JPH04179469A - Particle manipulative system - Google Patents

Particle manipulative system

Info

Publication number
JPH04179469A
JPH04179469A JP30243090A JP30243090A JPH04179469A JP H04179469 A JPH04179469 A JP H04179469A JP 30243090 A JP30243090 A JP 30243090A JP 30243090 A JP30243090 A JP 30243090A JP H04179469 A JPH04179469 A JP H04179469A
Authority
JP
Japan
Prior art keywords
opening
cells
section
flow path
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30243090A
Other languages
Japanese (ja)
Inventor
Hideo Enoki
英雄 榎
Hiroshi Oki
博 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP30243090A priority Critical patent/JPH04179469A/en
Publication of JPH04179469A publication Critical patent/JPH04179469A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE:To facilitate the immobilization of particles by such a method that the particles reached the intersection of cross-type flow channels are immobilized through suction at the opening and manipulated with a probe set at a second opening facing to the first opening and then returned into the flow channels. CONSTITUTION:A sample liquid 31 containing cells 8 is allowed to flow into cross-shaped flow channels using syringes 33,43 controlled by a control unit 6, and the cells 8 are brought close to an opening 14 while observing the state in the flow channels with a microscope 51. The diameter of this opening 14 is smaller than that of the cells; therefore, the cells are immobilized at the opening and manipulated with a probe 21 for a second opening 13. After manipulation, the cells are forcedly made to flow using the syringes 43,33 toward a recovering section 7. A microscope 51 is equipped with an image input unit 52, and data are transferred via a processing section 53 to a control section 6, and a sample liquid feed section 3, immobilizing section 4, micromoving section 22 and suction-delivery section 23 are controlled at the control section 6, respectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、流体中の細胞などの粒子の保持および操作を
行う装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to devices for retaining and manipulating particles, such as cells, in fluids.

〔従来の技術〕[Conventional technology]

従来の装置は、特開昭61−267723号公報に記載
のように、微動台に搭載したピペットなどの粒子操作用
のプローブを用いた。顕微鏡下でシャーレ中やスライド
ガラス上の液体中に存在する細胞に遺伝子を含む薬剤の
注入、核の除去9分割などの操作を行うため、細胞の大
きさよりもややちいさな内径のガラス管に液体中に浮遊
する細胞を吸いつけて固定し、細胞に別の小さなピペッ
トを刺し薬剤の注入や核の除去などの操作を行っていた
The conventional device uses a particle manipulation probe such as a pipette mounted on a fine movement table, as described in Japanese Patent Application Laid-Open No. 61-267723. In order to perform operations such as injecting drugs containing genes into cells existing in a liquid in a petri dish or on a glass slide under a microscope, and removing the nucleus into 9 sections, the cells are placed in a liquid in a glass tube with an inner diameter slightly smaller than the size of the cells. Floating cells were sucked up and fixed, and other small pipettes were inserted into the cells to perform operations such as injecting drugs and removing nuclei.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術では、顕微鏡下で浮遊している微小な細胞
を吸いつけるためピペットを近づけるとそれにより生じ
る流れで細胞が逃げてしまい固定に長時間を要した。ま
た、遠くにある細胞を無理に吸引するため吸引圧をあげ
すぎてしまい細胞を傷つけることもあった。
In the above-mentioned conventional technology, when a pipette is brought close to suck up microscopic cells floating under a microscope, the resulting flow causes the cells to escape, and it takes a long time to fix them. In addition, in order to forcefully suction cells that are far away, the suction pressure was increased too much, which could damage the cells.

また、粒子を保持するピペットと粒子を操作する器具の
相対的な位置決めが容易でなく操作に時間を要し、操作
の精度も悪かった。
Furthermore, the relative positioning of the pipette that holds the particles and the instrument that manipulates the particles is not easy, and the operation takes time and the accuracy of the operation is poor.

本発明の目的は、ピペットなどによる粒子の固定を容易
にし操作の時間を短縮することにある。
An object of the present invention is to facilitate the fixation of particles using a pipette or the like and to shorten the operation time.

本発明の他の目的は、粒子を保持するピペットと粒子を
操作する器具の相対位置決めを容易にし粒子に対する操
作の時間短縮と操作の精度向上を可能にすることにある
Another object of the present invention is to facilitate the relative positioning of a pipette for holding particles and a device for manipulating particles, thereby making it possible to shorten the time for manipulating particles and improve the precision of manipulation.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は一部またはすべて
が透明な部材より構成された第一の流路と、第一の流路
中を流れる粒子を含む流体を駆動する第一の流体駆動源
と、第一の流体駆動源を制御する第一の制御部と、流路
内の状態を観測する顕微鏡などの光学装置よりなる粒子
操作装置に、第一の流路中に相対する開口部を設け、第
一の開口部の径を流体中の微粒子の径よりも小さくし、
さらに、第一の開口部に接続する第二の流路を設け、第
二の流路に第二の流路中の流体を髪動する第二の駆動源
と、第二の駆動源を制御する第二の制御部を設け、第二
の開口部に、第二の開口部の径よりも小さな外径を有す
る粒子操作用プローブを設けたものである。
In order to achieve the above object, the present invention includes a first flow path partially or entirely made of a transparent member, and a first fluid drive that drives a fluid containing particles flowing through the first flow path. an opening in the first flow path that faces the particle manipulation device, which includes a source, a first control unit that controls the first fluid driving source, and an optical device such as a microscope that observes the state within the flow path; , the diameter of the first opening is smaller than the diameter of the particles in the fluid,
Furthermore, a second flow path connected to the first opening is provided, and the second flow path has a second drive source that moves the fluid in the second flow path, and a second drive source that controls the second flow path. A particle manipulation probe having an outer diameter smaller than the diameter of the second opening is provided in the second opening.

〔作用〕[Effect]

第一の駆動源により粒子を含む流体を開口部に向かって
流す。顕微鏡により開口部付近を観察し操作すべき粒子
が開口部の直前に達したときに流体を停止する。次に、
第二の駆動源により第一の流路内の流体を第二の開口部
より吸引する。この吸引にともなって流体内の粒子が第
一の開口部に接近する。第一の開口部の径は粒子の径よ
りも小さいため粒子は第一の開口部を通過できず第一の
開口部に固定される。次に、第一の開口部と向かい合う
第二の開口部に設置した針あるいは管状の粒子操作用プ
ローブを用いて粒子に操作を行う。
A fluid containing particles is caused to flow toward the opening by a first driving source. The vicinity of the opening is observed using a microscope, and the fluid is stopped when the particles to be manipulated reach just in front of the opening. next,
The fluid in the first flow path is sucked through the second opening by the second driving source. With this suction, particles within the fluid approach the first opening. Since the diameter of the first opening is smaller than the diameter of the particles, the particles cannot pass through the first opening and are fixed to the first opening. Next, the particles are manipulated using a needle or tubular particle manipulation probe placed in a second opening opposite the first opening.

次に、第二の駆動源により第二の流路内の流体を第一の
流路に押し出し、第一の開口部に固定した粒子を第一の
流路内に戻す。さらに、第一の能動源により操作済みの
粒子を開口部の下流に流し回収する。
Next, the fluid in the second flow path is pushed out into the first flow path by the second driving source, and the particles fixed in the first opening are returned into the first flow path. Further, the first active source causes the manipulated particles to flow downstream of the opening for collection.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

装置の構成を第1図の下部に示す。The configuration of the device is shown at the bottom of FIG.

機能的には、細胞を含む試料液31の注入口11と排出
口12と粒子操作用のプローブ21を挿入する挿入口1
3と粒子固定用の固定口14を末端とする十字状の流路
をもつ粒子操作治具1(ガラス管などを加工して作成し
た透明なもの)と1粒子操作治具1の注入口11より試
料液31を供給する試料液供給部3と、排出口12から
出てくる処理済み細胞を回収する回収部7と、固定口1
4に接続し細胞の固定・分離を行う固定部4と、細胞操
作用のプローブ21を微動する微動部22と、挿入口に
対設してプローブ21の先端より液体を吸引・吐出する
吸引・吐出部23と、粒子操作治具1内の画像を検出処
理する画像処理部5と、画像処理部5の処理結果にもと
づき試料液供給部3と固定部4と微動部22と吸引・吐
出部23を協調制御するシステム制御部6に分類される
Functionally, there are an inlet 11 and an outlet 12 for a sample solution 31 containing cells, and an insertion inlet 1 for inserting a probe 21 for particle manipulation.
3, a particle manipulation jig 1 (a transparent one made by processing a glass tube, etc.) having a cross-shaped flow path ending with a fixing port 14 for particle fixation, and an injection port 11 of the particle manipulation jig 1. a sample liquid supply unit 3 that supplies a sample liquid 31 from the sample liquid, a collection unit 7 that collects treated cells coming out from the discharge port 12, and a fixing port 1.
4, a fixing part 4 that fixes and separates cells, a fine movement part 22 that slightly moves the probe 21 for cell manipulation, and a suction part 4 that is connected to the insertion port and that sucks and discharges liquid from the tip of the probe 21. A discharge section 23, an image processing section 5 that detects and processes images in the particle manipulation jig 1, and a sample liquid supply section 3, a fixing section 4, a fine movement section 22, and a suction/discharge section based on the processing results of the image processing section 5. The system controller 6 is classified as a system control unit 6 that coordinately controls the 23.

粒子操作治具1の挿入口13.固定口14付近の構成は
第1図の上部に示すようになっている。
Insertion port 13 of particle manipulation jig 1. The structure near the fixed port 14 is as shown in the upper part of FIG.

挿入口13はプローブ21側に、若干、伸びておりプロ
ーブ21と挿入口の間にはプローブ21が動きうるよう
にするため液状としたシール部9(たとえば磁性流体シ
ールなど)がある。なお、挿入口13が十分細ければ表
面張力のため液体は漏れずシールの必要はない。
The insertion port 13 extends slightly toward the probe 21 side, and there is a liquid seal portion 9 (for example, a magnetic fluid seal) between the probe 21 and the insertion port to allow the probe 21 to move. Note that if the insertion port 13 is sufficiently thin, liquid will not leak due to surface tension and there is no need for sealing.

試料液供給部3と固定部4と吸引・吐出部23は、はぼ
同様の構成である。すなわち、各種の液体の入った試料
管37,47,237と、弁32゜42.232と、シ
リンジ33,43,233と、それらを接続するパイプ
35,45..235およびパイプ36,46,236
および粒子操作治具1と各部を接続するパイプ38,4
8,238、弁32,42,232の開閉の制御とシリ
ンジの能動とシステム制御部6とのインターフェースを
行うインターフェース34,44,234とから構成さ
れる。
The sample liquid supply section 3, fixing section 4, and suction/discharge section 23 have similar configurations. That is, sample tubes 37, 47, 237 containing various liquids, valves 32, 42, 232, syringes 33, 43, 233, and pipes 35, 45, . .. 235 and pipes 36, 46, 236
and pipes 38, 4 that connect the particle manipulation jig 1 and each part.
8, 238, and an interface 34, 44, 234 that controls the opening and closing of the valves 32, 42, 232, activates the syringe, and interfaces with the system control unit 6.

回収部7は、生理食塩水71の入った試験管771と細
胞回収用の試験管772と、弁72と、それらを接続す
るパイプ751,752および粒子操作治具1と弁72
を接続するパイプ78から構成される。
The recovery unit 7 includes a test tube 771 containing physiological saline 71, a test tube 772 for cell recovery, a valve 72, pipes 751, 752 connecting them, a particle manipulation jig 1, and the valve 72.
It consists of a pipe 78 that connects the

微動部22は、プローブ21とプローブ21を搭載しマ
イクロメータ以下の精度でXYZ方向に動作をする微動
ステージ221と、微動ステージ221とシステム制御
部6とのインターフェースを行うインターフェース22
2から構成される。
The fine movement unit 22 includes a probe 21 and a fine movement stage 221 that carries the probe 21 and operates in the XYZ directions with an accuracy of less than a micrometer, and an interface 22 that interfaces the fine movement stage 221 and the system control unit 6.
Consists of 2.

画像処理部は、顕微j151に取り付けたテレビカメラ
などの画像入力装置52と、その画像を処理し細胞の位
置や種類を特定しシステム制御部6にデータを転送する
情報処理部53から構成される。
The image processing unit is composed of an image input device 52 such as a television camera attached to the microscope J151, and an information processing unit 53 that processes the image, identifies the position and type of cells, and transfers the data to the system control unit 6. .

上記構成の装置の動作を第2図から第7図に示す。図の
上半分は挿入口と固定口付近の拡大図で、下半分は全体
の動作を示す図である。
The operation of the apparatus having the above configuration is shown in FIGS. 2 to 7. The upper half of the figure is an enlarged view of the vicinity of the insertion port and fixing port, and the lower half is a diagram showing the overall operation.

まず、準備動作を次のように行う。First, the preparation operation is performed as follows.

(1)弁32.42によりシリンジ33.43と粒子操
作治具1の注入口11.固定口14をパイプ35.45
とパイプ38.48を介して接続する。この状態でシリ
ンジ33.43を動作させ試験管771内の生理食塩水
71をパイプ78から排出口12に吸入し、粒子操作治
具1を介してパイプ38.48、パイプ35゜45まで
吸引する。同時に、弁232によりパイプ236とパイ
プ235を介して、シリンジ233に試験管237内の
薬剤などの液体231を吸入する(第2図)。
(1) The valve 32.42 connects the syringe 33.43 and the injection port 11 of the particle manipulation jig 1. Fixed port 14 to pipe 35.45
and are connected via pipes 38 and 48. In this state, the syringe 33.43 is operated to draw the physiological saline 71 in the test tube 771 from the pipe 78 into the outlet 12, and through the particle manipulation jig 1 to pipes 38.48 and 35°45. . At the same time, a liquid 231 such as a drug in a test tube 237 is sucked into a syringe 233 through a pipe 236 and a pipe 235 by a valve 232 (FIG. 2).

(2)弁72を閉じ、弁32,42によりパイプ35.
45.パイプ36,46を介してシリンジ33.43内
の空気をシリンジ33.43を動作させて排出した後、
試験管37.47内の試料液と生理食塩水41をシリン
ジ33.43内に吸引する。同時に、弁232によりパ
イプ235とパイプ238を接続して、シリンジ233
を動作させシリンジ233内の液体231をプローブ2
1に満たす(第3図)。
(2) Close the valve 72 and open the pipe 35 by the valves 32 and 42.
45. After operating the syringe 33.43 to discharge the air in the syringe 33.43 through the pipes 36 and 46,
The sample liquid and physiological saline 41 in the test tube 37.47 are aspirated into the syringe 33.43. At the same time, the pipe 235 and the pipe 238 are connected by the valve 232, and the syringe 233
The liquid 231 in the syringe 233 is moved to the probe 2.
1 (Figure 3).

次に、粒子の移動動作を行う。Next, a particle movement operation is performed.

(3)弁72によりパイプ78.パイプ752を介して
排出口12と試験管772を接続する。同時に、弁32
によりパイプ35とパイプ38を連結しシリンジ32を
駆動してシリンジ33内の試料液31を粒子操作治具1
内に送り出す。
(3) Pipe 78 by valve 72. The outlet 12 and the test tube 772 are connected via a pipe 752 . At the same time, valve 32
connects the pipe 35 and the pipe 38, drives the syringe 32, and transfers the sample liquid 31 in the syringe 33 to the particle manipulation jig 1.
Send it inside.

画像処理部5で粒子操作治具1内の画像を監視し試料液
内の操作すべき細胞8を大きさや形態的特徴などで判別
し、細胞8が固定口14の近くに達したときに、シリン
ジ33の駆動をやめ細胞8を固定口14付近に停止させ
る。
The image processing unit 5 monitors the image inside the particle manipulation jig 1 and identifies the cells 8 to be manipulated in the sample liquid based on their size, morphological characteristics, etc., and when the cells 8 reach the vicinity of the fixing port 14, The drive of the syringe 33 is stopped and the cells 8 are stopped near the fixed port 14.

さらに細胞の固定と操作を行う(第4図)。Furthermore, cells are fixed and manipulated (Figure 4).

(4)弁32によりパイプ38とパイプ36を連結し、
シリンジ43を駆動して細胞8の固定口14に吸い付け
る。同時に1画像処理部5により細胞8を監視し細胞8
の固定を確認してシリンジ43の駆動をやめる(第5図
)。
(4) Connect pipe 38 and pipe 36 by valve 32,
The syringe 43 is driven and sucked into the fixed port 14 of the cell 8. At the same time, the cell 8 is monitored by the image processing unit 5.
After confirming that the syringe 43 is fixed, stop driving the syringe 43 (Fig. 5).

(5)画像処理部5からの細胞の形態や位置を示すデー
タにより、微動ステージ221を駆動してプローブ21
により細胞8に操作を行う。このとき、必要であればシ
リンジ233を駆動して細胞8内への薬剤の注入や核の
除去を行う(第6図)。
(5) Drive the fine movement stage 221 to move the probe 21 according to the data indicating the shape and position of the cell from the image processing unit 5.
The operation is performed on the cell 8 by. At this time, if necessary, the syringe 233 is driven to inject the drug into the cells 8 and remove the nucleus (FIG. 6).

最後に、・処理済みの細胞8を回収する。Finally, - Collect the treated cells 8.

(6)シリンジ43を駆動してシリンジ43内の生理食
塩水41を押し出し、細胞8を固定口14から分離する
。次に、シリンジ33を駆動して試料液31を粒子操作
治具1に送り、(4)の固定口14への吸引動作に戻る
。処理済みの細胞8は試料液31の流れに沿って排出口
12を経由して回収部7の試験管772に回収される(
゛第7図)。
(6) Drive the syringe 43 to push out the physiological saline 41 inside the syringe 43 and separate the cells 8 from the fixed port 14. Next, the syringe 33 is driven to send the sample liquid 31 to the particle manipulation jig 1, and the operation returns to (4) suction operation to the fixed port 14. The treated cells 8 are collected into the test tube 772 of the collection unit 7 via the outlet 12 along the flow of the sample liquid 31 (
(Figure 7).

本発明によれば、固定口付近まで細胞を送り、吸引固定
するので細胞の固定が容易で細胞の損傷が防止できた。
According to the present invention, the cells are sent to the vicinity of the fixation port and fixed by suction, making it easy to fix the cells and prevent damage to the cells.

また、細胞の検出処理と、シリンジの動作を連携して自
動で行うので、人手による長時間の熟練作業に代り、短
時間で大量の細胞操作を行いうる可能性がある。また、
細胞を固定する位置が決まっており細胞操作時の顕微鏡
の焦点合わせが不要なため精度のよい処理が可能となる
In addition, since the cell detection process and the syringe operation are performed automatically in coordination, there is a possibility that a large number of cells can be manipulated in a short period of time, instead of the long and skilled manual work. Also,
Since the position for fixing the cells is fixed and there is no need to focus the microscope during cell manipulation, highly accurate processing is possible.

また、粒子操作治具1の外形状を矩形状とし流路も矩形
状とすれば粒子操作治具1を透過する光の屈折を防ぐこ
とができ正確な細胞像がとらえられる。
Furthermore, if the outer shape of the particle manipulation jig 1 is rectangular and the flow path is also rectangular, refraction of light passing through the particle manipulation jig 1 can be prevented and an accurate cell image can be captured.

次に本発明の他の実施例を第8図に示す。Next, another embodiment of the present invention is shown in FIG.

第8図は、固定口14付近を示す図である。固定口14
には細胞を吸引して固定する吸入用の管49が挿入され
ており第1図の実施例と同様に固定部4にバイブ48で
連結されている。
FIG. 8 is a diagram showing the vicinity of the fixed port 14. Fixed port 14
A suction tube 49 for suctioning and fixing cells is inserted into the tube, and is connected to the fixing part 4 by a vibrator 48 as in the embodiment shown in FIG.

動作については第1図に示す実施例と同様である。The operation is similar to the embodiment shown in FIG.

本実施例によれば、吸入用の管を細胞の大きさに対応し
て交換することができるので多種類の細胞の操作が可能
になる。また、細胞を管に固定したまま管を抜き細胞−
個を取り出すこともできる。
According to this embodiment, the inhalation tube can be replaced depending on the size of the cells, making it possible to manipulate many types of cells. In addition, while the cells are fixed in the tube, the tube is removed and the cells are removed.
You can also take out pieces.

次に本発明の他の実施例を第9図に示す。Next, another embodiment of the present invention is shown in FIG.

第9図の装置の構成は以下のとおりである。The configuration of the apparatus shown in FIG. 9 is as follows.

基本的構成は第1図の装置と同様であるが、新たに粒子
操作治具1をはさんで顕微鏡51に向がい合う位置にレ
ーザ光源54を設置する。レーザ光541は粒子操作治
具1内の流路を透過した顕微鏡21の対物レンズにいた
る。このとき、レーザ光が、直接、対物レンズに入らな
いようにレーザ光を遮断する線材512を対物レンズの
前に置く。また、顕微鏡51に光電子増倍管などの高感
度の光検出器513を取り付け、粒子操作治具1から光
検出器513にいたる光路には特定の波長の光を透過す
る光学フィルタ514を挿入する。
The basic configuration is the same as that of the apparatus shown in FIG. 1, but a laser light source 54 is newly installed at a position facing the microscope 51 with the particle manipulation jig 1 in between. The laser beam 541 passes through the channel in the particle manipulation jig 1 and reaches the objective lens of the microscope 21 . At this time, a wire 512 that blocks the laser beam is placed in front of the objective lens so that the laser beam does not directly enter the objective lens. Further, a highly sensitive photodetector 513 such as a photomultiplier tube is attached to the microscope 51, and an optical filter 514 that transmits light of a specific wavelength is inserted in the optical path from the particle manipulation jig 1 to the photodetector 513. .

光検出器513の出力信号は信号の処理器315にいた
り信号処理されて情報処理部53にいたる。
The output signal from the photodetector 513 is sent to a signal processor 315, where it is processed and sent to an information processing section 53.

動作も第1図の装置とほぼ同様であるが、細胞の検出分
類時に上記のレーザ光学系からの信号を使用する。一般
に細胞の分類には細胞を染色して形態により分類する方
法と、蛍光物質を加えて細胞内の特定の分子に結合させ
レーザなどから得られる単色光を照射して発生する蛍光
量を目安に分類を行う方法がある。本実施例は後者の蛍
光による分類を加えるものである。
The operation is almost the same as that of the apparatus shown in FIG. 1, but the signal from the laser optical system described above is used when detecting and classifying cells. Generally, cells are classified by dyeing the cells and classifying them based on their morphology, or by adding a fluorescent substance, binding it to specific molecules within the cell, and irradiating it with monochromatic light obtained from a laser, etc., and measuring the amount of fluorescence generated. There are ways to perform classification. This embodiment adds the latter classification based on fluorescence.

本実施例によれば、蛍光による分類が行えるようになる
ので取り扱える細胞の種類が増す。また、分類項目が増
えるので、細胞の分類がより正確になる。
According to this embodiment, classification based on fluorescence can be performed, which increases the number of types of cells that can be handled. Furthermore, since the number of classification items increases, the classification of cells becomes more accurate.

さらに、本発明の他の実施例では、顕微鏡に。Additionally, in another embodiment of the invention, a microscope.

共焦点光学顕微鏡(走査型レーザ顕微鏡)を使用する。Use a confocal optical microscope (scanning laser microscope).

共焦点光学顕微鏡は、従来の顕微鏡よりも高解像(解像
力が約30%高くなる)で細胞内の微細構造を立体的に
とらえることもできる。従って、共焦点光学顕微鏡から
の細胞内の立体情報をもとに微動部を制御することによ
り、細胞内の核よりも/hさな染色体やオルガネラなど
に対する操作C手作業ではほぼ不可能なレベル)が可能
になる。また、固定口付近での細胞の変形状態を立体的
にとらえられるので細胞の堅さなどのレオロジー的情報
をえることができる。
Confocal optical microscopy can also provide a three-dimensional view of intracellular microstructures with higher resolution (resolving power approximately 30% higher) than conventional microscopes. Therefore, by controlling micro-movement parts based on intracellular 3D information from a confocal optical microscope, operations on chromosomes and organelles that are smaller than the intracellular nucleus can be performed at a level that is almost impossible to perform manually. ) becomes possible. Furthermore, since the deformation state of cells near the fixed port can be captured three-dimensionally, rheological information such as cell stiffness can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、粒子が一定の流路を通って固定用の開
口部付近に停止でき、流れを乱すプローブの動きがない
ので開口部からの吸引動作により容易に粒子の固定がで
き操作の時間の短縮と粒子の損傷の軽減効果がある。
According to the present invention, particles can pass through a certain flow path and be stopped near the fixing opening, and since there is no movement of the probe that disturbs the flow, particles can be easily fixed by suction operation from the opening, and the operation is easy. This has the effect of shortening time and reducing damage to particles.

また、粒子の固定位置が常に同じなので粒子にたいする
操作器具の位置が一定にでき操作器具の移動にともなう
機構が不要になり、操作の精度も向上する。
Furthermore, since the fixed position of the particle is always the same, the position of the operating instrument relative to the particle can be kept constant, eliminating the need for a mechanism for moving the operating instrument, and improving the precision of operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の要部断面(a)と系統図(
b)、第2図から第7図は本発明の一実施例の動作説明
図、第8図は本発明の他の実施例の部分断面図、第9図
は本発明の他の実施例の系統図である。 1・・・粒子操作治具、3・・・試料液供給部、4・・
・固定部、5・・・画像処理部、6・・システム制御部
、7回収部、8・・・細胞、9・・・シール部、11・
・・注入口、12・・排呂口、13・・・挿入口、14
・・固定口、21・・・プローブ、22・・・微動部、
23・・・吸引・吐第 1 図 (え) 第 2図 (久) 第30 (QJ ′lA4図 (久) 75z #2 (#+) 第gi
FIG. 1 shows a cross section (a) of a main part and a system diagram (a) of an embodiment of the present invention.
b), FIGS. 2 to 7 are explanatory diagrams of the operation of one embodiment of the present invention, FIG. 8 is a partial sectional view of another embodiment of the present invention, and FIG. 9 is a partial sectional view of another embodiment of the present invention. It is a system diagram. 1... Particle manipulation jig, 3... Sample liquid supply section, 4...
・Fixing part, 5... Image processing part, 6... System control part, 7 Collection part, 8... Cell, 9... Seal part, 11...
...Inlet, 12...Drain port, 13...Insertion port, 14
...Fixed port, 21...Probe, 22...Fine movement part,
23...Aspiration/discharge Fig. 1 (E) Fig. 2 (Ku) Fig. 30 (QJ 'lA4 Fig. (Ku) 75z #2 (#+) No. gi

Claims (1)

【特許請求の範囲】 1、一部またはすべてが透明な部材より構成された第一
の流路と、前記第一の流路中を流れる粒子を含む流体を
駆動する第一の流体駆動源と、前記第一の流体駆動源を
制御する第一の制御部と、流路内の状態を観測する光学
装置よりなる粒子操作装置において、 前記第一の流路中に相対する開口部を設け、第一の開口
部の径を流体中の微粒子の径よりも小さくし、前記第一
の開口部に接続する第二の流路を設け、前記第二の流路
に前記第二の流路内の流体を駆動する第二の駆動源と、
前記第二の駆動源を制御する第二の制御部を設け、第二
の開口部に、前記第二の開口部の径よりも小さな外径を
もつた、粒子操作用プローブを設置したことを特徴とす
る粒子操作装置。
[Claims] 1. A first channel partially or entirely made of a transparent member, and a first fluid driving source that drives a fluid containing particles flowing through the first channel. , a particle manipulation device comprising a first control unit that controls the first fluid drive source and an optical device that observes a state within the flow path, wherein an opposing opening is provided in the first flow path; The diameter of the first opening is made smaller than the diameter of the particles in the fluid, and a second flow path connected to the first opening is provided, and the second flow path is connected to the inside of the second flow path. a second driving source that drives the fluid;
A second control unit for controlling the second drive source is provided, and a particle manipulation probe having an outer diameter smaller than the diameter of the second opening is installed in the second opening. Characteristic particle manipulation device.
JP30243090A 1990-11-09 1990-11-09 Particle manipulative system Pending JPH04179469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30243090A JPH04179469A (en) 1990-11-09 1990-11-09 Particle manipulative system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30243090A JPH04179469A (en) 1990-11-09 1990-11-09 Particle manipulative system

Publications (1)

Publication Number Publication Date
JPH04179469A true JPH04179469A (en) 1992-06-26

Family

ID=17908832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30243090A Pending JPH04179469A (en) 1990-11-09 1990-11-09 Particle manipulative system

Country Status (1)

Country Link
JP (1) JPH04179469A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006094783A (en) * 2004-09-29 2006-04-13 Fujitsu Ltd Cell supply, exhaust and trap apparatus, and method for supplying, exhausting and trapping cell
JP2009142251A (en) * 2007-12-18 2009-07-02 National Institute Of Advanced Industrial & Technology Cutting device of cell flowing through minute fluidic path of micro fluidic chip, micro fluidic chip and cell cutting method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006094783A (en) * 2004-09-29 2006-04-13 Fujitsu Ltd Cell supply, exhaust and trap apparatus, and method for supplying, exhausting and trapping cell
JP4555650B2 (en) * 2004-09-29 2010-10-06 富士通株式会社 Cell supply / discharge / capture apparatus and cell supply / discharge / capture method
JP2009142251A (en) * 2007-12-18 2009-07-02 National Institute Of Advanced Industrial & Technology Cutting device of cell flowing through minute fluidic path of micro fluidic chip, micro fluidic chip and cell cutting method

Similar Documents

Publication Publication Date Title
US20230015223A1 (en) System and method for retrieving and analyzing particles
CN104745452B (en) Rare cell automates capture device
US9109197B2 (en) Device for concentrating and separating cells
JP2810545B2 (en) Suction device for liquid sample and its components, and slide assembly for use therewith
EP3076158B1 (en) Cell imaging apparatus
EP1688732A2 (en) Cell sorter chip having gel electrodes
JP2763468B2 (en) Classification device for particles in liquids using light scattering
KR20170071535A (en) Systems and methods for imaging fluid samples
EP1329706A1 (en) Rapid imaging of particles in a large fluid volume through flow cell imaging
CN108220396A (en) Biological sample processing device
US8797644B2 (en) Capillary-based cell and tissue acquisition system (CTAS)
JP2021192059A (en) Sample processing device and sample processing method
JPH04179469A (en) Particle manipulative system
CN110191756B (en) System and method for recovering and analyzing particles
KR102458032B1 (en) Rt-pcr device
CN212077049U (en) Coupling device and microscopic-optical tweezers single cell sorting system
JP2006138654A (en) Tangible component analyzer and tangible component analysis method
TWM619821U (en) Automatic processing device for liquid samples
CN113322181A (en) Cell lysis device and cell purification and/or cell lysis method based on cell lysis device
JP2010172231A (en) Apparatus for collecting cell or colony and method for collecting cell or colony
JP2796352B2 (en) Particle counting device
TWI839229B (en) Cell Detection System
JP2000028514A (en) Automatic analytical device for material component in urine
WO2021090555A1 (en) Method of priming microchip for fine particle sorting, fine particle sorting method, fine particle sorting device, and program
WO2023100750A1 (en) Sample preparation system, sample preparation method, and sample analysis system