JPH04185348A - Liquid jet head and manufacture thereof - Google Patents

Liquid jet head and manufacture thereof

Info

Publication number
JPH04185348A
JPH04185348A JP31230290A JP31230290A JPH04185348A JP H04185348 A JPH04185348 A JP H04185348A JP 31230290 A JP31230290 A JP 31230290A JP 31230290 A JP31230290 A JP 31230290A JP H04185348 A JPH04185348 A JP H04185348A
Authority
JP
Japan
Prior art keywords
pressure chamber
nozzle
liquid
piezoelectric element
liquid ejecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31230290A
Other languages
Japanese (ja)
Inventor
Kazumasa Hasegawa
和正 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP31230290A priority Critical patent/JPH04185348A/en
Publication of JPH04185348A publication Critical patent/JPH04185348A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

PURPOSE:To easily form nozzles in high density or a multi-nozzle by providing a nozzle through a nozzle plate, a pressure chamber with side walls made of non-monocrystalline silicon, and a piezoelectric element having a structure of consisting of three or more layers. CONSTITUTION:A layer of non-monocrystalline silicon 103 is formed on a nozzle plate 101 provided with a nozzle 102. Then, the non-monocrystalline silicon layer 103 is patterned to form a pressure chamber 105 having side walls 104. Furthermore, the pressure chamber 105 is filled with a sacrifice layer 106, and a piezoelectric element 110 consisting of three layers of a lower electrode 107, a piezoelectric thin film 108 and an upper electrode 109 is provided on the pressure chamber filled with the sacrifice layer 106. In the final step, the sacrifice layer 106 is removed. When a voltage is applied to the portion between the upper and lower electrodes 109, 107 of the piezoelectric element 110, the piezoelectric element 110 is strained, whereby pressure is applied to a liquid in the pressure chamber 105, and the liquid is jetted out of the nozzle 102.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はインクジェットプリンタ等に用いられる液体噴
射ヘッド及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a liquid ejecting head used in an inkjet printer, etc., and a method for manufacturing the same.

[従来の技術] 従来のインクジェットプリンタにおける液体噴射ヘッド
は、小林正人他(画像電子学会誌12巻4号pp、27
7〜284.1983)等に示されるごとく、基板と該
基板に対向して設ける可動板により形成されていた。ま
た特公昭60−8953に示されるごとく、自由端を有
する棒の曲げ振動を利用した液体噴射ヘッドも存在する
[Prior Art] A liquid ejecting head in a conventional inkjet printer is described by Masato Kobayashi et al.
7-284.1983), it was formed of a substrate and a movable plate provided opposite to the substrate. Furthermore, as shown in Japanese Patent Publication No. 60-8953, there is also a liquid ejecting head that utilizes the bending vibration of a rod having a free end.

[発明が解決しようとする課題] 従来の、基板と可動板によりなる液体噴射ヘッドにおい
ては、該可動板に圧電素子を貼り付けていたため、該圧
電素子を微細化するのが困難であり、このため液体噴射
を行うノズルの高密度化や、ノズルをライン状に長尺に
形成するマルチノズル化が困難であった。また特公昭6
0〜8953に示される、自由端を有する棒の曲げ振動
を利用した液体噴射ヘッドも、櫛状に製作した棒を取り
付ける構造であるため、棒の製作やノズルとの位置合わ
せ等の問題があり、このためノズルの高密度化やマルチ
ノズル化が困難であった。また、いずれの液体噴射ヘッ
ドにおいても組立が煩雑であるため、該液体噴射ヘッド
は高価なものとなっていた。
[Problems to be Solved by the Invention] In a conventional liquid ejecting head consisting of a substrate and a movable plate, a piezoelectric element was attached to the movable plate, so it was difficult to miniaturize the piezoelectric element. Therefore, it has been difficult to increase the density of nozzles that eject liquid or to form multi-nozzles in which nozzles are formed into long lines. In addition, the special public corporation Showa 6
The liquid ejecting heads shown in Nos. 0 to 8953, which utilize the bending vibration of a rod with a free end, also have a structure in which a comb-shaped rod is attached, so there are problems in the manufacture of the rod and alignment with the nozzle. Therefore, it has been difficult to increase the density of nozzles or to use multiple nozzles. Furthermore, since assembly of any of the liquid jet heads is complicated, the liquid jet heads are expensive.

本発明は以上の課題を解決するもので、その目的とする
ところは、ノズルの高密度化やマルチノズル化が容易で
あり、更に安価に形成できる液体噴射ヘッドを実現する
ことにある。
The present invention is intended to solve the above-mentioned problems, and its purpose is to realize a liquid ejecting head that can easily have high nozzle density and multiple nozzles, and can be formed at a lower cost.

[課題を解決するための手段] 以上述べた課題を解決するため、本発明の液体噴射ヘッ
ドは、 任意の材料から成るノズル板を貫通するノズル、該ノズ
ルと接続しその側壁を非単結晶珪素とした圧力室、該圧
力室上に3層以上の構造から成る圧電素子を設けて成る
事 前記圧力室の側壁を二酸化珪素を主成分とする材質とし
た事 を特徴とする。
[Means for Solving the Problems] In order to solve the problems described above, the liquid ejecting head of the present invention includes a nozzle that penetrates a nozzle plate made of any material, a side wall connected to the nozzle, and a side wall made of non-single crystal silicon. The pressure chamber has a piezoelectric element having a structure of three or more layers on the pressure chamber, and the side wall of the pressure chamber is made of a material containing silicon dioxide as a main component.

また、本発明の液体噴射ヘッドの製造方法は、ノズルを
形成したノズル板上に非単結晶珪素を成膜し、パターニ
ングを行い圧力室を形成する工程、前記圧力室を犠牲層
で充填する工程、前記圧力室上に圧電素子を形成し、し
かる後に前記犠牲層を除去する工程を有する事 前記非単結晶珪素を成膜する工程を、二酸化珪素を主成
分とする材質を成膜する工程とした事を特徴とする。
Further, the method for manufacturing a liquid ejecting head of the present invention includes a step of forming a film of non-single crystal silicon on a nozzle plate on which a nozzle is formed and patterning it to form a pressure chamber, and a step of filling the pressure chamber with a sacrificial layer. , forming a piezoelectric element on the pressure chamber and then removing the sacrificial layer; the step of forming a film of non-single crystal silicon; the step of forming a film of a material containing silicon dioxide as a main component; It is characterized by the fact that

[実施例コ 第1図(a)乃至(e)は、本発明の実施例における、
圧電素子を圧力室上に両端支持梁状に張った液体噴射ヘ
ッドの製造工程順の断面図であり、同図(f)はその斜
視図である。以下、製造工程に従って本発明の液体噴射
ヘッド及びその製造方法を説明する。まず、ノズル10
2を形成したノズル板101上に非単結晶珪素103を
成膜する。
[Example Figures 1(a) to (e) show examples of the present invention,
FIG. 3 is a cross-sectional view of a liquid ejecting head in which a piezoelectric element is stretched over a pressure chamber in the form of a supporting beam at both ends, in the order of manufacturing steps, and FIG. Hereinafter, the liquid jet head of the present invention and its manufacturing method will be explained according to the manufacturing process. First, nozzle 10
A non-single crystal silicon film 103 is formed on the nozzle plate 101 on which the silicon oxide film 2 is formed.

ノズル板101は金属、ガラス等任意の材料で良く、ノ
ズル102の形成方法もエツチング法やノズル102が
開いた状態で金属層を成長させる如き電鋳法等、任意の
方法で形成して良い。例えば、ノズル板101をNi板
として、該ノズル板上にLPCVD(Low  Pre
ssure  Chemical  Vapor  D
eposition)法により基板温度600℃程度で
珪素を成膜すれば、非単結晶珪素層103が形成され、
第1図(a)の如き断面図となる。アルミナ等の特殊な
基板を用いない限り、基板温度1000℃程度の高温で
成膜しても103は多結晶珪素となる。また、基板温度
550℃以下で成膜すれば103は非晶質珪素となる。
The nozzle plate 101 may be made of any material such as metal or glass, and the nozzle 102 may be formed by any method such as an etching method or an electroforming method in which a metal layer is grown with the nozzle 102 open. For example, if the nozzle plate 101 is a Ni plate, LPCVD (Low Pre
ssure Chemical Vapor D
If silicon is formed into a film at a substrate temperature of about 600° C. using a deposition method, a non-single-crystal silicon layer 103 is formed.
The cross-sectional view is as shown in FIG. 1(a). Unless a special substrate such as alumina is used, the film 103 becomes polycrystalline silicon even if the film is formed at a high substrate temperature of about 1000°C. Further, if the film is formed at a substrate temperature of 550° C. or lower, 103 becomes amorphous silicon.

成膜方法もLPCVD法のみならずPECVD(Pla
sma  Enhanced  CVD)法やスパッタ
法等を用いても良し\。
Film forming methods include not only LPCVD but also PECVD (Pla
SMA Enhanced CVD) method or sputtering method may also be used.

そして、非単結晶珪素層103をパターニングし、圧力
室105を形成し、第1図(b)の如き断面図となる。
Then, the non-single crystal silicon layer 103 is patterned to form a pressure chamber 105, resulting in a cross-sectional view as shown in FIG. 1(b).

104は圧力室側壁である。圧力室105は弗酸と硝酸
の混合水溶液等で湿式エツチングしたり、四弗化炭素と
酸素の混合ガスで乾式エツチングしたりして形成すれば
良い。更に圧力室105を犠牲層106で充填し、第1
図(c)の如き断面図となる。犠牲層106には、例え
ば、二酸化珪素を用いれば良く、塗布法で形成しパター
ニングすれば良い。もちろん、CVD法で形成する様に
しても良く、また、有機レジスト等を犠牲層106に用
いても良い、そして犠牲層106で充填した圧力室上に
下電極107、圧電薄膜108、上室8ii109の3
層より成る圧電素子11Oを設けて第1図(d)のクロ
き断面図となる。下電極107及び上電極109はPt
、  Ni、  A1等の金属材料、圧電薄膜108に
はPZT、PbTiO3、ZnO等の圧電材料をそれぞ
れスパッタ法、蒸着法等で形成して用いれば良い。最後
に犠牲層106を除去し、第1図(e)の如き断面図と
なる。犠牲層106に二酸化珪素を用いた場合は弗酸と
弗化アンモニウムと酢酸の混合水溶液、有機レジストを
用いた場合は適切な剥離液に浸す事により除去すれば良
い。
104 is a side wall of the pressure chamber. The pressure chamber 105 may be formed by wet etching with a mixed aqueous solution of hydrofluoric acid and nitric acid, or dry etching with a mixed gas of carbon tetrafluoride and oxygen. Furthermore, the pressure chamber 105 is filled with a sacrificial layer 106, and the first
The cross-sectional view is as shown in Figure (c). For example, silicon dioxide may be used for the sacrificial layer 106, and may be formed by a coating method and patterned. Of course, it may be formed by the CVD method, or an organic resist or the like may be used for the sacrificial layer 106. On the pressure chamber filled with the sacrificial layer 106, the lower electrode 107, the piezoelectric thin film 108, and the upper chamber 8ii109 No. 3
A piezoelectric element 11O consisting of layers is provided, and the cross-sectional view shown in FIG. 1(d) is obtained. The lower electrode 107 and the upper electrode 109 are made of Pt.
For the piezoelectric thin film 108, piezoelectric materials such as PZT, PbTiO3, ZnO, etc. may be formed by sputtering, vapor deposition, etc., respectively. Finally, the sacrificial layer 106 is removed, resulting in a cross-sectional view as shown in FIG. 1(e). When silicon dioxide is used for the sacrificial layer 106, it can be removed by dipping it in a mixed aqueous solution of hydrofluoric acid, ammonium fluoride, and acetic acid, and when an organic resist is used, it can be removed by immersing it in an appropriate stripping solution.

以上のごとく形成した液体噴射ヘッドの動作の一例を示
すと、以下のごとくなる。圧電素子110を取り巻く空
間及び圧力室105及びノズル102には液体が満たさ
れているものとする。圧電素子110の上下電極109
.107間に電圧を印加すると、圧電素子110が歪む
。すると圧力室105中の液体に圧力が印加され、液体
はノズル102より外側へ噴射される。次に圧電素子1
10の上下電極109.107間の電圧印加をやめると
、圧電素子の歪は元に戻り、圧力室105中の液体は減
圧され、圧電素子を取り巻く空間から液体が補充される
。以上の動作を繰り近し、この液体噴射ヘッドは動作す
る。
An example of the operation of the liquid ejecting head formed as described above is as follows. It is assumed that the space surrounding the piezoelectric element 110, the pressure chamber 105, and the nozzle 102 are filled with liquid. Upper and lower electrodes 109 of piezoelectric element 110
.. When a voltage is applied across 107, piezoelectric element 110 is distorted. Then, pressure is applied to the liquid in the pressure chamber 105, and the liquid is jetted outward from the nozzle 102. Next, piezoelectric element 1
When the voltage application between the upper and lower electrodes 109 and 107 of 10 is stopped, the distortion of the piezoelectric element returns to its original state, the liquid in the pressure chamber 105 is depressurized, and liquid is replenished from the space surrounding the piezoelectric element. This liquid ejecting head operates by repeating the above operations.

この液体噴射ヘッドは、ノズル102を形成した後、圧
力室105.107乃至109より成る圧電素子110
を薄膜形成技術、フォトリソグラフィー技術を用いて連
続形成できるため、これらを精度良くかつ微細に形成で
きる。このため、液体噴射を行うノズルの高密度化や、
ノズルをライン状に長尺に形成するマルチノズル化が容
易となった。更に、この液体噴射ヘッドは、その組立に
要する工程が大いに軽減され、このため安価なものとな
った。加えて、圧力室105を形成する際、非単結晶珪
素103のエツチングはノズル板101により自動的に
ストップする。このため、圧力室105の深さは均一で
あり再現性も良いものとなり、またそれを非単結晶珪素
層103の膜厚により容易に制御出来る様になった。こ
の結果、本発明の液体噴射ヘッドの液体噴射特性も良好
で再現性の良いものとなった。
In this liquid jet head, after forming the nozzle 102, a piezoelectric element 110 consisting of pressure chambers 105, 107 to 109 is formed.
can be formed continuously using thin film formation technology and photolithography technology, so these can be formed precisely and finely. For this reason, the density of the nozzle that ejects liquid is increased,
It has become easier to create multi-nozzles by forming long nozzles in a line shape. Furthermore, the steps required for assembling this liquid jet head are greatly reduced, making it inexpensive. In addition, when forming the pressure chamber 105, the etching of the non-single crystal silicon 103 is automatically stopped by the nozzle plate 101. Therefore, the depth of the pressure chamber 105 is uniform and has good reproducibility, and can be easily controlled by controlling the thickness of the non-single crystal silicon layer 103. As a result, the liquid ejecting characteristics of the liquid ejecting head of the present invention were also good and the reproducibility was good.

また、以上の実施例は圧力室側壁104を非単結晶珪素
で形成している例であるが、これを二酸化珪素を主成分
とする材質、例えばZrを5at%程度含有する二酸化
珪素で形成しても良い。この様な実施例にすれば、アル
カリ性の液体を噴射する場合、圧力室側壁104から溶
解する珪素の量を抑える事が8来、例えば、この液体噴
射ヘッドをアルカリインクを用いたインクジェットプリ
ンタヘッドとする場合等に非常に有用なものとなる。こ
の様な実施例の液体噴射ヘッドは、前述の非単結晶珪素
103を成膜する工程の代わりに二酸化珪素を主成分と
する材質を成膜する工程を設け、成膜された二酸化珪素
を主成分とする膜をパターニングし圧力室105を形成
すれば良い。この時、犠牲層106には珪素や有機レジ
スト等を用いて良い。
Furthermore, although the above embodiment is an example in which the pressure chamber side wall 104 is formed of non-single crystal silicon, it may be formed of a material whose main component is silicon dioxide, for example, silicon dioxide containing about 5 at% of Zr. It's okay. With such an embodiment, when an alkaline liquid is ejected, the amount of silicon dissolved from the pressure chamber side wall 104 can be suppressed, and for example, this liquid ejecting head can be used as an inkjet printer head using alkaline ink. This will be extremely useful when doing so. The liquid ejecting head of such an embodiment includes a step of forming a film of a material containing silicon dioxide as a main component instead of the step of forming a film of non-single crystal silicon 103 described above. The pressure chamber 105 may be formed by patterning the component film. At this time, silicon, organic resist, or the like may be used for the sacrificial layer 106.

第2図は、本発明の実施例における、圧電素子を圧力室
上に片持ち梁状に張った液体噴射ヘッドの斜視図である
。同図において第1図と同一の記号は第1図と同一のも
のを表す。この実施例に8いては、その動作は第1図に
示す実施例と同様であり、片持ち梁上に張った圧電素子
110を歪ませて液体を噴射させる。製造方法も同様で
良く、効果も同様に液体噴射を行うノズルの高密度化や
、ノズルをライン状に長尺に形成するマルチノズル化が
容易となり、液体噴射特性も良好で再現性の良いものと
なった。
FIG. 2 is a perspective view of a liquid ejecting head in which a piezoelectric element is cantilevered above a pressure chamber in an embodiment of the present invention. In this figure, the same symbols as in FIG. 1 represent the same things as in FIG. 1. The operation of this embodiment 8 is similar to that of the embodiment shown in FIG. 1, and the piezoelectric element 110 stretched on a cantilever is distorted to eject liquid. The manufacturing method can be the same, and the effects are similar, such as increasing the density of the nozzle that sprays liquid, making it easier to create multi-nozzles by forming long nozzles in a line, and having good liquid jetting characteristics and good reproducibility. It became.

第3図(a)、 (b)はそれぞれ、本発明の実施例に
おける、圧電素子を圧力室上に周辺固定して張った液体
噴射ヘッドの斜視図及び断面図を示す。同図において、
第1図と同一の記号はそれぞれ第1図と同一のものを表
す、301は液体導通路、302は液体貯蔵室、303
は圧電素子の下電極であり、液体導通路301や液体貯
蔵室302を上部から覆う構成となっている。この様な
構造は、犠牲層を圧力室105のみならず液体導通路3
01や液体貯蔵室302に充填した後に下電極303を
成膜する事により形成される。この液体噴射ヘッドの動
作は、ノズル102、圧力室105、液体導通路301
、液体貯蔵室302に液体を満たしておき、圧電素子1
10を歪ませて液体を噴射させ、その後に圧電素子11
0の歪を元に戻し、液体貯蔵室302より圧力室105
へ液体を供給するものである0本実施例の液体噴射ヘッ
ドの効果は、第1図や第2図の実施例で説明した内容は
もちろんの事、更に以下に示す効果がある。周辺固定圧
電素子の構造は両端支持梁や片持ち梁に比べて強固であ
り、またその固有振動数も大きいため、圧力室105中
の液体に印加される圧力が大きい。よって本実施例の液
体噴射ヘッドは構造的に強固であり、またその液体噴射
特性も更に良い。
FIGS. 3(a) and 3(b) respectively show a perspective view and a sectional view of a liquid ejecting head in which a piezoelectric element is fixed and stretched around a pressure chamber in an embodiment of the present invention. In the same figure,
The same symbols as in FIG. 1 represent the same things as in FIG. 1, respectively. 301 is a liquid conduction path, 302 is a liquid storage chamber, 303
is the lower electrode of the piezoelectric element, and is configured to cover the liquid conduction path 301 and the liquid storage chamber 302 from above. Such a structure allows the sacrificial layer to be used not only in the pressure chamber 105 but also in the liquid conduction path 3.
The lower electrode 303 is formed after filling the liquid storage chamber 302 and the lower electrode 303 . The operation of this liquid jet head includes a nozzle 102, a pressure chamber 105, a liquid conduction path 301,
, the liquid storage chamber 302 is filled with liquid, and the piezoelectric element 1
10 is distorted to eject the liquid, and then the piezoelectric element 11
0 strain is returned to its original state, and the pressure chamber 105 is removed from the liquid storage chamber 302.
The effects of the liquid ejecting head of this embodiment, which supplies liquid to the liquid jet head, are not only those described in the embodiments of FIGS. 1 and 2, but also have the following effects. The structure of the peripherally fixed piezoelectric element is stronger than that of a beam supported at both ends or a cantilever beam, and its natural frequency is also large, so that the pressure applied to the liquid in the pressure chamber 105 is large. Therefore, the liquid ejecting head of this embodiment is structurally strong and also has better liquid ejecting characteristics.

以上の実施例に示した液体噴射ヘッドにおける圧電素子
はいずれも3層構造であり、いずれも下電極が液体に触
れる構造となっているが、もちろん、多層構造の圧電素
子を用いたり、下電極の下に振動板を置く構造にしたり
して液体噴射特性の向上を図っても良い。以上述べてき
た本発明の液体噴射ヘッドは、前述の如くノズル高密度
化やマルチノズル化が容易となり、10dot/mmの
解像度で5cmの長さを持つライン液体噴射ヘッドが形
成できた。また、本発明の構成をとることにより100
dot/mm程度までの高解像度化も可能である。なお
、本発明の液体噴射ヘッド及びその製造方法は以上述べ
た実施例のみならず、本発明の主旨を逸脱しない範囲に
おいて広く適用が可11トである。また、この液体噴射
ヘッドは、インクジェットプリンタのみならず、他の印
字、印刷装置(例えばコピー機等)や、塗装装置、捺染
装置等に広く適用される。
The piezoelectric elements in the liquid ejecting heads shown in the examples above all have a three-layer structure, and the lower electrode is in contact with the liquid. The liquid jetting characteristics may be improved by placing a diaphragm under the diaphragm. In the liquid ejecting head of the present invention described above, the nozzle density can be increased and multi-nozzle can be easily achieved as described above, and a line liquid ejecting head having a length of 5 cm with a resolution of 10 dots/mm can be formed. Moreover, by adopting the configuration of the present invention, 100
It is also possible to increase the resolution to about dot/mm. The liquid ejecting head and the method for manufacturing the same according to the present invention can be applied not only to the embodiments described above, but also to a wide range of other applications without departing from the spirit of the present invention. Further, this liquid ejecting head is widely applied not only to inkjet printers but also to other printing devices (for example, copying machines, etc.), coating devices, textile printing devices, and the like.

[発明の効果] 以上述べた如く本発明による液体噴射ヘッドは、ノズル
102を形成した後、圧力室105.107乃至109
より成る圧電素子110を薄膜形成技術、フォトリソグ
ラフィー技術を用いて連続形成できるため、これらを精
度良くかつ微細に形成できる。このため、液体噴射を行
うノズルの高密度化や、ノズルをライン状に長尺に形成
するマルチノズル化が容易となった。更に、この液体噴
射ヘッドは、その組立に要する工程が大いに軽減され、
このため安価なものとなった。加えて、圧力室105を
形成する際、非単結晶珪素103のエツチングはノズル
板101により自動的にストップするため、圧力室10
5の深さは均一であり再現性も良いものとなり、またそ
れを非単結晶珪素層103の膜厚により容易に制御出来
る様になった。この結果、本発明の液体噴射ヘッドの液
体噴射特性も良好で再現性の良いものとなった。
[Effects of the Invention] As described above, in the liquid jet head according to the present invention, after forming the nozzle 102, the pressure chambers 105, 107 to 109 are
Since the piezoelectric elements 110 consisting of the following can be continuously formed using thin film formation technology and photolithography technology, these can be formed precisely and finely. For this reason, it has become easy to increase the density of nozzles that eject liquid and to form multi-nozzles in which nozzles are formed into long lines. Furthermore, this liquid jet head greatly reduces the steps required to assemble it.
This made it inexpensive. In addition, when forming the pressure chamber 105, the etching of the non-single crystal silicon 103 is automatically stopped by the nozzle plate 101.
The depth of 5 is uniform and has good reproducibility, and can be easily controlled by controlling the thickness of the non-single crystal silicon layer 103. As a result, the liquid ejecting characteristics of the liquid ejecting head of the present invention were also good and the reproducibility was good.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)乃至(e)は、本発明の実施例における、
圧電素子を圧力室上に両端支持梁状に張った液体噴射ヘ
ッドの製造工程順の断面図、同図(f)はその斜視図。 第2図は、本発明の実施例における、圧電素子を圧力室
上に片持ち梁状に張った液体噴射ヘッドの斜視図。 第3図(a)、(b)はそれぞれ、本発明の実施例にお
ける、圧電素子を圧力室上に周辺固定して張った液体噴
射ヘッドの斜視図及び断面図。 101・・・ノズル板 102・・・ノズル 103・・・非単結晶珪素 104・・・圧力室側壁 105・・・圧力室 106・・・犠牲層 107・・・下電極 108・・・圧電薄膜 109・・・上電極 110・・・圧電素子 以上 出願人 セイコーエプソン株式会社 代理人 弁理士 鈴木喜三部 他1名 第1図(a) 第1図(b) 第1図(c) 第1図(d) 第1図(e) 101・・・ノズル板 102・・・ノズル 103・・・非単結晶珪素 UI 第3図(a> 第3図(b)
FIGS. 1(a) to (e) show the embodiments of the present invention.
FIG. 3(f) is a sectional view of a liquid ejecting head in the order of manufacturing steps, in which a piezoelectric element is stretched over a pressure chamber in the form of a support beam at both ends; FIG. FIG. 2 is a perspective view of a liquid ejecting head in which a piezoelectric element is cantilevered above a pressure chamber in an embodiment of the present invention. FIGS. 3(a) and 3(b) are a perspective view and a sectional view, respectively, of a liquid ejecting head in which a piezoelectric element is fixed and stretched around a pressure chamber in an embodiment of the present invention. 101... Nozzle plate 102... Nozzle 103... Non-single crystal silicon 104... Pressure chamber side wall 105... Pressure chamber 106... Sacrificial layer 107... Lower electrode 108... Piezoelectric thin film 109... Upper electrode 110... Piezoelectric element and above Applicant Seiko Epson Co., Ltd. agent Patent attorney Kizobe Suzuki and 1 other person Figure 1 (a) Figure 1 (b) Figure 1 (c) 1 Figure (d) Figure 1 (e) 101... Nozzle plate 102... Nozzle 103... Non-single crystal silicon UI Figure 3 (a> Figure 3 (b)

Claims (3)

【特許請求の範囲】[Claims] (1)任意の材料から成るノズル板を貫通するノズル、
該ノズルと接続しその側壁を非単結晶珪素とした圧力室
、該圧力室上に3層以上の構造から成る圧電素子を設け
て成る事を特徴とする、液体噴射ヘッド。
(1) A nozzle that penetrates a nozzle plate made of any material,
A liquid ejecting head comprising a pressure chamber connected to the nozzle and having a side wall made of non-single crystal silicon, and a piezoelectric element having a structure of three or more layers provided on the pressure chamber.
(2)前記圧力室の側壁を二酸化珪素を主成分とする材
質とした事を特徴とする、請求項1記載の液体噴射ヘッ
ド。
(2) The liquid jet head according to claim 1, wherein the side wall of the pressure chamber is made of a material containing silicon dioxide as a main component.
(3)ノズルを形成したノズル板上に非単結晶珪素を成
膜し、パターニングを行い圧力室を形成する工程、前記
圧力室を犠牲層で充填する工程、前記圧力室上に圧電素
子を形成し、しかる後に前記犠牲層を除去する工程を有
する事を特徴とする、液体噴射ヘッドの製造方法。
(3) A step of forming a film of non-single crystal silicon on the nozzle plate on which the nozzle is formed and patterning it to form a pressure chamber, a step of filling the pressure chamber with a sacrificial layer, and forming a piezoelectric element on the pressure chamber. A method for manufacturing a liquid ejecting head, comprising the step of removing the sacrificial layer after that.
JP31230290A 1990-11-17 1990-11-17 Liquid jet head and manufacture thereof Pending JPH04185348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31230290A JPH04185348A (en) 1990-11-17 1990-11-17 Liquid jet head and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31230290A JPH04185348A (en) 1990-11-17 1990-11-17 Liquid jet head and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04185348A true JPH04185348A (en) 1992-07-02

Family

ID=18027618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31230290A Pending JPH04185348A (en) 1990-11-17 1990-11-17 Liquid jet head and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04185348A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0634273A2 (en) * 1993-07-13 1995-01-18 Sharp Kabushiki Kaisha Ink jet head and a method of manufacturing thereof
US5825383A (en) * 1994-12-20 1998-10-20 Sharp Kabushiki Kaisha Ink jet head compact and allowing ink to be discharged with great force by using deformable structure
WO1999004976A1 (en) * 1997-07-25 1999-02-04 Seiko Epson Corporation Ink jet recording head and ink jet recorder
JPH11157069A (en) * 1997-11-26 1999-06-15 Seiko Epson Corp Ink jet recording head
EP1116588A1 (en) * 1999-08-04 2001-07-18 Seiko Epson Corporation Ink jet recording head, method for manufacturing the same, and ink jet recorder
US20090070975A1 (en) * 2005-12-20 2009-03-19 Palo Alto Research Center Incorporated Method of forming micromachined fluid ejectors using piezoelectric actuation
US8491100B2 (en) 1999-10-05 2013-07-23 Fujifilm Dimatix, Inc. Piezoelectric ink jet module with seal

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0634273A3 (en) * 1993-07-13 1995-08-23 Sharp Kk Ink jet head and a method of manufacturing thereof.
US5666141A (en) * 1993-07-13 1997-09-09 Sharp Kabushiki Kaisha Ink jet head and a method of manufacturing thereof
EP0634273A2 (en) * 1993-07-13 1995-01-18 Sharp Kabushiki Kaisha Ink jet head and a method of manufacturing thereof
US5825383A (en) * 1994-12-20 1998-10-20 Sharp Kabushiki Kaisha Ink jet head compact and allowing ink to be discharged with great force by using deformable structure
US6315400B1 (en) 1997-07-25 2001-11-13 Seiko Epson Corporation Ink jet recording head and ink jet recorder
WO1999004976A1 (en) * 1997-07-25 1999-02-04 Seiko Epson Corporation Ink jet recording head and ink jet recorder
JPH11157069A (en) * 1997-11-26 1999-06-15 Seiko Epson Corp Ink jet recording head
EP1116588A1 (en) * 1999-08-04 2001-07-18 Seiko Epson Corporation Ink jet recording head, method for manufacturing the same, and ink jet recorder
US6502930B1 (en) 1999-08-04 2003-01-07 Seiko Epson Corporation Ink jet recording head, method for manufacturing the same, and ink jet recorder
EP1116588A4 (en) * 1999-08-04 2007-07-11 Seiko Epson Corp Ink jet recording head, method for manufacturing the same, and ink jet recorder
US8491100B2 (en) 1999-10-05 2013-07-23 Fujifilm Dimatix, Inc. Piezoelectric ink jet module with seal
US20090070975A1 (en) * 2005-12-20 2009-03-19 Palo Alto Research Center Incorporated Method of forming micromachined fluid ejectors using piezoelectric actuation
US8359748B2 (en) * 2005-12-20 2013-01-29 Palo Alto Research Center Incorporated Method of forming micromachined fluid ejectors using piezoelectric actuation

Similar Documents

Publication Publication Date Title
JP3666177B2 (en) Inkjet recording device
WO1993022140A1 (en) Liquid jet head and production thereof
CN100382969C (en) Liquid ejection head
JPH04185348A (en) Liquid jet head and manufacture thereof
US6371598B1 (en) Ink jet recording apparatus, and an ink jet head
JP2952934B2 (en) Liquid jet head, method of manufacturing the same, and liquid jet recording apparatus
JP2001030500A (en) Manufacture of nozzle plate utilizing silicon process and ink-jet printer head using the nozzle plate
JPH03240547A (en) Liquid jet head and its manufacture
JP2005297475A (en) Droplet ejecting head and droplet ejector
JP2000190496A (en) Microactuator and ink jet printer head with the same
JP2011040515A (en) Piezoelectric actuator, method for manufacturing the same, liquid jet head and liquid jet apparatus
JPH03124449A (en) Liquid jet head
JP5526559B2 (en) Liquid ejecting head manufacturing method, piezoelectric element manufacturing method, and piezoelectric element
JP3384958B2 (en) Ink jet recording apparatus and manufacturing method thereof
JPH045051A (en) Liquid jet head and its manufacturing method
KR100464307B1 (en) A piezo-electric ink-jet printhead and a fabricating method thereof
JP3666506B2 (en) Method for manufacturing ink jet recording apparatus
US6315394B1 (en) Method of manufacturing a silicon substrate with a recess, an ink jet head manufacturing method, a silicon substrate with a recess, and an ink jet head
JP3726469B2 (en) Method for manufacturing ink jet recording head
JPH08252914A (en) Ink jet head and production thereof
JPH03124448A (en) Liquid jet head
KR100374589B1 (en) Micro actuator and inkjet printer head manufactured using the same
JP3887977B2 (en) Piezoelectric thin film element, ink jet recording head, ink jet printer, and method of manufacturing piezoelectric thin film element
JPH03216344A (en) Liquid jet head
JPH03216343A (en) Liquid jet head