膜とを交互に繰り返して多層膜ミラーとす
るようにしており、真空紫外光領域においても、分散反
射層で直接反射される光と、蒸着粒子の間及びその内部
を透過して次の層の分散反射層で反射される光を利用し
、反射されない光を蒸着粒子間を透過させるようにして
光の吸収を極力抑え、反射効率の向上を図るようにして
いる。
According to the multilayer mirror for vacuum ultraviolet light region of this invention,
A transparent optical crystal film made of a compound of MgF, CaF2, etc., and a dispersed reflection film made by depositing and dispersing ultrathin vapor-deposited particles of a metal material such as aluminum with a particle size of, for example, lnlIi degrees. This is repeated alternately to form a multilayer mirror, and even in the vacuum ultraviolet light region, light is directly reflected by the dispersed reflection layer, and light is transmitted between and inside the vapor deposited particles to form the next layer of the dispersed reflection layer. By utilizing the light reflected by the vapor deposited particles, the light that is not reflected is transmitted between the vapor deposited particles, thereby suppressing light absorption as much as possible and improving the reflection efficiency.

また、この発明の真空紫外光領域用の多層膜ミラーの製
法によれば、MgF2やCa F 2などのぶつ化物な
どの透明の光学結晶膜にアルミニウムなどの金属材料の
粒子径が例えばlnm程度の蒸着粒子を極薄く蒸着・分
散させて分散反射膜を成膜し、この透明光学結晶膜と金
属材料の分散反射膜を交互に繰返して多層膜ミラーとす
ることて、真空紫外光領域においても、分散反射層を透
過する光の吸収を極力抑え、反射効率の向上を図るよう
にしている。
Further, according to the method of manufacturing a multilayer mirror for use in the vacuum ultraviolet region of the present invention, a transparent optical crystal film such as a compound such as MgF2 or CaF2 is coated with a metal material such as aluminum having a particle size of, for example, about 1 nm. By depositing and dispersing vapor-deposited particles extremely thinly to form a dispersed reflective film, and by alternately repeating this transparent optical crystal film and a dispersed reflective film made of a metal material to form a multilayer mirror, it is possible to achieve even in the vacuum ultraviolet light region. The absorption of light transmitted through the dispersed reflection layer is suppressed as much as possible to improve reflection efficiency.

したかって、これら多層膜ミラーは、真空紫外光領域の
分光研究や自由電子レーサーの高効率な反射系として利
用することかできる。
Therefore, these multilayer mirrors can be used for spectroscopic research in the vacuum ultraviolet region and as a highly efficient reflection system for free electron lasers.

〔実施例〕〔Example〕

以下、この発明の実施例を図面を参照しながら詳細に説
明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は、この発明の真空紫外光領域用の多層膜ミラー
の一実施例にかかる断面図である。
FIG. 1 is a sectional view of an embodiment of a multilayer mirror for use in the vacuum ultraviolet region of the present invention.

この真空紫外光領域用の多層膜ミラー〕0は、アルミニ
ウムなとの高反射率の金属材料であってもその厚さをl
nm程度に薄くすることができれば、真空紫外光領域の
光の透過の際の吸収を極力減らすことができる反射膜に
てき、多層膜ミラーへの適用が可能となるという考えに
基づき、蒸着粒子を均一に成膜するのてなく、島状に分
散させた分散反射膜を用いるようにしている。
This multilayer mirror for vacuum ultraviolet light region] 0 is made of a metal material with high reflectance such as aluminum, but its thickness is l
Based on the idea that if the thickness could be reduced to about nanometers, it would become a reflective film that could minimize the absorption of light in the vacuum ultraviolet region during transmission, and could be applied to multilayer mirrors. Instead of forming a uniform film, we use a dispersed reflective film that is dispersed into islands.

この真空紫外光領域用の多層膜ミラー10は、第1図に
示すように、波長か200 nmより短い真空紫外光に
対し透明な光学結晶膜1]と高反射率の金属材料の蒸着
粒子12を極薄く分散させた分散反射層13とて1つの
層のミラー14が構成され、これら光学結晶膜11と分
散反射層13を交互に繰返して多層にし、これ以降の各
層のミラー15.16.・・・が構成されている。
As shown in FIG. 1, this multilayer mirror 10 for use in the vacuum ultraviolet light region includes an optical crystal film 1 that is transparent to vacuum ultraviolet light with a wavelength shorter than 200 nm and vapor-deposited particles 12 of a highly reflective metal material. One layer of the mirror 14 is composed of the dispersed reflection layer 13 in which the optical crystal film 11 and the dispersed reflection layer 13 are dispersed in an extremely thin layer, and the optical crystal film 11 and the dispersed reflection layer 13 are alternately repeated to form a multilayer, and the mirrors 15, 16, and so on of each subsequent layer are formed. ...is configured.

この光学結晶膜11としては、例えばMgF2やCa 
F 2などのぶつ化物などがあり、C,VD法等によっ
て成膜することで形成される。
This optical crystal film 11 may be made of, for example, MgF2 or Ca.
It includes a compound such as F2, and is formed by forming a film using a C, VD method, or the like.

この透明な光学結晶膜11の厚さは、多層膜ミラー10
の1層を構成する光学結晶膜11の厚さと分散反射層1
3の厚さの合計が反射すべき真空紫外光領域の波長λの
約1/2(−λ/2)となるようにし、透過して次の層
の分散反射層13で反射した光と位相か合うようにする
The thickness of this transparent optical crystal film 11 is the same as that of the multilayer mirror 10.
The thickness of the optical crystal film 11 constituting one layer of the dispersion reflection layer 1
The total thickness of 3 is approximately 1/2 (-λ/2) of the wavelength λ of the vacuum ultraviolet light region to be reflected, and the phase of the light transmitted and reflected by the next layer, the dispersive reflection layer 13, is Make sure it fits.

したがって、波長λが170nrnの真空紫外光を対象
とする場合には、合計の厚さを約85nmとすればよい
Therefore, when the target is vacuum ultraviolet light having a wavelength λ of 170 nrn, the total thickness may be about 85 nm.

分散反射層13は、例えばアルミニウムの蒸着粒子12
を約1nm程度の厚さて光学結晶膜11上に蒸着するこ
とて形成されており、この厚さはアルミニウムの蒸着粒
子12のほぼ直径に相当する大きさで、島状に蒸着され
た粒子か分散した状態となり、蒸着粒子12間の間隔d
が約1nm程度になっている。
The dispersed reflection layer 13 is made of vapor-deposited particles 12 of aluminum, for example.
It is formed by vapor-depositing on the optical crystal film 11 to a thickness of about 1 nm, and this thickness is approximately equivalent to the diameter of the vapor-deposited aluminum particles 12, and the particles are vapor-deposited in an island shape or dispersed. In this state, the distance d between the deposited particles 12
is approximately 1 nm.

このような真空紫外光領域の多層膜ミラー10ては、波
長λが200 nm以下の真空紫外光か入射すると、1
層目のミラー14の光学結晶膜11を透過して分散反射
層13の蒸着粒子ユ2に当たった光は大部分が直接反射
され、その一部が蒸着粒子12を透過する。また、1層
目のミラー14の蒸着粒子12間の光はそのまま透過す
る。
When vacuum ultraviolet light with a wavelength λ of 200 nm or less is incident on such a vacuum ultraviolet light region multilayer mirror 10, 1
Most of the light that passes through the optical crystal film 11 of the mirror 14 and hits the vapor deposited particles 2 of the dispersed reflection layer 13 is directly reflected, and a part of the light passes through the vapor deposited particles 12. Further, light between the vapor deposited particles 12 of the first layer mirror 14 is transmitted as is.

そして、1層目のミラーユ4て蒸着粒子12を透過した
光と蒸着粒子12の間を透過した光か2層目のミラー1
5に入り、ここで分散反射層1Bの蒸着粒子12に当た
った光は、大部分が直接反射され、その一部が蒸着粒子
12内を透過する。
Then, the light that has passed through the vapor deposition particles 12 through the mirror 4 of the first layer and the light that has passed between the vapor deposition particles 12 or the light that has passed through the mirror 1 of the second layer.
5, and here, most of the light that hits the vapor deposited particles 12 of the dispersed reflection layer 1B is directly reflected, and a part of it passes through the vapor deposited particles 12.

また、2層目のミラー15の蒸着粒子12間の光はその
まま透過する。
Further, light between the vapor deposited particles 12 of the second layer mirror 15 is transmitted as is.

そして、2層目のミラー15を透過した光が3層目のミ
ラー16に入り、これ以降のミラー17゜・・て繰り返
される。
Then, the light transmitted through the second-layer mirror 15 enters the third-layer mirror 16, and the process is repeated through the subsequent mirrors 17°, and so on.

この分散反射層13では、波長λの光に対し、蒸着粒子
12の間隔dが極小さい二とから、これら島状の蒸着粒
子12間を透過する光の波が乱れず、均一な状態のまま
透過することになるとともに、蒸着粒子12内を透過す
る光もその厚さが極薄いことから極僅かであり、吸収を
極力抑えることかできる。
In this distributed reflection layer 13, since the interval d between the vapor deposited particles 12 is extremely small for light of wavelength λ, the waves of light transmitted between these island-shaped vapor deposited particles 12 are not disturbed and remain in a uniform state. At the same time, since the thickness of the vapor-deposited particles 12 is extremely thin, the amount of light that passes through the vapor-deposited particles 12 is extremely small, and absorption can be suppressed as much as possible.

そして、各ミラー14,15.山で反射された光が加わ
って反射光となり、反射光率の向上となる。
And each mirror 14, 15 . The light reflected by the mountain is added to the reflected light, which improves the reflection rate.

この結果、真空紫外光領域であっても光学結晶膜ユ1と
分散反射層ユ3とて高効率な多層膜ミラー10を実現て
きる。
As a result, even in the vacuum ultraviolet region, the optical crystal film 1 and the distributed reflection layer 3 can realize a highly efficient multilayer mirror 10.

次に、この真空紫外光領域用の多層膜ミラーの製法の一
実施例について、第2図に示す工程図により説明する。
Next, an example of a method for manufacturing a multilayer mirror for use in the vacuum ultraviolet region will be described with reference to the process diagram shown in FIG.

■ まず、M g F 2やCa F 2などのふり化
物などの透明の光学結晶膜11をCVD法等によって成
膜する。
(2) First, a transparent optical crystal film 11 made of fluoride such as M g F 2 or Ca F 2 is formed by CVD or the like.

この透明な光学結晶膜11の厚さは、多層膜ミラー10
の1層を構成する光学結晶膜11の厚さと分散反射層1
3の厚さの合計が反射すべき真空紫外光領域の波長λの
約1/2となるようにし、透過して次の層の反射層2て
反射した光と位相が合うようにする。
The thickness of this transparent optical crystal film 11 is the same as that of the multilayer mirror 10.
The thickness of the optical crystal film 11 constituting one layer of the dispersion reflection layer 1
The total thickness of 3 is about 1/2 of the wavelength λ of the vacuum ultraviolet light region to be reflected, so that the phase of the light transmitted and reflected by the next reflective layer 2 matches.

したがって、波長λが170nsの真空紫外光を対象と
する場合には、合計の厚さを約85ngとすればよい。
Therefore, when the target is vacuum ultraviolet light having a wavelength λ of 170 ns, the total thickness may be about 85 ng.

■ この光学結晶膜11の表面にアルミニ・ラムなどの
金属材料を蒸着して行き、光学結晶膜11の表面に島状
に金属か付着してその厚さがlnm程度になるようにし
て分散反射膜13とする。
■ A metal material such as aluminum laminate is vapor-deposited on the surface of the optical crystal film 11, and the metal is adhered to the surface of the optical crystal film 11 in an island shape with a thickness of about 1 nm, so that the distributed reflection is achieved. Let it be film 13.

このアルミニウムの蒸着は、アルミニウムの蒸着粒子1
2の直径がほぼ1r+a程度になっていることから、蒸
着粒子12が1粒づつ光学結晶膜11の表面に並ぶよう
に付着させることてなされ、この程度の厚さの蒸着では
、蒸着粒子]2が均一にならず、島状に分散した状態と
なるとともに、各着粒子12の間隔dか約1nm程蒸度
となる。
This vapor deposition of aluminum is performed by depositing aluminum particles 1
Since the diameter of 2 is approximately 1r+a, the evaporation particles 12 are deposited one by one so as to be lined up on the surface of the optical crystal film 11. In evaporation of this thickness, the evaporation particles] 2 The particles are not uniform, but are dispersed in an island-like manner, and the distance d between each deposited particle 12 is approximately 1 nm.

■ こうして透明な光学結晶膜11上に約10I8の島
状に分散した蒸着粒子12を蒸着させた分散反射層13
を成膜して1層目のミラー14か作られる。
■ A dispersed reflection layer 13 in which vapor-deposited particles 12 dispersed in the form of islands of approximately 10I8 are vapor-deposited on the transparent optical crystal film 11.
The first layer of mirror 14 is formed by forming a film.

■ このような1層目のミラー14が作られたのち、上
記■:透明な光学結晶膜11のCVDによる成膜、■:
島状に分散させた蒸着粒子12を蒸着させた分散反射層
13の成膜、■、2層目のミラー15の完成を繰返し、
3層目以降のミラー16、・・・を形成することて多層
膜ミラー10とする。
■ After such a first layer mirror 14 is made, the above ■: Deposition of a transparent optical crystal film 11 by CVD, ■:
Repeating the steps of forming a dispersed reflection layer 13 on which vapor-deposited particles 12 are vapor-deposited dispersed in an island shape, ①, and completing the second layer mirror 15,
The multilayer mirror 10 is formed by forming the third and subsequent mirror layers 16, . . . .

この多層膜ミラー10の層数は、各層のミラー14.1
5.16の分散反射層13による真空紫外光領域の光の
反射及び透過の際の吸収程度によって定まり、最も下の
分散反射層13で反射した光が反射率の向上に寄与する
程度とそこに至る光の吸収の程度により決められる。
The number of layers of this multilayer mirror 10 is 14.1 mirrors in each layer.
It is determined by the degree of absorption during reflection and transmission of light in the vacuum ultraviolet region by the dispersed reflection layer 13 in 5.16, and determines the extent to which the light reflected by the lowermost dispersed reflection layer 13 contributes to improving the reflectance. It is determined by the degree of light absorption.

例えばアルミニウムの蒸着粒子]2による分散反射層1
3を用いる場合には、各ミラー]4,15.16.・・
の分散反射層13による反射率が均一な反射層を形成す
る場合に比へて小さいことから、通常の多層膜ミラーに
比べて層数を多くする必要かある。
For example, a dispersed reflective layer 1 made of vapor-deposited particles of aluminum]2
3, each mirror]4, 15.16.・・・
Since the reflectance of the dispersed reflective layer 13 is relatively small when forming a uniform reflective layer, it is necessary to increase the number of layers compared to a normal multilayer mirror.

二のようにして作られた真空紫外光領域用の多層膜ミラ
ー10ては、第1図に示すように、最上層に光学結晶膜
11を配置しその次に分散反射層13か位置する状態で
使用され、反射に利用する蒸着粒子12か一平面上に並
んた状態とする。
As shown in FIG. 1, the multilayer mirror 10 for the vacuum ultraviolet region made as described in 2 has an optical crystal film 11 disposed on the top layer, followed by a dispersive reflection layer 13. The vapor-deposited particles 12 used for reflection are arranged on one plane.

そして、真空紫外光領域の光か入射すると、最上層のミ
ラー14の分散反射層13で反射されると同時に、透過
した光か次のミラー15の分散反射層13で反射され、
さらに透過した光か次のミラー16.17の分散反射層
13で反射される。
When light in the vacuum ultraviolet region is incident, it is reflected by the distributed reflection layer 13 of the uppermost mirror 14, and at the same time, the transmitted light is reflected by the distributed reflection layer 13 of the next mirror 15.
Further, the transmitted light is reflected by the dispersive reflection layer 13 of the next mirror 16,17.

したかって、入射した光に対して、各層の分散反射層1
3で反射した全ての反射光か反射効率に寄与し、従来無
かった真空紫外光領域の高父射率の多層膜ミラー10と
なる。
Therefore, for the incident light, the distributed reflection layer 1 of each layer
All of the reflected light reflected by the mirror 3 contributes to the reflection efficiency, resulting in a multilayer mirror 10 with a high passivity in the vacuum ultraviolet region, which has not been seen in the past.

なお、上記実施例では、透明な光学結晶としてMgF 
やCa F 2なとのぶつ化物を例に説明しなか、他の
ぶつ化物やふり化物以外の透明結晶を用いるようにして
も良く、成膜法もCVD法に限らず他の方法でも良い。
In addition, in the above example, MgF is used as the transparent optical crystal.
Although the explanation is given using a fluoride such as fluoride and CaF 2 as an example, other fluorides and transparent crystals other than fluorides may be used, and the film forming method is not limited to the CVD method, but other methods may be used.

また、分散反射層についても反射すべき光の波長によっ
て金属材料の反射率か異なることから、波長に応して金
属材料を変えるようにすれば良く、アルミニウムのほか
金なども使用できる。
Furthermore, since the reflectance of the metal material for the dispersed reflection layer varies depending on the wavelength of the light to be reflected, the metal material may be changed depending on the wavelength, and gold or the like can be used in addition to aluminum.

さらに、この発明の要旨を変更しない範囲で、各構成要
素に変更を加えるようにしても良い。
Furthermore, changes may be made to each component without changing the gist of the invention.

C発明の効果〕 以上実施例とともに具体的に説明したように、この発明
の真空紫外光領域用の多層膜ミラーによれば、透明の光
学結晶膜と、金属材料の蒸着粒子を極薄く蒸着・分散し
た分散反射膜とを交互に繰り返して多層膜ミラーとする
ようにしたので、真空紫外光領域においても、分散反射
層で直接反射される光と、蒸着粒子の間及びその内部を
透過して次の層の分散反射層で反射される光を利用して
多層膜ミラーとすることができる。
C. Effects of the Invention] As specifically explained above in conjunction with the embodiments, the multilayer mirror for the vacuum ultraviolet region of the present invention has a transparent optical crystal film and vapor-deposited particles of a metal material that are extremely thinly vapor-deposited. Since the dispersed reflective films are alternately repeated to form a multilayer film mirror, even in the vacuum ultraviolet light region, light that is directly reflected by the dispersed reflective layer and light that is transmitted between and inside the vapor deposited particles are separated. A multilayer mirror can be formed by utilizing the light reflected by the next dispersive reflection layer.

そして、この多層[ラーでは、分散反射層で反射されな
い光は蒸着粒子内を透過しないので、光の吸収を極力抑
え、高反射率にすることかできる。
In this multilayer structure, light that is not reflected by the dispersed reflection layer does not pass through the deposited particles, so light absorption can be suppressed as much as possible and a high reflectance can be achieved.

また、二の発明の真空紫外光領域用の多層膜ミラーの製
法によれば、透明の光学結晶膜に金属材料の蒸着粒子を
極薄く蒸着・分散させて分散反射膜を成膜し、二の透明
光学結晶膜と金属材料の分散反射膜を交互に繰返して多
層膜ミラーをつくるようにしたので、真空紫外光領域の
多層膜ミラーを簡単に作ることができる。
In addition, according to the method for manufacturing a multilayer mirror for use in the vacuum ultraviolet light region of the second invention, vapor-deposited particles of a metal material are deposited and dispersed extremely thinly on a transparent optical crystal film to form a dispersed reflection film. Since a multilayer mirror is made by alternately repeating a transparent optical crystal film and a distributed reflection film made of a metal material, a multilayer mirror in the vacuum ultraviolet region can be easily made.

そして、こうして作られた多層膜ミラーでは、分散反射
層で反射されない光は蒸着粒子内を透過しないため、光
の吸収を極力抑え、高反射率にすることができる。
In the multilayer mirror made in this manner, light that is not reflected by the dispersed reflection layer does not pass through the vapor deposited particles, so light absorption can be suppressed as much as possible and high reflectance can be achieved.

したがって、これら多層膜ミラーは、真空紫外光領域の
分光研究や自由電子レーザー等の高効率な反射系として
利用する二とかできる。
Therefore, these multilayer mirrors can be used for spectroscopic research in the vacuum ultraviolet region and as a highly efficient reflection system for free electron lasers and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の真空紫外光領域用の多層膜ミラー
の一実施例にかかる断面図である。 第2図は、この発明の真空紫外光領域用の多層膜ミラー
の製法の一実施例にかかる工程図である。 10・・真空紫外光領域の多層膜ミラー、11・・透明
な光学結晶膜、 ]2・蒸着粒子、 13・金属材料の分散反射層、 14.15,16.1.7  各層のミラー。 出願人  石川島播磨重工業株式会社 /坦 第1図
FIG. 1 is a sectional view of an embodiment of a multilayer mirror for use in the vacuum ultraviolet region of the present invention. FIG. 2 is a process diagram of an embodiment of the method for manufacturing a multilayer mirror for vacuum ultraviolet light region according to the present invention. 10. Multilayer mirror in vacuum ultraviolet region, 11. Transparent optical crystal film, ]2. Vapor deposited particles, 13. Dispersed reflection layer of metal material, 14.15, 16.1.7 Mirror of each layer. Applicant: Ishikawajima Harima Heavy Industries Co., Ltd./Diagram 1

Claims (2)

【特許請求の範囲】[Claims] (1)真空紫外光に対し透明な光学結晶膜と高反射率の
金属材料の蒸着粒子を極薄く分散させた分散反射層とを
交互に繰返して多層にしたことを特徴とする真空紫外光
領域用の多層膜ミラー。
(1) Vacuum ultraviolet light region characterized by a multilayered structure consisting of an optical crystal film transparent to vacuum ultraviolet light and a dispersed reflection layer in which vapor-deposited particles of a highly reflective metal material are dispersed in an extremely thin layer. Multilayer mirror for use.
(2)真空紫外光領域用の多層膜ミラーを製作するに際
し、透明な光学結晶膜表面に高反射率の金属材料の蒸着
粒子を極薄く分散させて分散反射層としたのち、前記光
学結晶膜と前記分散反射層を繰返し形成して多層にする
ようにしたことを特徴とする真空紫外光領域用の多層膜
ミラーの製法。
(2) When manufacturing a multilayer mirror for use in the vacuum ultraviolet region, vapor-deposited particles of a highly reflective metal material are dispersed extremely thinly on the surface of a transparent optical crystal film to form a dispersed reflection layer, and then the optical crystal film is A method for manufacturing a multilayer mirror for use in a vacuum ultraviolet light region, characterized in that the above-mentioned dispersed reflection layer is repeatedly formed to form a multilayer film.
JP31980590A 1990-11-22 1990-11-22 Multiple layer film mirror for vacuum ultra-violet region and its fabrication Pending JPH04190200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31980590A JPH04190200A (en) 1990-11-22 1990-11-22 Multiple layer film mirror for vacuum ultra-violet region and its fabrication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31980590A JPH04190200A (en) 1990-11-22 1990-11-22 Multiple layer film mirror for vacuum ultra-violet region and its fabrication

Publications (1)

Publication Number Publication Date
JPH04190200A true JPH04190200A (en) 1992-07-08

Family

ID=18114393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31980590A Pending JPH04190200A (en) 1990-11-22 1990-11-22 Multiple layer film mirror for vacuum ultra-violet region and its fabrication

Country Status (1)

Country Link
JP (1) JPH04190200A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000003400A1 (en) * 1998-07-08 2000-01-20 Carl Zeiss SiO2 COATED MIRROR SUBSTRATE FOR EUV

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000003400A1 (en) * 1998-07-08 2000-01-20 Carl Zeiss SiO2 COATED MIRROR SUBSTRATE FOR EUV

Similar Documents

Publication Publication Date Title
US4583822A (en) Quintic refractive index profile antireflection coatings
US8246182B2 (en) Reflective optical element and method for production of such an optical element
US5458084A (en) X-ray wave diffraction optics constructed by atomic layer epitaxy
US5400174A (en) Optical notch or minus filter
US7679820B2 (en) IR absorbing reflector
US5719989A (en) Multilayer thin film bandpass filter
JP4566791B2 (en) Soft X-ray multilayer reflector
US3753822A (en) Method of making a multi-layer optical isolation
EP0509050B1 (en) Magnesium film reflectors
US6229652B1 (en) High reflectance and low stress Mo2C/Be multilayers
JPS62226047A (en) Multi-layered film reflecting mirror and its production
JPH04190200A (en) Multiple layer film mirror for vacuum ultra-violet region and its fabrication
JP4461652B2 (en) Multilayer film reflector and method for producing multilayer film mirror
JP2566634B2 (en) Multi-layer antireflection film
JPH04169898A (en) Multi-layer mirror structure for x-ray
JPH02287301A (en) Reflecting mirror consisting of multilayered film of dielectric material having non-dependency on incident angle and having high reflecetivity
JPS6155603A (en) High-durability infrared reflecting mirror
JPS58223101A (en) Production of polygonal mirror
JPH06174897A (en) Multilayer x-ray mirror and multilayer x-ray optical system
JP2835535B2 (en) Anti-reflection coating for optical components
JPS6388503A (en) Reflection mirror consisting of multi-layered film for soft x-ray and vacuum ultraviolet ray
JP2583609B2 (en) Multilayer reflector
JPH01310302A (en) Spectral filter
JPH04204603A (en) Manufacture of multilayer film mirror used in vacuum ultraviolet region
JPH0237303A (en) Multilayered reflecting mirror