JPH04176291A - Picture encoding system - Google Patents

Picture encoding system

Info

Publication number
JPH04176291A
JPH04176291A JP2302365A JP30236590A JPH04176291A JP H04176291 A JPH04176291 A JP H04176291A JP 2302365 A JP2302365 A JP 2302365A JP 30236590 A JP30236590 A JP 30236590A JP H04176291 A JPH04176291 A JP H04176291A
Authority
JP
Japan
Prior art keywords
transmission
error
error rate
image
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2302365A
Other languages
Japanese (ja)
Other versions
JP2834313B2 (en
Inventor
Iwao Ishinabe
巌 石鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP30236590A priority Critical patent/JP2834313B2/en
Publication of JPH04176291A publication Critical patent/JPH04176291A/en
Application granted granted Critical
Publication of JP2834313B2 publication Critical patent/JP2834313B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make a deteriorated picture generated due to transmission error refresh frequently and to improve the accurate reproducibility of a picture by controlling the generation of inner-frame prediction more frequent in the environment where the transmission performance is bad or in the environment where the transmission performance deteriorates temporarily. CONSTITUTION:Frame information, picture encoding information, error detection information which can detect the error during frame transmission, and reception transfer error detection result information is multiple-distributed to a transfer frame. The error rate on the transmission side can be predicted based on a reception error (error rate) obtained from a reception error (error rate) detection circuit. A counter measuring the number of inter-frame prediction continuities for each processing unit block and outputting the number of inter-frame prediction continuity executions of an objective encoding block at the time of encoding is provided. The picture encoding control adapted to the transmission error character of the transmission path is performed by comparing the number of the maximum continuity inter-frame predictions adapted to the transmission path obtained from the predicted transmission transfer error rate and the outputted counter value and forcedly indicating the inter-frame prediction encoding against the encoding control part when the counter value is equal or exceeding to the number of the maximum continuity inter-frame predictions.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はテレビ電話、テレビ会議、遠隔監視装置等に好
適な画像符号化方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an image encoding method suitable for video telephones, video conferences, remote monitoring devices, and the like.

〔従来の技術〕[Conventional technology]

従来装置は日刊工業新聞(昭和56年5月25日初版)
発行の「画像のディジタル信号処理(吹抜敬彦著)Jの
p141に記載の通り、誤り検出による疑似修正、誤り
検出による再送処理、誤り訂正符号による誤り訂正など
が用いられていた。上記従来例の内、低ビツトレート画
像コーデックに於いてはその符号化方式がフレーム間予
測と可変長符号を用いていることから、主に誤り訂正符
号による誤り訂正を用いていた。
The conventional device is from the Nikkan Kogyo Shimbun (first published on May 25, 1981)
As described in p. 141 of "Image Digital Signal Processing (written by Takahiko Fukinuki)" published by J, pseudo-correction by error detection, retransmission processing by error detection, error correction by error correction code, etc. were used. Among these, low bit rate image codecs mainly use error correction using error correction codes because their encoding methods use interframe prediction and variable length codes.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来装置は伝送品質の悪い環境或は−次的に悪くな
る環境に於いては上述したような誤り訂正符号のみでは
誤りを完全に修復できず、1ビツトの誤りの発生のみで
あっても可変長符号復号化誤りによる著しい画像劣化を
引き起こし、その後符号化器においてフレーム間予測が
続いた場合長時間に渡って劣化された画像が出力されて
しまうという問題があった。誤り率は伝送路ごとにこと
゛ 5゜ なり時間的にも一定していない事が多く、伝送路の誤り
特性に適した誤り訂正方式は一意に決まらないため誤り
訂正できない誤りが発生する可能性が常に残っている。
In an environment where the transmission quality is poor or is gradually becoming worse, the above-mentioned conventional device cannot completely correct errors using only the above-mentioned error correction code, and even if only a 1-bit error occurs, There is a problem in that when a variable length code decoding error causes significant image deterioration and the encoder continues interframe prediction thereafter, a degraded image is output for a long time. The error rate varies by 5 degrees for each transmission path and is often not constant over time, and an error correction method suitable for the error characteristics of the transmission path cannot be uniquely determined, so there is a possibility that errors that cannot be corrected may occur. always remains.

また、可変長符号を用いているので誤り訂正符号で訂正
できない場合、誤りの位置が正確に検出できず画像劣化
が発生する場所を確定し、その場所のみに適当な処理を
行ない画質劣化を改善することは困難だった。
In addition, since a variable length code is used, if the error cannot be corrected using an error correction code, the position of the error cannot be accurately detected and the location where image deterioration occurs is determined, and appropriate processing is applied only to that location to improve the image quality deterioration. It was difficult to do.

本発明は、伝送品質の悪い環境或は−次的に悪くなる環
境に於いて、誤り訂正能力の強化やデータの再送処理に
よる伝送効率の低下を生じることなく、伝送誤りによっ
て生じた劣化画像の表示時間を改善し、このような環境
でも符号化側が送った画像が復号化側で正しく再現され
ている確立を高くし、実用度を上げる事を目的とする。
The present invention enables the correction of degraded images caused by transmission errors in environments where transmission quality is poor or is gradually becoming worse, without strengthening error correction capability or reducing transmission efficiency due to data retransmission processing. The purpose is to improve the display time, increase the probability that the image sent by the encoder will be correctly reproduced on the decoder even in such an environment, and increase the practicality.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は処理単位ブロックごとにフレーム間予測連続回
数を測定し符号化時に対象となる符号化ブロックのフレ
ーム間予測連続実行回数を出力するカウンタを設け、予
測した送信伝送誤り率から°6゜ 得られるその伝送路に適した最大連続フレーム間予測回
数とその出力されたカウンタ値とを比較してカウンタ値
が最大連続フレーム間予測回数を等しいか越えている時
に符号化制御部に対して強制的にフレーム内予測符号化
を指示する事により伝送路の伝送誤り特性に適応した画
像符号化制御を行うことを特徴とする。
The present invention provides a counter that measures the number of consecutive interframe predictions for each processing unit block and outputs the number of consecutive executions of interframe predictions for the target coding block during encoding, and obtains 6 degrees from the predicted transmission error rate. Compare the maximum number of consecutive interframe predictions suitable for that transmission path with the output counter value, and when the counter value is equal to or exceeds the maximum number of consecutive interframe predictions, a command is issued to the encoding control unit. The present invention is characterized in that it performs image encoding control adapted to the transmission error characteristics of the transmission path by instructing intra-frame predictive encoding.

〔作用〕[Effect]

一般的な全二重の伝送′路は誤り率に於ける送受の相関
性が高いので受信誤り(誤り率)検出回路から得た受信
誤り(誤り率)より送信側の誤り率を予測できる。また
、検出した受信誤り(誤り率)を画像データの送信側へ
送る手段を設け、それを受信する手段を設けることで送
信した画像データの伝送誤り率を予測することができる
。検出した受信誤り(誤り率)から適当な関数により予
測される送信誤り率、あるいは相手が検出した受信誤り
(誤り率)を返送したものを一定時間監視して予測した
送信誤り率から予想される、伝送路の誤り特性に適した
最大連続フレーム間予測回数を得ることができる。
In a general full-duplex transmission path, the error rate has a high correlation between transmission and reception, so the error rate on the transmitting side can be predicted from the reception error (error rate) obtained from the reception error (error rate) detection circuit. Further, by providing means for sending detected reception errors (error rate) to the image data transmitting side and providing means for receiving the received errors, it is possible to predict the transmission error rate of the transmitted image data. Transmission error rate predicted by an appropriate function from detected reception errors (error rate), or predicted from transmission error rate predicted by monitoring for a certain period of time the received reception errors (error rate) detected by the other party and returned. , it is possible to obtain the maximum number of consecutive inter-frame predictions suitable for the error characteristics of the transmission path.

一般にフレーム間予測符号化とフレーム内予測符号化で
は、フレーム間予測符号化の方が圧縮効率がよいが、以
前に送信した画像フレームの情報を用いているので、伝
送誤りによる誤った復号化が行われ劣化画像が発生する
と、つぎつぎと伝搬して集束せず長時間劣化画像が表示
されてしまう。
In general, between interframe predictive coding and intraframe predictive coding, interframe predictive coding has better compression efficiency, but since it uses information from previously transmitted image frames, incorrect decoding due to transmission errors is possible. When this occurs and a degraded image is generated, the degraded image propagates one after another and is not converged, resulting in the degraded image being displayed for a long time.

フレーム内予測符号化では画像情報は伝送した画像情報
に閉じているのでこのような伝搬による画像劣化は生じ
ない。
In intraframe predictive coding, the image information is closed to the transmitted image information, so image deterioration due to such propagation does not occur.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面により説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の実施例として請求項1を実現する2台
の画像符号化装置を含むシステム図、第2図は請求項1
を実現する伝送フレームの構成図、第3図は請求項3に
於ける伝送フレームの構成図である。
FIG. 1 is a system diagram including two image encoding devices realizing claim 1 as an embodiment of the present invention, and FIG. 2 is a system diagram as claimed in claim 1.
FIG. 3 is a diagram showing the configuration of a transmission frame according to claim 3.

第1図に於いて、フレーム間予測符号化とフレーム内予
測符号化を符号化対象画素を集合したブロック単位に入
力画像に適応して選択することのできる画像符号復号化
装置1及び2、画像カメラ3及び4、画像モニタ5及び
6、伝送路7より構成された、双方向の画像伝送システ
ムを示している。画像符号復号化装置1は、画像符号化
回路11、送信フレーム多重回路12、フレーム間予測
連続回数測定カウンタ13−1及び13−2、・・・1
3−N、強制フレーム内予測符号化判定回路14、最大
連続回数予測回路15、受信伝送誤り(誤り率)検出回
路16、画像復号化回路17、受信フレーム分配回路1
8、誤り検出符号計算回路19より構成される。
FIG. 1 shows image code/decoding devices 1 and 2 that can select between inter-frame predictive coding and intra-frame predictive coding in accordance with an input image on a block-by-block basis in which pixels to be coded are set; A bidirectional image transmission system is shown, which includes cameras 3 and 4, image monitors 5 and 6, and a transmission line 7. The image code decoding device 1 includes an image encoding circuit 11, a transmission frame multiplexing circuit 12, and continuous interframe prediction count counters 13-1 and 13-2, . . . 1
3-N, forced intra-frame predictive coding determination circuit 14, maximum consecutive number prediction circuit 15, reception transmission error (error rate) detection circuit 16, image decoding circuit 17, reception frame distribution circuit 1
8, an error detection code calculation circuit 19.

画像符号復号化装置2は、画像符号化回路21、送信フ
レーム多重回路22、フレーム間予測連続回数測定カウ
ンタ23−1及び23−2、・・・23−N、強制フレ
ーム内予測符号化判定回路24、最大連続回数予測回路
25、受信伝送誤り(誤り率)検出回路26、画像復号
化回路27、受信フレーム分配回路28、誤り検出符号
計算回路29より構成される。
The image code decoding device 2 includes an image encoding circuit 21, a transmission frame multiplexing circuit 22, inter-frame prediction consecutive number measurement counters 23-1 and 23-2, . . . 23-N, and a forced intra-frame prediction coding determination circuit. 24, a maximum number of consecutive times prediction circuit 25, a reception transmission error (error rate) detection circuit 26, an image decoding circuit 27, a reception frame distribution circuit 28, and an error detection code calculation circuit 29.

まず、画像信号の流れを説明する。カメラ3より出力さ
れた画像信号は、画像符号復号化装置1の画像人力1a
より画像符号化回路11に入力される。
First, the flow of image signals will be explained. The image signal output from the camera 3 is the image signal 1a of the image code decoding device 1.
The signal is then input to the image encoding circuit 11.

9゛ このとき画像符号化回路11は符号化対象ブロックのア
ドレス1gを出力する。アドレス1gにより対象となる
フレーム間予測連続回数測定カウンタ13−nは測定し
た連続回数ljを出力する。強制フレーム内予測符号化
判定回路14は入力した連続回数IJと最大連続回数1
pとを比較し、最大連続回数1pより連続回数IJが等
しいか大きい場合には強制フレーム内予測符号化制御信
号11を出力する。画像符号化回路11は強制フレーム
内予測符号化制御信号11が無効の時は入力画像により
判定されたフレーム間/フレーム内予測符号化により符
号化され、強制フレーム内予測符号化制御信号11が有
効の時はフレーム内予測符号化により符号化される。符
号化時にはフレーム間/フレーム内予測判定信号1hが
出力され、フレーム間予測の時は対象となるフレーム間
予測連続回数測定カウンタ13−nをカウントアツプし
、フレーム内予測の時はリセットするように制御する。
9. At this time, the image encoding circuit 11 outputs the address 1g of the block to be encoded. The target continuous interframe prediction count measuring counter 13-n outputs the measured number of consecutive predictions lj based on the address 1g. The forced intra-frame predictive coding determination circuit 14 uses the input consecutive number IJ and the maximum consecutive number 1.
If the consecutive number IJ is equal to or greater than the maximum consecutive number 1p, the forced intra-frame predictive coding control signal 11 is output. When the forced intra-frame predictive coding control signal 11 is invalid, the image encoding circuit 11 encodes using inter-frame/intra-frame predictive coding determined by the input image, and when the forced intra-frame predictive coding control signal 11 is valid. In the case of , encoding is performed using intraframe predictive encoding. During encoding, an interframe/intraframe prediction determination signal 1h is output, and during interframe prediction, the target interframe prediction consecutive number measurement counter 13-n is counted up, and during intraframe prediction, it is reset. Control.

画像符号化回路11より出力された画像符号化情報1b
は、送信フレーム多重回路12及び誤り検出符号計算回
路19に入力される。送信フレーム多重回路12では、
画像符号化情報1bと受信伝送誤り(誤り率)検出回路
16から出力される受信伝送誤り(誤り率)検出結果情
報1fと誤り検出符号計算回路19で出力される誤り検
出情報1eとがフレームに多重され送信出力1cに出力
され伝送路7で伝送誤り信号7aを付加され、画像符号
復号化装置2の受信人力2dに入力される。画像符号復
号化装置1の受信人力1dは受信フレーム分配回路18
に入力され、伝送フレームより画像符号化情報In、受
信伝送誤り(誤り率)検出結果情報1k、誤り検出情報
1mとに分配される。受信伝送誤り(誤り率)検出回路
16に入力された画像符号化情報1n、受信伝送誤り(
誤り率)検出結果情報1には、誤り検出情報1mにより
伝送路7で付加された誤り信号7aの検出が行われ一定
時間観測され受信伝送誤り(誤り率)検出結果情報1F
が出力される。受信した受信伝送誤り(誤り率)検出結
果情報1には、最大連続回数予測回路15に入力され伝
送路で付加された伝送誤りにより誤った制御を行わない
ように一定時間監視し平均値を取ることにより送信伝送
°11 誤り率を予測し、その送信伝送誤り率に適した最大連続
回数1pが出力される。受信した画像符号化情報1nは
画像復号化回路17に入力され符号化情報に従って復号
化され画像信号1oが出力され画像モニタ5に入力され
る。画像符号復号化装置2も画像符号復号化装置1と同
様に動作する。
Image encoding information 1b output from the image encoding circuit 11
is input to the transmission frame multiplexing circuit 12 and the error detection code calculation circuit 19. In the transmission frame multiplexing circuit 12,
The image encoding information 1b, the reception transmission error (error rate) detection result information 1f output from the reception transmission error (error rate) detection circuit 16, and the error detection information 1e output from the error detection code calculation circuit 19 are combined into a frame. The signals are multiplexed, output to the transmission output 1c, added with a transmission error signal 7a via the transmission path 7, and input to the receiver 2d of the image code/decoder 2. The receiving power 1d of the image code decoding device 1 is a received frame distribution circuit 18.
The received transmission error (error rate) detection result information 1k and error detection information 1m are distributed from the transmission frame into image encoding information In, received transmission error (error rate) detection result information 1k, and error detection information 1m. Image encoding information 1n input to the reception transmission error (error rate) detection circuit 16, reception transmission error (error rate)
Error rate) detection result information 1 includes error detection information 1m that detects the error signal 7a added on the transmission path 7, observes it for a certain period of time, and receives transmission error (error rate) detection result information 1F.
is output. The received reception transmission error (error rate) detection result information 1 is input to the maximum consecutive number prediction circuit 15, and is monitored for a certain period of time to prevent incorrect control due to transmission errors added on the transmission path, and an average value is taken. As a result, the transmission error rate is predicted, and the maximum number of consecutive times 1p suitable for the transmission error rate is output. The received encoded image information 1n is input to the image decoding circuit 17, decoded according to the encoded information, and an image signal 1o is output and input to the image monitor 5. The image code decoding device 2 also operates in the same way as the image code decoding device 1.

伝送誤り信号7aのレベルが増加し伝送路7の誤り特性
が悪化し、送信用ノ月Cに付加される伝送誤りが増加す
ると、画像符号復号化装置2の受信伝送誤り(誤り率)
検出回路26で検出され受信伝送誤り(誤り率)検出結
果情報2丁として送信フレームに多重され送信出力1c
として画像符号復号化装置1に送られる。送られた受信
伝送誤り(誤り率)検出結果情報2fは、受信フレーム
分配回路18で取り出され最大連続回数予測回路]5に
入力され、送信伝送誤り率が悪化したと予測される。そ
の結果、最大連続回数予測回路15は最大連続回数を最
適な値に変更(一般的には減少)させ、画像符号化情報
1bのフレーム内予測符号化の頻度を強制的に伝送誤り
特性に適応(一般的には増加)させる。その結果、送信
出力1cに付加される伝送誤りが増加したとしても頻繁
にフレーム内予測が行われ、伝送誤りによって生じた画
像劣化が画像信号20において長時間表示されることを
防ぎ、符号化した画像信号が復号化側で正しく再現され
ている確立を高くすることができる。
When the level of the transmission error signal 7a increases, the error characteristics of the transmission path 7 deteriorates, and the transmission error added to the transmission nozuki C increases, the reception transmission error (error rate) of the image code decoding device 2 increases.
Detected by the detection circuit 26 and multiplexed into the transmission frame as two reception transmission error (error rate) detection result information, the transmission output 1c
It is sent to the image code decoding device 1 as a. The sent reception transmission error (error rate) detection result information 2f is extracted by the reception frame distribution circuit 18 and inputted to the maximum consecutive number prediction circuit 5, and it is predicted that the transmission error rate has worsened. As a result, the maximum consecutive number prediction circuit 15 changes the maximum consecutive number to an optimal value (generally decreases it), and forcibly adapts the frequency of intra-frame predictive encoding of the image encoded information 1b to the transmission error characteristics. (generally increase). As a result, even if the transmission error added to the transmission output 1c increases, intra-frame prediction is performed frequently, and image deterioration caused by transmission errors is prevented from being displayed for a long time in the image signal 20, and the encoded It is possible to increase the probability that the image signal is correctly reproduced on the decoding side.

第2図に請求項1における伝送フレーム構成の例を示す
。伝送フレーム8は、フレームビット81により識別さ
れ、伝送フレーム内には画像符号化情報82と受信誤り
検出情報83と誤り検出情報84が多重されている。
FIG. 2 shows an example of a transmission frame structure according to claim 1. The transmission frame 8 is identified by a frame bit 81, and image encoding information 82, reception error detection information 83, and error detection information 84 are multiplexed within the transmission frame.

第3図に請求項2における伝送フレーム構成の例を示す
。請求項2では、付加情報に対する誤り検出符号の能力
を用いているので、伝送フレーム9にはフレームビット
91と画像符号化情報92と受信誤り検出情報93と付
加情報94と付加情報誤り検出情報95が多重されてい
る。
FIG. 3 shows an example of a transmission frame structure according to claim 2. In claim 2, since the ability of the error detection code for additional information is used, the transmission frame 9 includes frame bits 91, image coding information 92, reception error detection information 93, additional information 94, and additional information error detection information 95. are multiplexed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、伝送品質の悪い環境或は−次的に悪く
なる環境に於いては、フレーム内予測の発生頻度が大き
くなるように制御し、伝送誤りにより発生した劣化画像
を頻繁にリフレッシュし画像が正しく再現されている確
立を上げる効果がある。また、伝送品質がよいと予測さ
れる環境に於いては、フレーム間予測制限回数を適当な
値まで大きくする事により、符号化効率を落とさないよ
うに動作する事ができる。
According to the present invention, in an environment where the transmission quality is poor or will become worse next time, the frequency of occurrence of intra-frame prediction is controlled to be high, and degraded images caused by transmission errors are frequently refreshed. This has the effect of increasing the probability that the image is correctly reproduced. Furthermore, in an environment where transmission quality is predicted to be good, by increasing the number of limited interframe predictions to an appropriate value, it is possible to operate without reducing coding efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す双方向の画像伝送シ
ステム図、第2図、第3図は本発明の説明に供する伝送
フレームの構成図である。 符号の説明 1.2:画像符号復号化装置 3.4:画像カメラ  5,6:画像モニタ7:伝送路
      11:画像符号化回路12:送信フレーム
多重回路 ]3:フレーム間予測連続回数測定カウンタ14:強制
フレーム内予測符号化判定回路15:最大連続回数予測
回路 16:受信伝送誤り(誤り率)検出回路゛14 17:画像復号化回路 18二受信フレ一ム分配回路 19:誤り検出符号計算回路 21:画像符号化回路 22:送信フレーム多重回路 23:フレーム間予測連続回数測定カウンタ24:強制
フレーム内予測符号化判定回路25:最大連続回数予測
回路 26:受信伝送誤り(誤り率)検出回路27:画像復号
化回路 28:受信フレーム分配回路 29:誤り検出符号計算回路 甲1[7
FIG. 1 is a diagram of a two-way image transmission system showing an embodiment of the present invention, and FIGS. 2 and 3 are configuration diagrams of transmission frames for explaining the present invention. Description of codes 1.2: Image code decoding device 3.4: Image camera 5, 6: Image monitor 7: Transmission line 11: Image encoding circuit 12: Transmission frame multiplexing circuit] 3: Counter for measuring the number of consecutive interframe predictions 14: Forced intra-frame predictive coding determination circuit 15: Maximum consecutive number of times prediction circuit 16: Reception transmission error (error rate) detection circuit 14 17: Image decoding circuit 18 Two received frame distribution circuit 19: Error detection code calculation Circuit 21: Image encoding circuit 22: Transmission frame multiplexing circuit 23: Inter-frame prediction consecutive number measurement counter 24: Forced intra-frame prediction coding judgment circuit 25: Maximum consecutive number prediction circuit 26: Reception transmission error (error rate) detection circuit 27: Image decoding circuit 28: Received frame distribution circuit 29: Error detection code calculation circuit A1 [7

Claims (1)

【特許請求の範囲】 1、入力された画像に適応してフレーム間予測符号化と
フレーム内予測符号化を符号化対象画素を集合したブロ
ック単位に選択する画像符号復号化方式に於いて、伝送
フレームにフレーム情報と画像符号化情報と伝送フレー
ム中に誤りを検出可能な誤り検出情報と受信伝送誤り検
出結果情報とを多重分配する手段と伝送フレームから誤
り検出情報を用いて受信伝送誤り(誤り率)を検出する
手段と検出した受信伝送誤り(誤り率)検出結果を相手
へ送信する手段と相手が送信した受信伝送誤り(誤り率
)検出結果情報を受信し一定時間監視する手段とを設け
、その監視結果により自身の送信伝送誤り率を予測し、
その伝送誤り率に適した符号化時の連続してフレーム間
予測を実行できるブロック毎の連続回数の最大値を予測
し、設定することにより、伝送路の伝送誤り率に適用し
て実用に耐える符号化画像を通信できることを特徴とす
る画像符号化方式。 2、請求項1において、受信伝送誤りの検出において伝
送フレーム中の全てに対して誤り検出可能な誤り検出情
報を用いることなく、伝送フレーム中の一部の情報(例
えば、伝送フレーム中に画像符号化情報と共に多重され
た付加情報とその誤り検出符号)に対して有効な誤り検
出手段を用いることにより伝送フレーム全体の受信伝送
誤りを予測する、伝送路の伝送誤り率に適用して実用に
耐える符号化画像を通信できることを特徴とする画像符
号化方式。 3、請求項1において、受信伝送誤りの検出において伝
送フレーム中の全てに対して誤り検出可能な誤り検出情
報を用いることなく、受信した画像符号化情報の復号過
程において検出された符号則違反の出現を監視すること
により伝送フレーム全体の受信伝送誤りを予測し、伝送
路の伝送誤り率に適用して実用に耐える符号化画像を通
信できることを特徴とする画像符号化方式。 4、請求項1、2、3のいずれかにおいて、送信伝送誤
り率を予測する手段において、検出した受信伝送誤り(
誤り率)を相手へ送信する手段と相手が送信した受信伝
送誤り(誤り率)情報を受信し一定時間監視する手段と
を設けることなく、検出した受信伝送誤り(誤り率)か
ら直接予測し、その伝送誤り率に適した符号化する時の
連続してフレーム間予測を実行できるブロック毎の連続
回数の限度の値を設定することにより、伝送路の伝送誤
り率に適用して実用に耐える符号化画像を通信できるこ
とを特徴とする画像符号化方式。5、請求項1または2
において誤り検出符号の変わりに誤り訂正符号を用いる
ことにより、伝送路の伝送誤り(誤り率)を検出し、そ
の伝送誤り(誤り率)に適用して実用に耐える符号化画
像を通信できることを特徴とする画像符号化方式。 6、請求項1、2、3、4、5のいずれかにおいて、受
信伝送誤り(誤り率)検出結果情報から自身の送信伝送
誤り率を予測し、その伝送誤り率に適した符号化時の連
続してフレーム間予測を実行できるブロック毎の連続回
数の最大値を予測する手段に於いて予め測定して求めた
表を用いる、伝送路の伝送誤り率に適用して実用に耐え
る符号化画像を通信できることを特徴とする画像符号化
方式。 7、請求項1、2、3、4、5、のいずれかにおいて、
受信伝送誤り(誤り率)検出結果情報から自身の送信伝
送誤り率を予測し、その伝送誤り率に適した符号化時の
連続してフレーム間予測を実行できるブロック毎の連続
回数の最大値を予測する手段に於いて関数を用いる、伝
送路の伝送誤り率に適用して実用に耐える符号化画像を
通信できることを特徴とする画像符号化方式。
[Claims] 1. In an image coding and decoding method that selects interframe predictive coding and intraframe predictive coding for each block of pixels to be coded in accordance with an input image, the transmission Means for multiplexing and distributing frame information, image coding information, error detection information capable of detecting errors in a transmission frame, and reception transmission error detection result information to a frame, and reception transmission error (error means for detecting the detected reception transmission error (error rate), means for transmitting the detected reception transmission error (error rate) detection result to the other party, and means for receiving and monitoring the reception transmission error (error rate) detection result information transmitted by the other party for a certain period of time. , predict its own transmission transmission error rate based on the monitoring results,
By predicting and setting the maximum number of consecutive times for each block that can perform interframe prediction continuously during encoding appropriate for the transmission error rate, it can be applied to the transmission error rate of the transmission path and can be applied to practical use. An image encoding method characterized by being able to communicate encoded images. 2. In claim 1, in the detection of reception transmission errors, some information in the transmission frame (for example, image code This method predicts the received transmission error of the entire transmission frame by using an effective error detection means for the additional information multiplexed with the additional information and its error detection code, and is practical when applied to the transmission error rate of the transmission path. An image encoding method characterized by being able to communicate encoded images. 3. In claim 1, when detecting a received transmission error, the code rule violation detected in the decoding process of the received encoded image information is detected without using error detection information that can detect errors in all of the transmission frames. An image encoding method that is characterized in that it is possible to predict received transmission errors in the entire transmission frame by monitoring their occurrence, and to apply this to the transmission error rate of the transmission path to communicate encoded images that are suitable for practical use. 4. In any one of claims 1, 2, and 3, in the means for predicting the transmission transmission error rate, the detected reception transmission error (
Direct prediction is made from detected received transmission errors (error rate) without providing a means for transmitting the received transmission error (error rate) to the other party and a means for receiving and monitoring for a certain period of time the received transmission error (error rate) information sent by the other party, By setting the limit value for the number of consecutive times for each block that can perform interframe prediction continuously during encoding that is suitable for the transmission error rate, codes that can be applied to the transmission error rate of the transmission path and can withstand practical use. An image encoding method characterized by being able to communicate encoded images. 5.Claim 1 or 2
By using an error correction code instead of an error detection code, it is possible to detect transmission errors (error rate) on the transmission path and apply it to the transmission error (error rate) to communicate a coded image that can withstand practical use. An image encoding method that uses 6. In any one of claims 1, 2, 3, 4, and 5, the transmission error rate of the own transmission is predicted from the reception transmission error (error rate) detection result information, and the encoding time suitable for the transmission error rate is determined. A coded image that can be applied to the transmission error rate of a transmission path and is suitable for practical use, using a table determined in advance as a means of predicting the maximum number of consecutive times for each block that can perform interframe prediction continuously. An image encoding method characterized by being able to communicate. 7. In any one of claims 1, 2, 3, 4, and 5,
Predict its own transmission transmission error rate from reception transmission error (error rate) detection result information, and calculate the maximum number of consecutive times for each block that can perform interframe prediction continuously during encoding suitable for that transmission error rate. An image coding method that uses a function in a prediction means and is characterized in that it can communicate a coded image that is suitable for practical use by applying it to the transmission error rate of a transmission path.
JP30236590A 1990-11-09 1990-11-09 Image encoding / decoding device Expired - Fee Related JP2834313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30236590A JP2834313B2 (en) 1990-11-09 1990-11-09 Image encoding / decoding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30236590A JP2834313B2 (en) 1990-11-09 1990-11-09 Image encoding / decoding device

Publications (2)

Publication Number Publication Date
JPH04176291A true JPH04176291A (en) 1992-06-23
JP2834313B2 JP2834313B2 (en) 1998-12-09

Family

ID=17908023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30236590A Expired - Fee Related JP2834313B2 (en) 1990-11-09 1990-11-09 Image encoding / decoding device

Country Status (1)

Country Link
JP (1) JP2834313B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001251680A (en) * 2000-03-06 2001-09-14 Toshiba Corp Data transmission system and its communication unit
WO2002007437A1 (en) * 2000-07-14 2002-01-24 Mitsubishi Denki Kabushiki Kaisha Image signal storage/reproduction device, and image signal transmission device
JP2002522984A (en) * 1998-08-07 2002-07-23 ノキア モービル フォーンズ リミテッド Adaptive digital video codec for wireless transmission
US7110450B1 (en) 1999-01-06 2006-09-19 Nec Corporation Moving picture encoding apparatus
JP2011517233A (en) * 2008-04-07 2011-05-26 クゥアルコム・インコーポレイテッド Video refresh adaptation algorithm in response to error feedback

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63267080A (en) * 1987-04-24 1988-11-04 Nippon Telegr & Teleph Corp <Ntt> Video signal transmission system
JPH01282981A (en) * 1988-05-09 1989-11-14 Toshiba Corp Animation coding system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63267080A (en) * 1987-04-24 1988-11-04 Nippon Telegr & Teleph Corp <Ntt> Video signal transmission system
JPH01282981A (en) * 1988-05-09 1989-11-14 Toshiba Corp Animation coding system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002522984A (en) * 1998-08-07 2002-07-23 ノキア モービル フォーンズ リミテッド Adaptive digital video codec for wireless transmission
US7764927B2 (en) 1998-08-07 2010-07-27 Nokia Corporation Method and apparatus for controlling encoding of a digital video signal according to monitored parameters of a radio frequency communication signal
US7110450B1 (en) 1999-01-06 2006-09-19 Nec Corporation Moving picture encoding apparatus
JP2001251680A (en) * 2000-03-06 2001-09-14 Toshiba Corp Data transmission system and its communication unit
JP4495821B2 (en) * 2000-03-06 2010-07-07 株式会社東芝 Data transmission system and its communication device
WO2002007437A1 (en) * 2000-07-14 2002-01-24 Mitsubishi Denki Kabushiki Kaisha Image signal storage/reproduction device, and image signal transmission device
JP2011517233A (en) * 2008-04-07 2011-05-26 クゥアルコム・インコーポレイテッド Video refresh adaptation algorithm in response to error feedback
US8406296B2 (en) 2008-04-07 2013-03-26 Qualcomm Incorporated Video refresh adaptation algorithms responsive to error feedback
US9479800B2 (en) 2008-04-07 2016-10-25 Qualcomm Incorporated Video refresh adaptation algorithms responsive to error feedback

Also Published As

Publication number Publication date
JP2834313B2 (en) 1998-12-09

Similar Documents

Publication Publication Date Title
KR100960282B1 (en) Video coding
US20090153668A1 (en) System and method for real-time video quality assessment based on transmission properties
KR970019219A (en) VIDEO CODING USING SEGMENTED FRAMES AND RETRANSMISSION TO OVERCOME CHANNEL ERRORS
US20070127437A1 (en) Medium signal transmission method, reception method, transmission/reception method, and device
KR950007576A (en) Buffer Control System for DC-based Intra-frame Video Compression
KR20040102112A (en) Transmission system with congestion control at the receiver end for deciding possible retransmission requests
EP1599047B1 (en) Video (de)coding device with frequency band retransmission
JPH04176291A (en) Picture encoding system
US7827458B1 (en) Packet loss error recovery
US7796499B2 (en) Method of and system for video fast update
EP1081963B1 (en) Video signal error detection systems
JP2009212842A (en) Moving image transmitter
JP2830948B2 (en) Image signal coding method
KR100827108B1 (en) system for providing image service, and method and apparatus therefor
KR100302379B1 (en) Decoding method and decoding apparatus of coded moving image signal
KR100899666B1 (en) Dispersed multistreaming transmission apparatus
KR100363550B1 (en) Encoder and decoder in a wireless terminal for retransmitting a moving picture
JP2006270666A (en) Image recording apparatus and monitoring system
CN113676641B (en) Double-camera three-code-stream method based on 5G law enforcement recorder
JP3929876B2 (en) Wireless video transmission device
JP4794711B2 (en) Error concealment control method, encoding apparatus, and image signal transmission system
JPH10200897A (en) Moving picture transmission device
JP2003018597A (en) Method and apparatus for converting image encoding method, and image encoding method conversion program
JP2004140691A (en) Moving picture data communication system and moving picture data communication method
Furht Rajiv Soundararajan 2, Kalpana Seshadrinathan and Alan C. Bovik

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees