JPH04176163A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH04176163A
JPH04176163A JP2302910A JP30291090A JPH04176163A JP H04176163 A JPH04176163 A JP H04176163A JP 2302910 A JP2302910 A JP 2302910A JP 30291090 A JP30291090 A JP 30291090A JP H04176163 A JPH04176163 A JP H04176163A
Authority
JP
Japan
Prior art keywords
region
type impurity
impurity region
substrate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2302910A
Other languages
Japanese (ja)
Inventor
Motoo Nakano
元雄 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2302910A priority Critical patent/JPH04176163A/en
Publication of JPH04176163A publication Critical patent/JPH04176163A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To enable a semiconductor thin film to be used as a miniature constant current source or a voltage generator in a semiconductor device by a method wherein an alternating or a pulse voltage is applied to an electrode, and a current is made to flow through the semiconductor thin film composed of first-fourth regions, or a prescribed voltage is generated in the first region. CONSTITUTION:A silicon thin film 13 is formed on a P-type silicon substrate 11 through the intermediary oxide film 12, where the film 13 is composed of a high concentration P<+>-type impurity region 14, an N-type impurity region 15, a P-type impurity region 16, and a high concentration N<+>-type impurity region 17, and a polysilicon electrode layer 19 is provided onto the N-type impurity region 15 and the P-type impurity region 16 through the intermediary of a silicon oxide film 18. A positive pulse voltage of 0V or above is applied to the electrode 19, a current is made to flow through the silicon thin film 13 composed of the P<+>-type impurity region 14-the N<+>-type impurity region 17 to induce a negative potential in the P<+>-type impurity region 14 connected to a substrate voltage VBB, of the P-type silicon substrate 11.

Description

【発明の詳細な説明】 [IR要] 半導体装置に係り、特にIC(半導体集積回路)チップ
内における小型定電流源又は電圧発生器として使用され
る半導体装置に関し、 バルク基板又はSO■基板を用いた半導体装置の基板バ
イアスを所定の値に制御することができる基板バイアス
発生装置等に使用される半導体装置を提供することを目
的とし、 半導体基板と、前記半導体基板上に、第1の絶縁膜を介
して形成された半導体薄膜と、前記半導体薄膜に形成さ
れな第1壽電型の第1の領域と、前記半導体薄膜に形成
され、前記第1の領域と接続されな第2導電型の第2の
領域と、前記半ミラ体薄膜に形成され、前記第2の領域
と接続された第1導電型の第3の領域と、前記半導体薄
膜に形成され、前記第3の領域と接続された第2導電型
の第4の領域と、前記第2及び第3の領域子に、第2の
絶縁膜を介して形成された電極とを有し、前記電極に交
流又はパルス状の電圧を印加して、前記第1乃至第4の
領域からなる前記半導体薄膜を通して電流を流す、又は
前記第1の領域に所定の電圧を発生させるように構成す
る。
[Detailed description of the invention] [IR required] Regarding semiconductor devices, especially semiconductor devices used as small constant current sources or voltage generators in IC (semiconductor integrated circuit) chips, using bulk substrates or SO2 substrates. An object of the present invention is to provide a semiconductor device used in a substrate bias generation device, etc., which can control the substrate bias of a semiconductor device to a predetermined value. a semiconductor thin film formed through the semiconductor thin film, a first region of the first Juden type not formed in the semiconductor thin film, and a second conductivity type region formed in the semiconductor thin film not connected to the first region. a second region, a third region of the first conductivity type formed in the semi-mirror thin film and connected to the second region, and a third region of the first conductivity type formed in the semiconductor thin film and connected to the third region. a fourth region of a second conductivity type, and an electrode formed on the second and third regions through a second insulating film, and an alternating current or pulse voltage is applied to the electrode. The voltage is applied to cause a current to flow through the semiconductor thin film consisting of the first to fourth regions, or to generate a predetermined voltage in the first region.

「産業上の利用分野」 本発明は半導体装置及びその製造方法に係り、特にIC
(半導体集積回路)チップ内における小型定電流源又は
電圧発生器として使用される半導体装置及びその製造方
法に関する。
"Industrial Application Field" The present invention relates to a semiconductor device and a method for manufacturing the same, and particularly to an IC device and a method for manufacturing the same.
(Semiconductor integrated circuit) This invention relates to a semiconductor device used as a small constant current source or voltage generator within a chip, and a method for manufacturing the same.

[従来の技術] 一般に、記憶セルか11〜ランジスタ・1キヤパシタに
よって構成される]) [I A M (DynaIn
ic 1and01^ccess Hell1ory)
においては、電源極性と反対極性の電圧を発生させる電
圧発生器が、基板バイアス発生装置として広く使用され
る。かかる基板バイアス発生装置の回路図を第5図に示
す。
[Prior Art] In general, a memory cell is composed of 11 transistors and 1 capacitor]) [IAM (DynaIn
ic 1and01^ccess Hell1ory)
In this field, a voltage generator that generates a voltage with a polarity opposite to the power supply polarity is widely used as a substrate bias generation device. A circuit diagram of such a substrate bias generating device is shown in FIG.

即ち、基板バイアス発生装置は、直列接続された2個の
ダイオードDI、D2と、これらのダイオードDr、、
D2の接続点Aに接続された1個のコンデンサCとによ
って構成され、ダイオードD1のアノードは半導体基板
の基板電圧VBBに接続され、タイオードD2のカソー
ドは接地されている。
That is, the substrate bias generation device includes two diodes DI and D2 connected in series, and these diodes Dr.
The anode of the diode D1 is connected to the substrate voltage VBB of the semiconductor substrate, and the cathode of the diode D2 is grounded.

次に、動作を説明する。Next, the operation will be explained.

基板バイアス発生装置の動作は、コンデンサCの一方の
電極に例えばパルス電圧を与えて行なう。
The substrate bias generator operates by applying, for example, a pulse voltage to one electrode of the capacitor C.

例えばパルス電圧がOから十■に立ち上がる場合、コン
デンサCを介し接続点Aの電位が正に持ち上げられてダ
イオードD2が導通状態となり、接続点Aから電荷が接
地側へ運び出される。次いで、パルス電圧が十■から0
に立ち下がると、コンデンサCを介し接続点Aが負電位
に持ち込まれ、ダイオードD2が遮断状態なると同時に
ダイオードD1は導通状態になるため、基板電圧Vll
11の半導体基板から電荷が接続点Aへ運び込まれる。
For example, when the pulse voltage rises from 0 to 10, the potential at the connection point A is raised to positive via the capacitor C, the diode D2 becomes conductive, and the charge is carried out from the connection point A to the ground side. Then, the pulse voltage increases from 10 to 0.
, the connection point A is brought to a negative potential via the capacitor C, and the diode D2 is cut off and at the same time the diode D1 becomes conductive, so that the substrate voltage Vll
Charge is carried from the semiconductor substrate No. 11 to the connection point A.

このとき、単位時間に運ばれる電荷量は近似的にはコン
デンサ容量、パルス電圧及び周波数に」1例し、到達負
電圧はパルス電圧となる。従って、これを繰り返すこと
により、半導体基板より継続的に電荷が運び出されるた
め、半導体基板は負に帯電する。
At this time, the amount of charge carried per unit time is approximated by the capacitor capacity, pulse voltage, and frequency, and the negative voltage reached is the pulse voltage. Therefore, by repeating this process, charges are continuously carried out from the semiconductor substrate, so that the semiconductor substrate becomes negatively charged.

次に、第6図の工程断面図を用いて、第5図の回路図に
示される基板バイアス発生装置の製造方法を説明する。
Next, a method for manufacturing the substrate bias generating device shown in the circuit diagram of FIG. 5 will be explained using the process cross-sectional diagram of FIG. 6.

即ち、半導体基板、例えばp型シリコン基板31表面に
、n型不純物領域32.33を形成する。
That is, n-type impurity regions 32 and 33 are formed on the surface of a semiconductor substrate, for example, a p-type silicon substrate 31.

n型不純物領域33表面に、P+型不純物領域34を形
成する。n型不純物領域32上に、キャパシタ用のシリ
コン酸化膜35を介してキャパシタ用の電極36を形成
する。またn型不純物領域32とP4型不純物領域34
とを接続する配線層37を形成すると共に、n型不純物
領域33を接地−6−一 する配線層38を形成する。
A P+ type impurity region 34 is formed on the surface of the n type impurity region 33. A capacitor electrode 36 is formed on the n-type impurity region 32 with a capacitor silicon oxide film 35 interposed therebetween. Also, the n-type impurity region 32 and the P4-type impurity region 34
At the same time, a wiring layer 38 is formed to connect the n-type impurity region 33 to the ground.

このようにして、p型シリコン基板31とn型不純物領
域32とによりダイオードD1を構成し、P+型不純物
領域34とn型不純物領域33とによりダイオードD2
を構成し、n型不純物領域32、シリコン酸化膜35及
び電極36によりコンデンサCを構成する。
In this way, the p-type silicon substrate 31 and the n-type impurity region 32 constitute the diode D1, and the P+ type impurity region 34 and the n-type impurity region 33 constitute the diode D2.
The n-type impurity region 32, the silicon oxide film 35, and the electrode 36 constitute a capacitor C.

このときタイオードDi、D2は直列接続となるため、
各領域を絶縁するには最小限第6図に示されるように、
P型シリコン基板31中にn型不純物領域33を形成し
、更にこのn型不純物領域33内部にP+型不純物領域
34を作り込む必要がある。このためn型不純物領域3
3の不純物濃度は、P″型全不純物領域34り低くしな
ければならない関係上、nチャネルF E T” (F
ield Effeat Transistor )の
ソース、トレイン領域トハ別途に形成する必要かある。
At this time, the diodes Di and D2 are connected in series, so
To insulate each area, the minimum required is as shown in Figure 6.
It is necessary to form an n-type impurity region 33 in a P-type silicon substrate 31, and further to form a P+-type impurity region 34 inside this n-type impurity region 33. Therefore, n-type impurity region 3
3 has to be lower than the P'' type total impurity region 34, so the n-channel FET'' (F
It is necessary to separately form the source and train regions of the yield effect transistor.

また、n型不純物領域32上方のキャパシタ用電極36
は、信頼性の面から見てFETのゲート電極と同じ構造
が望ましいが、そのためにはグー1〜電極形成前に、n
型不純物領域32の不純物ドーピングを済ませておく必
要がある。従って、これもFET制作工程とは別途の工
程となる。
Further, the capacitor electrode 36 above the n-type impurity region 32
From the viewpoint of reliability, it is desirable to have the same structure as the gate electrode of the FET, but for that purpose, before forming the electrodes,
It is necessary to complete the impurity doping of the type impurity region 32. Therefore, this is also a separate process from the FET manufacturing process.

このように、従来の基板バイアス装置の形成においては
、他のIC部を形成するのとは別途の工程を必要とし、
その分だけ全体工程が長くなっていた。
In this way, the formation of a conventional substrate bias device requires a separate process from that of forming other IC parts.
The entire process was lengthened accordingly.

更にまた、電気的特性の面から見た場合、DR。Furthermore, from the viewpoint of electrical characteristics, DR.

AMの基板バイアス発生装置としては、この装置による
到達負電圧か任意の電圧であることが望ましいが、従来
の基板バイアス発生装置の回路では、一定時間後には必
ずパルス電圧にほぼ等しい電圧になってしよい、その間
の任意の値での制御性はない。従って、パルス電圧を制
御しようとずれは、新たな制御回路を必要とした。
For an AM substrate bias generator, it is desirable that the voltage reached by this device be negative or any voltage, but in the circuit of a conventional substrate bias generator, the voltage always reaches a voltage almost equal to the pulse voltage after a certain period of time. There is no controllability at any value in between. Therefore, the deviation in controlling the pulse voltage required a new control circuit.

ところで、放射線照射に耐えるICとして、例えは衛星
搭載用のようにγ線等の放射線照射を受りる可能性のあ
る環境で使用されるものに、SOI (Silicon
 On In5ulator)基板を使用したrcがあ
る。放射線照射による損傷として代表的なものにIC内
のシリコン酸化膜に発生する正電荷があるが、通常のシ
リコン基板を使用したICでは、この正電荷が誘引とな
って個々の素子の間にリーク電流が発生ずる。これに対
して、Sol基板を使用したICにおいては、個々の索
子が絶縁膜で完全に分離されるため、リーク電流の発生
を阻止することができる。
By the way, as ICs that can withstand radiation irradiation, SOI (Silicon
There is an RC that uses an In5ulator) board. A typical damage caused by radiation exposure is the positive charge generated in the silicon oxide film inside the IC, but in ICs using ordinary silicon substrates, this positive charge acts as an attraction and causes leakage between individual elements. A current is generated. On the other hand, in an IC using a Sol substrate, individual cables are completely separated by an insulating film, so that leakage current can be prevented from occurring.

しかし、耐放射線IC用の基板としてSOI基板を採用
すれば、素子間のリーク電流は阻止できるが、第7図に
示すように、SOI基板の半導体薄膜下地の絶縁膜中に
発生した正電荷によって、同一素子内のソース、ドレイ
ン間でリーク電流が発生する。
However, if an SOI substrate is used as a substrate for a radiation-resistant IC, leakage current between elements can be prevented, but as shown in Figure 7, positive charges generated in the insulating film underlying the semiconductor thin film of the SOI substrate , leakage current occurs between the source and drain within the same element.

即ち、シリコン基板41上に、シリコン酸化膜42を介
して半導体薄膜が形成されている。そしてこの半導体薄
膜には、ソース、ドレイン領域としての例えばn+型不
純物領域43.44が形成され、これらn+型不純物領
域43.44間にはチャネル領域としてのP型不純物領
域45が形成されている。また、このn型不純物領域4
5上に−つ − は、ゲート酸化膜46を介してゲート電I#147が形
成されている。
That is, a semiconductor thin film is formed on a silicon substrate 41 with a silicon oxide film 42 interposed therebetween. In this semiconductor thin film, for example, n+ type impurity regions 43 and 44 are formed as source and drain regions, and a P type impurity region 45 as a channel region is formed between these n+ type impurity regions 43 and 44. . Moreover, this n-type impurity region 4
On the other hand, a gate electrode I#147 is formed with a gate oxide film 46 interposed therebetween.

このようなSOI基板を用いたMOSFETに、いよ例
えばγ線が照射されると、シリコン酸化膜42及びゲー
ト酸化膜46中に正電荷が生じる。
When a MOSFET using such an SOI substrate is finally irradiated with, for example, γ rays, positive charges are generated in the silicon oxide film 42 and the gate oxide film 46.

この発生電荷量は酸化膜の膜厚に比例するため、ゲーI
・酸化plJ、46の膜厚が1. On m程度であれ
ば電荷の発生量も少なく、また下地のチャネル領域45
に抜けてしまうため、その影響はそれ程大きくはない。
Since the amount of generated charge is proportional to the thickness of the oxide film,
・The film thickness of oxidized plJ, 46 is 1. If it is about On m, the amount of charge generated is small, and the underlying channel region 45
The impact is not that large, as it is missed.

しかし、半導体薄膜下地のシリコン酸化膜42はゲート
酸化膜46はど薄くはないため、図中の十印に示される
ように、一定量の正電荷か発生する。
However, since the silicon oxide film 42 underlying the semiconductor thin film is not as thin as the gate oxide film 46, a certain amount of positive charge is generated as indicated by the cross in the figure.

従って、このシリコン酸化膜42中の正の電荷は、n型
不純物領域45のシリコン酸化膜42との界面近傍にn
型反転したチャネルを形成し、図中の矢印に示されるよ
うに、n+型不純物領域43.44間にリーク電流を生
じる。
Therefore, the positive charge in this silicon oxide film 42 is transferred to the n-type impurity region 45 near the interface with the silicon oxide film 42.
A type-inverted channel is formed, and a leakage current is generated between the n+ type impurity regions 43 and 44, as shown by the arrow in the figure.

こうしたγ線照射によってシリコン酸化膜42中に生じ
る正電荷に起因してソース、トレイン間−io  −、
− のリーク電流が発生ずることを防止するためには、シリ
コン基板41に負の電圧を印加して、シリコン酸化1B
!42中に生じた正電荷をチャネル領域としてのP型不
純物領域45界面側から引き部してシリコン基板41界
面側に集めることが考えられる。これにより、シリコン
酸化膜42との界面近傍のP型不純物領域45のn型反
転によるチャネル形成を緩和又は防止することができる
。従って、SOI基板を用いたMOSFETにおいても
、上記従来のバルク基板を用いたMOSFETと同様に
、基板バイアス発生装置が必要となる。
Due to the positive charges generated in the silicon oxide film 42 by such γ-ray irradiation, between the source and the train -io-,
- In order to prevent the leakage current from occurring, a negative voltage is applied to the silicon substrate 41 and the silicon oxide 1B
! It is conceivable that the positive charges generated in the silicon substrate 42 are drawn from the interface side of the P-type impurity region 45 serving as a channel region and collected on the interface side of the silicon substrate 41. Thereby, formation of a channel due to n-type inversion of the P-type impurity region 45 near the interface with the silicon oxide film 42 can be alleviated or prevented. Therefore, a MOSFET using an SOI substrate also requires a substrate bias generating device, similar to the above-mentioned conventional MOSFET using a bulk substrate.

この場合の基板バイアス発生装置の製造方法においては
、個々の素子がシリコン酸化膜で分離されるため、第6
図に示される従来のバルク基板を用いたMOSFETの
ようにn型不純物領域33内部にP+型不純物領域34
を作り込む必要はないが、n型不純物領域32上方のキ
ャパシタ用電極36はゲート電極と同時に形成しようと
すると、それ以前にn型不純物領域32の不純物ドーピ
ングを済まぜておく必要があるため、やはり他のI−1
1= 0部を形成するのとは別途の工程を必要とし、その分だ
け全体工程が長くなる。
In this method of manufacturing the substrate bias generator, individual elements are separated by a silicon oxide film, so the sixth
As in the conventional MOSFET using a bulk substrate shown in the figure, a P+ type impurity region 34 is placed inside an n type impurity region 33.
However, if the capacitor electrode 36 above the n-type impurity region 32 is to be formed at the same time as the gate electrode, it is necessary to complete the impurity doping of the n-type impurity region 32 before that. As expected, other I-1
A process separate from that for forming the 1=0 part is required, and the entire process becomes longer by that amount.

[発明が解決しようとする課題] このように、従来のDR,AMにおりる基板バイアス発
生装置においては、到達負電圧が−・定時間後には必ず
パルス電圧にほぼ等しい電圧になってしまい、その間の
任意の値での制御・訃はないため、パルス電圧を制御し
ようとすれば、新たな制御回路を必要とするという問題
もあった。
[Problems to be Solved by the Invention] As described above, in the conventional substrate bias generation device for DR and AM, the negative voltage that reaches - after a certain period of time always becomes a voltage almost equal to the pulse voltage, Since there is no control or control at arbitrary values between them, there is also the problem that a new control circuit is required if the pulse voltage is to be controlled.

また、従来のDR,AMにおける基板バイアス発生装置
の製造方法においては、他のIC部を形成するのとは別
途の工程を必要とするため、その分だζフ全体工程が長
くなるという問題があった。
In addition, in the conventional method for manufacturing substrate bias generators in DR and AM, a separate process is required from that for forming other IC parts, which causes the problem that the entire process becomes longer. there were.

更にまた、耐放射線IC用の基板としてSOI基板を用
いた場合においても、例えばγ線照射によるシリコン酸
化膜中の正電荷に起因するソース、ドレイン間のリーク
電流を防止するために、基板バイアス発生装置が必要と
なる。そしてこの場合の基板バイアス発生装置の製造方
法においても、−12= 上記従来のバルク基板を用いたMOSFETと同様に、
他のIC部を形成するのとは別途の工程を必要とし、そ
の分全体工程が長くなるという問題があった。
Furthermore, even when an SOI substrate is used as a substrate for a radiation-resistant IC, it is necessary to generate a substrate bias in order to prevent leakage current between the source and drain caused by positive charges in the silicon oxide film due to γ-ray irradiation, for example. equipment is required. Also in the manufacturing method of the substrate bias generating device in this case, -12=Similar to the MOSFET using the above-mentioned conventional bulk substrate,
There is a problem in that a process separate from that for forming other IC parts is required, and the overall process becomes longer.

そこで本発明は、バルク基板スはSOI基板を用いた半
導体装置の基板バイアスを所定の値に制御することがで
きる基板バイアス発生装置等に使用される半導体装置及
びその製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a semiconductor device used in a substrate bias generator, etc., which can control the substrate bias of a semiconductor device using an SOI substrate as a bulk substrate to a predetermined value, and a method for manufacturing the same. shall be.

[課題を解決するための手段] 上記課題は、半導体基板と、前記半導体基板上に、第1
の絶縁膜を介して形成された半導体薄膜と、前記半導体
薄膜に形成された第1導電型の第1の領域と、前記半導
体薄膜に形成され、前記第1の領域と接続された第2導
電型の第2の領域と、前記半導体薄膜に形成され、前記
第2の領域と接続された第1導電型の第3の領域と、前
記半導体薄膜に形成され、前記第3の領域と接続された
第2導電型の第4の領域と、前記第2及び第3の領域上
に、第2の絶縁膜を介して形成された電極とを有し、前
記電極に交流又はパルス状の電圧を印加して、前記第1
乃至第4の領域からなる前記半導体薄膜を通して電流を
流す、又は前記第1の領域に所定の電圧を発生させるこ
とを特徴とする半導体装置によって達成される。
[Means for Solving the Problems] The above problems include a semiconductor substrate;
a semiconductor thin film formed through an insulating film, a first region of a first conductivity type formed in the semiconductor thin film, and a second conductive region formed in the semiconductor thin film and connected to the first region. a second region of the mold; a third region of the first conductivity type formed on the semiconductor thin film and connected to the second region; and a third region of the first conductivity type formed on the semiconductor thin film and connected to the third region. a fourth region of a second conductivity type; and an electrode formed on the second and third regions via a second insulating film, and an alternating current or pulsed voltage is applied to the electrode. applying the first
This is achieved by a semiconductor device characterized in that a current is caused to flow through the semiconductor thin film consisting of the first to fourth regions, or a predetermined voltage is generated in the first region.

また、上記の半導体装置において、前記第1の領域が、
電気的にフローティング状態にある半導体基板又は領域
と接続され、前記半導体基板又は領域を所定のバイアス
に印加することを特徴とする半導体装置によって達成さ
れる。
Further, in the above semiconductor device, the first region is
This is achieved by a semiconductor device characterized in that it is connected to a semiconductor substrate or region in an electrically floating state, and a predetermined bias is applied to the semiconductor substrate or region.

更に、上記課題は、半導体基板上に、第1の絶縁膜を介
して半導体薄膜からなる第1導電型の第3の領域を形成
する工程と、前記第3の領域に選択的に不純物を添加し
て第2導電型の第2の領域を形成する工程と、前記第2
の領域と第3の領域との接合部を含む前記第2及び第3
の領域上に、第2の絶縁膜を介して電極を形成する工程
と、前記電極をマスクの一部に用いて前記第3の領域に
選択的に不純物を添加し、第2導電型の第4の領域を形
成する工程と、前記電極をマスクの一部に用いて前記第
2の領域に選択的に不純物を添加し、第1導電型の第1
の領域を形成する工程とを有することを特徴とする請求
項1一記載の半導体装置の製造方法によって達成される
Furthermore, the above-mentioned problem includes a step of forming a third region of the first conductivity type made of a semiconductor thin film on a semiconductor substrate via a first insulating film, and a step of selectively adding impurities to the third region. forming a second region of a second conductivity type;
The second and third regions include the junction between the region and the third region.
forming an electrode on the third region via a second insulating film; using the electrode as a part of a mask, selectively adding an impurity to the third region; forming a first region of a first conductivity type; and selectively adding impurities to the second region using the electrode as a part of a mask, and forming a first region of a first conductivity type.
This is achieved by the method of manufacturing a semiconductor device according to claim 11, further comprising the step of forming a region.

[作用] 即ち本発明は、第1導電型の第1の領域と第2導電型の
第2の領域とはタイオードを構成し、第1導電型の第3
の領域と第2導電型の第4の領域とはダイオードを構成
し、間に第2の絶縁膜を挟んだ第2及び第3の領域と電
極とはコンデンサを構成し、第2、第3及び第4の領域
と第3の領域上に第2の絶縁膜を介して形成された電極
とはFBTを構成している。
[Function] That is, in the present invention, the first region of the first conductivity type and the second region of the second conductivity type constitute a diode, and the third region of the first conductivity type constitutes a diode.
The region and the fourth region of the second conductivity type constitute a diode, the second and third regions with the second insulating film sandwiched between them and the electrode constitute a capacitor, and the second and third regions constitute a capacitor. The fourth region and the electrode formed on the third region via the second insulating film constitute an FBT.

従って、第1の領域を半導体基板の基板電圧■118に
接続し、第4の領域を接地すると、電極に印加するパル
ス電圧が例えばOから十■に立ち上がる場合、第2及び
第3の領域は電極との容量結合により、正電圧に持ち上
げられる。このとき、第3の領域と第4の領域とで構成
されるタイオードが順方向バイアスとすると、第3の領
域の電位は第4の領域と同じ接地電位に戻る。
Therefore, when the first region is connected to the substrate voltage 118 of the semiconductor substrate and the fourth region is grounded, when the pulse voltage applied to the electrode rises from, for example, 0 to 118, the second and third regions It is raised to a positive voltage by capacitive coupling with the electrode. At this time, if the diode composed of the third region and the fourth region is forward biased, the potential of the third region returns to the same ground potential as that of the fourth region.

また、第2、第3及び第4の領域と電極とはFETを構
成しているため、第2の領域及び電極が正電位に、第3
及び第4の領域が接地電位になることにより、このPE
Tは導通状態になる。このため、ソースに相当する第4
の領域からドレインに相当する第2の領域に負電荷(電
子)が注入され、第2の領域の電位は接地電位近くまで
下げられる。即ち、電極の印加電圧か立上がった後、−
定時間経った状況では、負電荷が第4の領域から第2の
領域まで運ばれたことになる。
Furthermore, since the second, third, and fourth regions and the electrodes constitute a FET, the second region and the electrodes are at a positive potential, and the third region and the electrodes are at a positive potential.
and the fourth region are at ground potential, this PE
T becomes conductive. For this reason, the fourth
Negative charges (electrons) are injected from the region into the second region corresponding to the drain, and the potential of the second region is lowered to near the ground potential. That is, after the voltage applied to the electrodes rises, -
In a situation where a certain period of time has elapsed, negative charges have been carried from the fourth region to the second region.

更にまた、電極に印加するパルス電圧が−f−Vから0
に立ち下がる場合、電極との静電容量によって第2及び
第3の領域の電位は負電位まで低下する。このとき、第
1の領域と第2の領域とからなるダイオードは順方向バ
イアスとなるため電荷が移動する。第2の領域にはパル
ス電圧の立ち上がり時に負電荷が流入していたので、こ
れが第1の領域へ流出したと考えてもよく、または第1
の領域から正電荷が第2の領域に流入して先の負電荷を
相殺したと考えてもよい。いずれにしろ電極の印加電圧
の1パルスで、第1の領域から第4の領域への正電荷の
流れ、或いはこれとは逆方向の負電荷の流れを生じるこ
ととなる。従って、電極に印加されるO乃至十Vの正の
電源のみで負電位を生じることができる。
Furthermore, the pulse voltage applied to the electrodes varies from -f-V to 0
When the potential of the second and third regions decreases to a negative potential due to the capacitance with the electrode. At this time, the diode made up of the first region and the second region becomes forward biased, so that charges move. Since negative charge was flowing into the second region at the rise of the pulse voltage, it may be considered that this flowed into the first region, or
It may be considered that positive charges flow into the second region from the region and cancel out the previous negative charges. In any case, one pulse of the voltage applied to the electrode causes a flow of positive charges from the first region to the fourth region, or a flow of negative charges in the opposite direction. Therefore, a negative potential can be generated only with a positive power supply of 0 to 10 V applied to the electrode.

このとき、電極に印加されるパルス電圧の立ち上がり時
の第2の領域の電位は、電極の印加電圧から第2、第3
及び第4の領域等からなるF E ’I’の閾値電圧を
引いた値となり、この値が第1の領域の到達し得るの負
電圧、即ち基板電圧VBHの最大値を与えるため、第1
の領域から第4の領域に流れる電流、又は第1の領域に
発生する負電圧は、第3の領域の不純物濃度によっても
一部制御でき、従って基板電圧VBBを任意の値に設定
することができる。
At this time, the potential of the second region at the rise of the pulse voltage applied to the electrode is the second and third region from the voltage applied to the electrode.
This value is obtained by subtracting the threshold voltage of F E 'I' consisting of the F
The current flowing from the region to the fourth region or the negative voltage generated in the first region can be partially controlled by the impurity concentration in the third region, and therefore the substrate voltage VBB can be set to an arbitrary value. can.

[実施例] 以下、本発明を図示する実施例に基づいて具体的に説明
する。
[Example] The present invention will be specifically described below based on an illustrative example.

第1図は本発明の一実施例による基板バイアス発生装置
を示す断面図である。
FIG. 1 is a sectional view showing a substrate bias generating device according to an embodiment of the present invention.

P型シリコン基板11表面には、図示はしないが、例え
ばD R,AM等の主回路が形成されている。
Although not shown, main circuits such as DR, AM, etc. are formed on the surface of the P-type silicon substrate 11, for example.

そして同一チツブ内の所定の位置のp型シリコン基板1
1上には、厚さおよそ200nmのシリコン酸化膜12
を介して、厚さ150nmのシリコン薄膜13が形成さ
れている。このシリコン薄膜13には、高濃度のp4型
不純物領域14、口型不純物領域15、n型不純物領域
16及び高濃度のn+型不純物領域17が順に並んで配
置されている。そしてn型不純物領域15及びn型不純
物領域16上には、シリコン酸化WA18を介して、ポ
リシリコン層からなる電極19が形成されている。
and a p-type silicon substrate 1 at a predetermined position within the same chip.
1, there is a silicon oxide film 12 with a thickness of approximately 200 nm.
A silicon thin film 13 with a thickness of 150 nm is formed therebetween. In this silicon thin film 13, a high concentration p4 type impurity region 14, a mouth type impurity region 15, an n type impurity region 16, and a high concentration n+ type impurity region 17 are arranged in this order. An electrode 19 made of a polysilicon layer is formed on the n-type impurity region 15 and the n-type impurity region 16 with a silicon oxide WA 18 interposed therebetween.

こうしてP+型不純物領域14とn型不純物領域15と
はダイオードを桶成し、n型不純物領域16とn4型不
純物領域17とはダイオードを梢成し、間にシリコン酸
化v418を挟んだn型不純物領域15及びn型不純物
領域16と電極1つとはコンデンサを構成し、n型不純
物領域15、n型不純物領域16及びn4型不純物領域
17とP型不純物領域16上にシリコン酸化膜18を介
して形成された電極19とはnヂャネルMO3FETを
構成している。
In this way, the P+ type impurity region 14 and the n-type impurity region 15 form a diode, and the n-type impurity region 16 and the n4-type impurity region 17 form a diode, and the n-type impurity region with silicon oxide V418 sandwiched between them. The region 15, the n-type impurity region 16, and one electrode constitute a capacitor. The formed electrode 19 constitutes an n-channel MO3FET.

また、n4型不純物領域14は同一チップ内の主回路に
おけるP型シリコン基板11の基板電圧VR11に接続
され、P+型不純物領域17は接地されている。
Further, the n4 type impurity region 14 is connected to the substrate voltage VR11 of the P type silicon substrate 11 in the main circuit within the same chip, and the P+ type impurity region 17 is grounded.

次に、動作について述べる。Next, the operation will be described.

まず、電極19に印加するパルス電圧が0がら−l−V
に立ち上がる場合について説明する6電極19に正電圧
がかかると、n型不純物領域15及びn型不純物領域1
6は電極19との容量結合によって正電圧に持ち上げら
れる。このときn型不純物領域16とP+型不純物領域
17とで構成されるダイオードは順方向バイアスとなる
ため、P型不純物領域16の電位はn4型不純物領域1
7と同じ接地電位に戻る。
First, the pulse voltage applied to the electrode 19 is from 0 to -l-V.
When a positive voltage is applied to the electrode 19, the n-type impurity region 15 and the n-type impurity region 1
6 is raised to a positive voltage by capacitive coupling with electrode 19. At this time, the diode composed of the n-type impurity region 16 and the P+ type impurity region 17 is forward biased, so the potential of the P-type impurity region 16 is lower than that of the n4-type impurity region 1.
Returns to the same ground potential as 7.

また、n型不純物領域15、P型不純物領域16及びP
+型不純物領域17と電極19とはnヂャネルM OS
 F E ”rを構成しているなめ、n型不純物領域1
5及び電4ifi1.9が1[電位に、n型不純物領域
16及びr14型不純物領域17か接地電位になること
により、このM OS F Ei’は尋通状態になる。
Further, the n-type impurity region 15, the P-type impurity region 16, and the P
+ type impurity region 17 and electrode 19 are n-channel MOS
The n-type impurity region 1 forming F E "r
5 and 4ifi1.9 are at the potential of 1, and the n-type impurity region 16 and the r14-type impurity region 17 are at the ground potential, so that this MOS F Ei' enters the interpolation state.

従って、ソースに相当する領域n ’ln型不純物領域
17らドレインに相当するn型不純物領域15に負電荷
(電子)が注入され、n型不純物領域15の電位は接地
電位近くまで下げられる。
Therefore, negative charges (electrons) are injected from the n-type impurity region 17 corresponding to the source to the n-type impurity region 15 corresponding to the drain, and the potential of the n-type impurity region 15 is lowered to near the ground potential.

即ち、電極19の印加電圧が立−にがっな後、−=・定
時間経った状況では、負電荷が01型不純物領域17か
らn型不純物領域15まで運ばれたことになる。
That is, in a situation in which a certain period of time has passed after the voltage applied to the electrode 19 rises, negative charges are carried from the 01 type impurity region 17 to the n type impurity region 15.

次いで、電極19に印加するパルス電圧が十■からOに
立ち下がる場合について説明する。
Next, a case in which the pulse voltage applied to the electrode 19 falls from 10 to 0 will be described.

電極1つの印加電圧かOになると、電極1つとの静電容
量によってn型不純物領域15及び1)型不純物領域1
6の電位は負電位まで低下する。このとき、P+型不純
物領域14とn型不純物領域15とから構成されるダイ
オードは、順方向バイアスとなるため電荷が移動する。
When the applied voltage of one electrode becomes O, the n-type impurity region 15 and 1) type impurity region 1 are separated by capacitance with one electrode.
The potential of 6 drops to a negative potential. At this time, the diode composed of the P+ type impurity region 14 and the n type impurity region 15 is forward biased, so that charges move.

n型不純物領域15にはパルス電圧の立ち上かり時に負
電荷が流入していたので、これがP4型不純物領域14
へ流出したと考えてもよく、またはP+型不純物領域1
4から正電荷がn型不純物領域15に流入して、先の負
電荷を相殺したと考えてもよい。
Since negative charges were flowing into the n-type impurity region 15 at the rise of the pulse voltage, this caused the P4-type impurity region 14
It may be considered that the P+ type impurity region 1
It may be considered that positive charges flow into the n-type impurity region 15 from 4 and cancel out the previous negative charges.

いずれにしろ電極19の印加電圧の1パルスで、P+型
不純物領域14からP+型不純物領域17への正電気の
流れ、或いはこれとは逆方向の負電荷の流れを生じるこ
ととなる。従って、電極1つに印加される0乃至十Vの
正の電源のみで、負電位を生じることができることとな
る。
In any case, one pulse of the voltage applied to the electrode 19 causes a flow of positive electricity from the P+ type impurity region 14 to the P+ type impurity region 17, or a flow of negative charges in the opposite direction. Therefore, a negative potential can be generated with only a positive power supply of 0 to 10 V applied to one electrode.

このときのP+型不純物領域14からP+型不純物領域
17に流れる電流、或いはP+型不純物領域14に発生
ずる負電圧は、従来技術と同様に、n型不純物領域15
と電@1つとの静電容量の外、電極19にかかるパルス
電源の周波数や電圧値によって決まる。更に、本発明に
おいては、P型土= 21 = 鈍物領域16の不純物濃度によっても−・部制御できる
At this time, the current flowing from the P+ type impurity region 14 to the P+ type impurity region 17 or the negative voltage generated in the P+ type impurity region 14 is
It is determined by the frequency and voltage value of the pulsed power supply applied to the electrode 19 in addition to the capacitance between the electrode 19 and the electrode 19. Furthermore, in the present invention, the -.part can also be controlled by the impurity concentration of the P-type soil = 21 = obtuse region 16.

即ち、電極19に印加されるパルス電圧の立ち上がり時
におけるn型不純物領域15の電位は、電@1つの印加
電圧からn型不純物領域15、n型不純物領域16及び
11+型不純物領域17等で構成されるM OS F 
E Tの閾値電圧vthを引いた値となり、゛この値が
p ’l型不純物領域14の到達し得る負電圧、即ち基
板電圧■l]Bの最大値を与える。従って、n型不純物
領域16の不純物濃度を変化させることにより閾値電圧
を変化させることができるなめ22例えばパルス電圧に
電源電圧を用いる場合のようにパルス電圧を一定値に固
定せざるを得ないときであっても、基板電圧VHとして
は任意の値に設定することができる。
That is, the potential of the n-type impurity region 15 at the rise of the pulse voltage applied to the electrode 19 changes from one applied voltage to the n-type impurity region 15, the n-type impurity region 16, the 11+-type impurity region 17, etc. MOS F
This value is the value obtained by subtracting the threshold voltage vth of ET, and this value gives the maximum value of the negative voltage that the p'l-type impurity region 14 can reach, that is, the substrate voltage {l}B. Therefore, by changing the impurity concentration of the n-type impurity region 16, the threshold voltage can be changed.22 For example, when the pulse voltage must be fixed at a constant value, such as when the power supply voltage is used for the pulse voltage. However, the substrate voltage VH can be set to any value.

このように本実施例による基板バイアス発生装置におい
ては、電′@19にO乃至十■の1Fのみのパルス電圧
を印加することにより、順に並んで配置されたP+型不
純物領域14、n型不純物領域15、P型不純物領域1
6、及び高濃度のn+型不純物領域17からなるシリコ
ン薄膜13を通して電流を流し、P型シリコン基板11
の基板電圧VBBに接続されているP4型不純物領域1
4に負電位を、即ち負の基板バイアスを生じることかで
きることとなる。
In this way, in the substrate bias generating device according to the present embodiment, by applying a pulse voltage of only 1 F of O to 10 to the voltage @19, the P+ type impurity regions 14 and the n type impurity regions arranged in sequence are Region 15, P-type impurity region 1
6, and a silicon thin film 13 consisting of a high concentration n+ type impurity region 17, a current is passed through a P type silicon substrate 11.
P4 type impurity region 1 connected to substrate voltage VBB of
4, it is possible to generate a negative potential, that is, a negative substrate bias.

また、n型不純物領域16の不純物濃度を変化させるこ
とにより、n型不純物領域15、P型不純物領域16及
びn4型不純物領域17とn型不純物領域16上にシリ
コン酸化膜18を介して形成された電極19とから構成
されるnチャネルMOS F E Tの閾値電圧vth
を変化させることができるため、パルス電圧を一定値に
固定せざるを得ない場合であっても、基板電圧VBBを
任意の値に設定することができる。
Further, by changing the impurity concentration of the n-type impurity region 16, the n-type impurity region 15, the p-type impurity region 16, the n4-type impurity region 17, and the silicon oxide film 18 are formed on the n-type impurity region 16. The threshold voltage vth of the n-channel MOS FET consisting of the electrode 19
Therefore, even if the pulse voltage must be fixed at a constant value, the substrate voltage VBB can be set to an arbitrary value.

従って、従来の基板バイアス発生装置において必要とさ
れていた別の電圧検出回路及び制御回路が不要となり、
より簡単な回路構成によって同一・動作を実現すること
ができる。
Therefore, separate voltage detection circuits and control circuits required in conventional substrate bias generators are no longer required.
The same operation can be achieved with a simpler circuit configuration.

なお、上記実施例においては、基板バイアス発生装置の
p+型不純物領域14が同一チップ内の主回路における
半導体基板の基板電圧■I1.に接続されているが、例
えはこの主回路がCMO3(C。
In the above embodiment, the p+ type impurity region 14 of the substrate bias generating device is connected to the substrate voltage of the semiconductor substrate in the main circuit within the same chip. For example, this main circuit is connected to CMO3 (C.

mplelentary HO3)の場合、P1型不純
物領域14がMOSFETを形成しているウェル領域に
接続され、このウェル領域に所望のバックバイアスを印
加することもできる。
plelentary HO3), the P1 type impurity region 14 is connected to a well region forming a MOSFET, and a desired back bias can also be applied to this well region.

また、パルス電圧の代わりに交流電圧を用いる場合にお
いても、当然に同様の効果を奏することできる。
Further, even when an alternating current voltage is used instead of a pulse voltage, the same effect can naturally be achieved.

次に、第2図に示す工程図を用いて、第1図の基板バイ
アス発生装置の製造方法を説明する。
Next, a method for manufacturing the substrate bias generating device shown in FIG. 1 will be explained using the process diagram shown in FIG.

不純物濃度1. X 10 ”c m−’のp型シリコ
ン基板11に、選択的にS I M OX (5epa
ration byIInplanted Oxyge
n)法を用いて、Sol基板を部分的に作成する。即ち
、P型シリコン基板11中に、例えばエネルギー100
 k e V、ドーズ基2x 1018c m−2の条
件で酸素イオンを注入することにより、厚さおよそ20
0nmのシリコン酸化膜12を形成すると共に、このシ
リコン酸化膜12上に厚さ150n、mのP型のシリコ
ン薄膜13を形成する(第2図<a>参照)。
Impurity concentration 1. SIM OX (5epa
ration by II Planted Oxyge
n) A Sol substrate is partially created using the method. That is, in the P-type silicon substrate 11, for example, an energy of 100
By implanting oxygen ions at a dose group of 2x 1018 cm-2, a thickness of approximately 20
A silicon oxide film 12 with a thickness of 0 nm is formed, and a P-type silicon thin film 13 with a thickness of 150 nm and 150 m is formed on this silicon oxide film 12 (see FIG. 2 <a>).

次に、所定の形状にパターニングしたレジストマスク2
0を使用して、例えばエネルギー80keV、ドーズ量
5X10”cm−’の条件で、p型のシリコン薄膜13
中にP(リン)イオンをイオン注入し、n型不純物領域
15を形成する。これにより、残りのP型のシリコン薄
膜13は、P型不純物領域16となる。なお、この工程
は、主回路を構成するpチャネルMO3FETのチャネ
ルドーピングと同時に行なうことが可能である(第2図
(b)参照)。
Next, a resist mask 2 patterned into a predetermined shape
For example, a p-type silicon thin film 13 is formed using
P (phosphorus) ions are ion-implanted thereinto to form an n-type impurity region 15. As a result, the remaining P-type silicon thin film 13 becomes a P-type impurity region 16. Note that this step can be performed simultaneously with the channel doping of the p-channel MO3FET constituting the main circuit (see FIG. 2(b)).

次に、主回路におけるゲート酸化膜及びゲート電極の形
成と同時に、P型不純物領域16及びn型不純物領域1
5」二にシリコン酸化膜18及び電極1つを形成した後
、P型不純物領域16とn型不純物領域15との接合部
を覆うように所定のパターニングする。
Next, at the same time as forming the gate oxide film and gate electrode in the main circuit, P-type impurity region 16 and N-type impurity region 1
5) After forming a silicon oxide film 18 and one electrode, a predetermined patterning is performed so as to cover the junction between the P-type impurity region 16 and the N-type impurity region 15.

次に、電極19をマスクの一部に用いて、例えばエネル
ギー100keV、ドーズ量5X10”cm−’の条件
で、P型不純物領域16にPイオン−つq − をイオン注入し、高濃度のn+型不純物領域17を形成
する。なお、この工程は、主回路を構成するnチャネル
M OS F E Tのソース、ドレイン領域の形成と
同時に行なうことが可能である。
Next, using the electrode 19 as a part of the mask, P ions q - are implanted into the P-type impurity region 16 under the conditions of, for example, an energy of 100 keV and a dose of 5 x 10" cm, and a high concentration of n + A type impurity region 17 is formed.This step can be performed simultaneously with the formation of the source and drain regions of the n-channel MOSFET constituting the main circuit.

また、同様に、電f!19をマスクの−・部に用いて、
例えばエネルギー40keV、ドーズ量IX1.0”c
m””’の条件で、n型不純物領域15にB(ボロン)
イオンをイオン注入し、高濃度のp ’1型不純物領域
14を形成する。なお、この工程は、主回路を構成する
PチャネルMO3FETのソース、トレイン領域の形成
と同時に行なうことが可能である(第2図(C)参照)
Similarly, electric f! 19 is used for the - part of the mask,
For example, energy 40 keV, dose IX 1.0”c
B (boron) is added to the n-type impurity region 15 under the conditions of m'''''.
Ions are implanted to form a highly concentrated p'1 type impurity region 14. Note that this step can be performed at the same time as forming the source and train regions of the P-channel MO3FET that constitutes the main circuit (see Figure 2 (C)).
.

このようにして、n4型不純物領域14とn型不純物領
域15とから構成されるダイオード、P型不純物領域1
6とn+型不純物領域17とから構成されるダイオード
、間にシリコン酸化WA18を挟んだn型不純物領域1
5及びP型不純物領域16と電極19とから構成される
コンデンサ、n型不純物領域15、n型不純物領域16
及びn+型不純物領域17とP型不純物領域16上にシ
リコン酸化膜18を介して形成された電極19とがら構
成されるpチャネルMO3FETを形成し、第1図に示
される基板バイアス発生装置を製造する。
In this way, a diode composed of an n4 type impurity region 14 and an n type impurity region 15, a p type impurity region 1
6 and n+ type impurity region 17, n type impurity region 1 with silicon oxide WA 18 sandwiched between them.
5, a capacitor composed of a P-type impurity region 16 and an electrode 19, an n-type impurity region 15, and an n-type impurity region 16.
Then, a p-channel MO3FET consisting of an n+ type impurity region 17 and an electrode 19 formed on the P-type impurity region 16 via a silicon oxide film 18 is formed, and the substrate bias generating device shown in FIG. 1 is manufactured. .

このように第2図に示す基板バイアス発生装置の製造方
法によれば、n型不純物領域15の形成は主回路を構成
するPチャネルM OS F E ’f’のチャネルド
ーピングと同時に行なうことができ、シリコン酸化膜1
8及び電極19の形成は主回路におけるゲート酸化膜及
びゲート電極の形成と同時に行なうことができ、n+型
不純物領域17の形成は主回路を構成するnチャネルM
O8FETのソース、ドレイン領域の形成と同時に行な
うことができ、P+型不純物領域14の形成は主回路を
構成するPチャネルM OS F E Tのソース、ト
レイン領域の形成と同時に行なうことができる。
According to the manufacturing method of the substrate bias generator shown in FIG. 2, the formation of the n-type impurity region 15 can be performed simultaneously with the channel doping of the P-channel MOS F E 'f' constituting the main circuit. , silicon oxide film 1
8 and the electrode 19 can be performed simultaneously with the formation of the gate oxide film and gate electrode in the main circuit, and the formation of the n+ type impurity region 17 can be performed at the same time as the formation of the gate oxide film and the gate electrode in the main circuit.
The formation of the P+ type impurity region 14 can be performed simultaneously with the formation of the source and drain regions of the O8FET, and the formation of the P+ type impurity region 14 can be performed simultaneously with the formation of the source and train regions of the P channel MOSFET constituting the main circuit.

即ち、基板バイアス発生装置の製造プロセスの主要なも
のは、主回路のMO8FE’I’と同一プロセスで同時
形成が可能である。従って、基板バイアス発生装置を製
造するために新たなプロセスが増加することを防止し、
スループッ1−の向上及びコストの低減を実現すること
かできる。
That is, the main manufacturing process of the substrate bias generator can be formed simultaneously with the MO8FE'I' of the main circuit in the same process. Therefore, it is possible to prevent the increase in new processes for manufacturing the substrate bias generator,
It is possible to improve throughput and reduce costs.

なお、基板電圧VBgを所望の値に設定する場合には、
n型不純物領域16の不純′$IJ淵度を制御する必要
があり、従ってn型不純物領域16への不純物導入工程
が追加的に必要となるが、この工程の増加よりも基板電
圧■B[lを所望の値に制御できるメリットのほうが遥
かに大きいといえる。
Note that when setting the substrate voltage VBg to a desired value,
It is necessary to control the impurity level of the n-type impurity region 16, and therefore an additional step of introducing impurities into the n-type impurity region 16 is required, but the increase in the substrate voltage B[ It can be said that the advantage of being able to control l to a desired value is far greater.

また、コンデンサの形成においては、比較的低濃度のn
型不純物領域15及びp型不純物顧域16上にシリコン
酸化M]、8を形成するなめ、このn型不純物領域15
及びn型不純物領域16と電極1つとに挟まれたコンデ
ンサ用のシリコン酸化膜18の信頼性を確保することが
でき、従ってコンデンサの信頼性を向上させることがで
きる。
In addition, in the formation of capacitors, a relatively low concentration of n
To form silicon oxide M], 8 on the n-type impurity region 15 and the p-type impurity region 16, this n-type impurity region 15
Also, the reliability of the silicon oxide film 18 for the capacitor sandwiched between the n-type impurity region 16 and one electrode can be ensured, and therefore the reliability of the capacitor can be improved.

ところで、この負電圧を発生させる基板バイアス発生装
置とSOI基板のP型シリコン基板11との電気的接続
法であるが、第3図(a)に示されるように、通常のT
Cプロセスにおいて、シリコン酸化膜12にコンタクト
窓を開口し、とのコンタクト窓を介して、シリコン薄I
I!13に形成された基板バイアス発生装置のn+型不
純物領域17とp型シリコン基板11とを金属配線層2
1によって接続してもよい。また、このように直接配線
する方法の外にも、第3図(b)に示されるように、バ
ラゲージ基板22上に組み立てる際に、基板バイアス発
生装置のn+型不純物領域17上に形成された金属配線
層22とp型シリコン基板11に接続されたパッケージ
基板23とをワイヤ・  線24によって配線してもよ
い。
By the way, as for the electrical connection method between the substrate bias generator that generates this negative voltage and the P-type silicon substrate 11 of the SOI substrate, as shown in FIG.
In the C process, a contact window is opened in the silicon oxide film 12, and a silicon thin I
I! The n+ type impurity region 17 of the substrate bias generating device formed in 13 and the p type silicon substrate 11 are connected to the metal wiring layer 2.
1 may be connected. In addition to this direct wiring method, as shown in FIG. 3(b), when assembling on the barrier board 22, the The metal wiring layer 22 and the package substrate 23 connected to the p-type silicon substrate 11 may be interconnected by wires 24.

なお、上記実施例においては、例えばD RAM等の主
回路がその表面に形成されているP型シリコン基板11
の一部にSO■基板が形成され、そのSOI基板のシリ
コン薄膜13に基板バイアス発生装置が形成されている
場合について述べたが、本発明はこうした通常のバルク
基板の場合に限定されることなく、全体がSOI基板で
ある場合にも適用することができる。
In the above embodiment, the P-type silicon substrate 11 has a main circuit such as a DRAM formed on its surface.
Although the case has been described in which an SO substrate is formed on a part of the SOI substrate and a substrate bias generator is formed on the silicon thin film 13 of the SOI substrate, the present invention is not limited to the case of such a normal bulk substrate. , it can also be applied to a case where the entire substrate is an SOI substrate.

SOI基板を用いた場合、上記第2図に示される工程に
おいて、半導体基板全面にSIMOX法−つ〇 − を用いてSOT基板を作成するか、その他の方法によっ
てSol基板を作成する。従って、基板バイアス発生装
置を形成するためだけに部分的にSOI基板を作成する
必要がない分だcl、更に新たなプロセスの増加を防止
し、スループットの向上及びコストの低減を実現するこ
とができる。
When an SOI substrate is used, in the process shown in FIG. 2 above, an SOT substrate is created over the entire surface of the semiconductor substrate using the SIMOX method, or a Sol substrate is created by other methods. Therefore, it is not necessary to partially create an SOI substrate just to form the substrate bias generator, and it is also possible to prevent an increase in new processes, improve throughput, and reduce costs. .

SOT基板を用いたM OS F’ E”「の場合、放
射線照射によって絶縁膜中に発生ずる電荷は、その発生
量及び発生場所が絶縁膜にかかつている電界に強く依存
している。従って、M OS F E Tの半導体基板
にバイアス電圧を印加したままγ線を照射したときの7
・線照射損傷、即ち正電荷の発生量と電界の強さ及びそ
の向きとの関係は、第5図に示すようになる。なお、こ
こで、半導体薄膜と半導体基板とを分離する酸化膜の膜
厚は400 n、 m、γ線照射量はlX105rad
、(ラド)とする。また、この酸化膜中の正電荷の発生
量はフラツI〜バンド電圧の変化量へVpBによって表
す。
In the case of a MOS F'E" using a SOT substrate, the amount and location of the charge generated in the insulating film by radiation irradiation strongly depends on the electric field applied to the insulating film. Therefore, 7 when γ-rays are irradiated with bias voltage applied to the semiconductor substrate of MOS FET.
・The relationship between radiation damage, that is, the amount of positive charge generated, the strength of the electric field, and its direction is shown in FIG. Note that the thickness of the oxide film separating the semiconductor thin film and the semiconductor substrate is 400 nm, and the amount of γ-ray irradiation is 1×105 rad.
, (rad). Further, the amount of positive charge generated in this oxide film is expressed by VpB, which is the amount of change in flat I band voltage.

この第5図のグラフから明らかなように、SO■構造の
半導体基板の基板電圧VBBを、半導体薄= 30− 膜に対して、VIIB−1,OVに設定することにより
、発生電荷を最小とすることができる。従って、このよ
うに基板バイアス発生装置を用いて基板電圧■lleを
所望の値に制御することにより、耐放射線IC用の基板
としてSOI基板を採用したF E Tにおいて、同一
素子内のソース、ドレイン間のリーク電流の発生を抑制
、防止することができる。
As is clear from the graph in FIG. 5, the generated charge can be minimized by setting the substrate voltage VBB of the SO■ structure semiconductor substrate to VIIB-1, OV for a semiconductor thin = 30- film. can do. Therefore, by controlling the substrate voltage ■lle to a desired value using a substrate bias generator in this way, it is possible to control the source and drain voltages within the same element in an FET that uses an SOI substrate as a radiation-resistant IC substrate. It is possible to suppress and prevent the occurrence of leakage current between the two.

本発明者の実験によれば、SIMOX法による全面SO
I基板を使用したICに本発明による基板バイアス発生
装置を組み込むことにより、半導体基板の基板電圧VB
BをVBB−1,5Vになるよう設定したところ、この
rcはI X 10’ rad。
According to the inventor's experiments, the entire surface SO by the SIMOX method
By incorporating the substrate bias generating device according to the present invention into an IC using an I substrate, the substrate voltage VB of the semiconductor substrate can be reduced.
When B was set to VBB-1.5V, this rc was I x 10' rad.

のγ線照射に対しても顕著なドレインリーク電流は発生
せず、正常なファンクションをすることが確認された。
It was confirmed that no significant drain leakage current occurred even after γ-ray irradiation, and the device functioned normally.

[発明の効果] 以上のように本発明(こよれば1.半導体基板と、この
半導体基板上に第1の絶縁膜を介して形成されな半導体
薄膜と、この半導体薄膜に順に並んで配置された第1導
電型の第1の領域、第2導電型の第2の領域、第1導電
型の第3の領域及び第2導電型の第4の領域と、第2の
及び第3の領域上に、第2の絶縁膜を介して形成された
電極とを有し、この電極に交流又はパルス状の電圧を印
加することにより、第1乃至第4の領域からなる半導体
薄膜を通して電流を流す、又は第1の領域に所定の負電
圧を発生させることができる。従って、半導体装置内の
小型定電流源又は電圧発生器として使用することができ
る。
[Effects of the Invention] As described above, the present invention (according to 1. A semiconductor substrate, a semiconductor thin film formed on this semiconductor substrate via a first insulating film, and a semiconductor thin film arranged in order on this semiconductor thin film) a first region of the first conductivity type, a second region of the second conductivity type, a third region of the first conductivity type, a fourth region of the second conductivity type, and the second and third regions. It has an electrode formed on the top via a second insulating film, and by applying an alternating current or pulse voltage to this electrode, a current is caused to flow through the semiconductor thin film consisting of the first to fourth regions. , or a predetermined negative voltage can be generated in the first region. Therefore, it can be used as a small constant current source or voltage generator in a semiconductor device.

また、第3の領域の不純物濃度により、かかる第1の領
域から第4の領域に流れる電流、又は第1の領域に発生
ずる負電圧を制御することかできるため、基板バイアス
装置として使用する場合、基板電圧VBIIを任意の値
に設定することができ、従来の基板バイアス発生装置に
おいて必要とされていた別の電圧検出回路及び制御回路
が不要となってより簡単な回路構成によって同一・動作
を実現することができる。
Furthermore, depending on the impurity concentration of the third region, the current flowing from the first region to the fourth region or the negative voltage generated in the first region can be controlled, so when used as a substrate bias device. , the substrate voltage VBII can be set to any value, eliminating the need for separate voltage detection circuits and control circuits that were required in conventional substrate bias generators, and achieving the same operation with a simpler circuit configuration. It can be realized.

更に、主要な製造プロセスが同一チップ内の主回路と同
一プロセスで同時形成が可能であるなめ、新たなプロセ
スが増加することを防止し、スループットの向上及びコ
ストの低減を実現することができる。
Furthermore, since the main manufacturing process can be performed simultaneously with the main circuit in the same chip, the increase in new processes can be prevented, and throughput can be improved and costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による基板バイアス発生装置
を示す断面図、 第2図は第1図の基板バイアス発生装置の製造方法を説
明するための工程図、。 第3図は第1図の基板バイアス発生装置と半導体基板と
の接続方法を説明するための図、第4図はγ線照射損傷
と基板バイアスとの関係を示すグラフ、 第5図は従来のバイアス発生装置を示す回路図、第6図
は従来のバイアス発生装置の製造方法を説明するための
工程断面図、 第7図はγ線照射によるリーク電流発生を説明するため
の図である。 図において、 1.1,3]・・・・・・P型シリコン基板、12.1
8,35.42・・・・・・シリコン酸化膜、13・・
・・・・シリコン薄膜、 14.34・・・・・・p4型不純物領域、15.32
.33・・・・・・n型不純物領域、1.6.45・・
・・・・P型不純物領域、17.43.44・・・・・
・n+型不純物領域、19.36・・・・・・電極、 20・・・・・・レジストマスク、 21.22・・・・・・金属配線層、 23・・・・・・パッケージ基板、 24・・・・・・ワイヤ線、 37.38・・・・・・配線層、 41・・・・・・シリコン基板、 46・・・・・・ゲート酸化膜、 47・・・・・・ゲート電極。 寸     〜      0 ?″1′2]宵雁時浦粁J 柳 J 岬叩 01X すV 噛℃ 曜 σズ 紫 ト 41:シリコン茎根 42:シリコン酸化膜 36:電極 3738:配線層 第6図 り、44・ n′留1ゝ亮召何項と氏 47:ゲートqi阪 γ線照射りこよるリーク電漬所花を説明するための図第
7図
FIG. 1 is a sectional view showing a substrate bias generation device according to an embodiment of the present invention, and FIG. 2 is a process diagram for explaining a method of manufacturing the substrate bias generation device of FIG. 1. Figure 3 is a diagram for explaining the connection method between the substrate bias generator of Figure 1 and a semiconductor substrate, Figure 4 is a graph showing the relationship between γ-ray radiation damage and substrate bias, and Figure 5 is a diagram for explaining the connection method between the substrate bias generator of Figure 1 and a semiconductor substrate. FIG. 6 is a circuit diagram showing a bias generation device, FIG. 6 is a process cross-sectional view for explaining a conventional method of manufacturing a bias generation device, and FIG. 7 is a diagram for explaining generation of leakage current due to γ-ray irradiation. In the figure, 1.1, 3] P-type silicon substrate, 12.1
8,35.42...Silicon oxide film, 13...
...Silicon thin film, 14.34...P4 type impurity region, 15.32
.. 33...n-type impurity region, 1.6.45...
...P-type impurity region, 17.43.44...
・N+ type impurity region, 19.36... Electrode, 20... Resist mask, 21.22... Metal wiring layer, 23... Package substrate, 24...Wire line, 37.38...Wiring layer, 41...Silicon substrate, 46...Gate oxide film, 47... gate electrode. Dimension ~ 0? ``1'2] Yoigari Tokiura J Yanagi J Misaki Hit01 1. Ryo and Mr. 47: Figure 7 to explain the leakage of the gate qi and the gamma ray irradiation.

Claims (1)

【特許請求の範囲】 1、半導体基板と、 前記半導体基板上に、第1の絶縁膜を介して形成された
半導体薄膜と、 前記半導体薄膜に形成された第1導電型の第1の領域と
、 前記半導体薄膜に形成され、前記第1の領域と接続され
た第2導電型の第2の領域と、 前記半導体薄膜に形成され、前記第2の領域と接続され
た第1導電型の第3の領域と、 前記半導体薄膜に形成され、前記第3の領域と接続され
た第2導電型の第4の領域と、 前記第2及び第3の領域上に、第2の絶縁膜を介して形
成された電極とを有し、 前記電極に交流又はパルス状の電圧を印加して前記第1
乃至第4の領域からなる前記半導体薄膜を通して電流を
流す、又は前記第1の領域に所定の電圧を発生させる ことを特徴とする半導体装置。 2、請求項1記載の半導体装置において、 前記第1の領域が、電気的にフローティング状態にある
半導体基板又は領域と接続され、前記半導体基板又は領
域を所定のバイアスに印加することを特徴とする半導体
装置。 3、半導体基板上に、第1の絶縁膜を介して半導体薄膜
からなる第1導電型の第3の領域を形成する工程と、 前記第3の領域に選択的に不純物を添加して第2導電型
の第2の領域を形成する工程と、前記第2の領域と第3
の領域との接合部を含む前記第2及び第3の領域上に、
第2の絶縁膜を介して電極を形成する工程と、 前記電極をマスクの一部に用いて前記第3の領域に選択
的に不純物を添加し、第2導電型の第4の領域を形成す
る工程と、 前記電極をマスクの一部に用いて前記第2の領域に選択
的に不純物を添加し、第1導電型の第1の領域を形成す
る工程と を有することを特徴とする請求項1記載の半導体装置の
製造方法。
[Claims] 1. A semiconductor substrate; a semiconductor thin film formed on the semiconductor substrate via a first insulating film; and a first region of a first conductivity type formed in the semiconductor thin film. , a second region of a second conductivity type formed in the semiconductor thin film and connected to the first region; and a second region of a first conductivity type formed in the semiconductor thin film and connected to the second region. a fourth region of the second conductivity type formed in the semiconductor thin film and connected to the third region; and an electrode formed by applying an alternating current or pulsed voltage to the first electrode.
A semiconductor device characterized in that a current is caused to flow through the semiconductor thin film consisting of the fourth region or a predetermined voltage is generated in the first region. 2. The semiconductor device according to claim 1, wherein the first region is connected to a semiconductor substrate or region in an electrically floating state, and a predetermined bias is applied to the semiconductor substrate or region. Semiconductor equipment. 3. Forming a third region of the first conductivity type made of a semiconductor thin film on the semiconductor substrate via the first insulating film; and selectively adding impurities to the third region to form a second region. a step of forming a second region of a conductive type;
on the second and third regions including the junction with the region;
forming an electrode through a second insulating film; using the electrode as a part of a mask, selectively adding impurities to the third region to form a fourth region of the second conductivity type; and selectively adding impurities to the second region using the electrode as part of a mask to form a first region of a first conductivity type. Item 1. A method for manufacturing a semiconductor device according to item 1.
JP2302910A 1990-11-08 1990-11-08 Semiconductor device and manufacture thereof Pending JPH04176163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2302910A JPH04176163A (en) 1990-11-08 1990-11-08 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2302910A JPH04176163A (en) 1990-11-08 1990-11-08 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04176163A true JPH04176163A (en) 1992-06-23

Family

ID=17914585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2302910A Pending JPH04176163A (en) 1990-11-08 1990-11-08 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04176163A (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7683430B2 (en) 2005-12-19 2010-03-23 Innovative Silicon Isi Sa Electrically floating body memory cell and array, and method of operating or controlling same
US7733693B2 (en) 2003-05-13 2010-06-08 Innovative Silicon Isi Sa Semiconductor memory device and method of operating same
US7732816B2 (en) 2001-06-18 2010-06-08 Innovative Silicon Isi Sa Semiconductor device
US7736959B2 (en) 2003-07-22 2010-06-15 Innovative Silicon Isi Sa Integrated circuit device, and method of fabricating same
US7924630B2 (en) 2008-10-15 2011-04-12 Micron Technology, Inc. Techniques for simultaneously driving a plurality of source lines
US7933142B2 (en) 2006-05-02 2011-04-26 Micron Technology, Inc. Semiconductor memory cell and array using punch-through to program and read same
US7933140B2 (en) 2008-10-02 2011-04-26 Micron Technology, Inc. Techniques for reducing a voltage swing
US7940559B2 (en) 2006-04-07 2011-05-10 Micron Technology, Inc. Memory array having a programmable word length, and method of operating same
US7947543B2 (en) 2008-09-25 2011-05-24 Micron Technology, Inc. Recessed gate silicon-on-insulator floating body device with self-aligned lateral isolation
US7957206B2 (en) 2008-04-04 2011-06-07 Micron Technology, Inc. Read circuitry for an integrated circuit having memory cells and/or a memory cell array, and method of operating same
US7969779B2 (en) 2006-07-11 2011-06-28 Micron Technology, Inc. Integrated circuit including memory array having a segmented bit line architecture and method of controlling and/or operating same
US8014195B2 (en) 2008-02-06 2011-09-06 Micron Technology, Inc. Single transistor memory cell
US8064274B2 (en) 2007-05-30 2011-11-22 Micron Technology, Inc. Integrated circuit having voltage generation circuitry for memory cell array, and method of operating and/or controlling same
US8069377B2 (en) 2006-06-26 2011-11-29 Micron Technology, Inc. Integrated circuit having memory array including ECC and column redundancy and method of operating the same
US8085594B2 (en) 2007-06-01 2011-12-27 Micron Technology, Inc. Reading technique for memory cell with electrically floating body transistor
US8139418B2 (en) 2009-04-27 2012-03-20 Micron Technology, Inc. Techniques for controlling a direct injection semiconductor memory device
US8174881B2 (en) 2009-11-24 2012-05-08 Micron Technology, Inc. Techniques for reducing disturbance in a semiconductor device
US8189376B2 (en) 2008-02-08 2012-05-29 Micron Technology, Inc. Integrated circuit having memory cells including gate material having high work function, and method of manufacturing same
US8194487B2 (en) 2007-09-17 2012-06-05 Micron Technology, Inc. Refreshing data of memory cells with electrically floating body transistors
US8199595B2 (en) 2009-09-04 2012-06-12 Micron Technology, Inc. Techniques for sensing a semiconductor memory device
US8213226B2 (en) 2008-12-05 2012-07-03 Micron Technology, Inc. Vertical transistor memory cell and array
US8223574B2 (en) 2008-11-05 2012-07-17 Micron Technology, Inc. Techniques for block refreshing a semiconductor memory device
US8264041B2 (en) 2007-01-26 2012-09-11 Micron Technology, Inc. Semiconductor device with electrically floating body
US8310893B2 (en) 2009-12-16 2012-11-13 Micron Technology, Inc. Techniques for reducing impact of array disturbs in a semiconductor memory device
US8315099B2 (en) 2009-07-27 2012-11-20 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US8319294B2 (en) 2009-02-18 2012-11-27 Micron Technology, Inc. Techniques for providing a source line plane
US8349662B2 (en) 2007-12-11 2013-01-08 Micron Technology, Inc. Integrated circuit having memory cell array, and method of manufacturing same
US8369177B2 (en) 2010-03-05 2013-02-05 Micron Technology, Inc. Techniques for reading from and/or writing to a semiconductor memory device
US8411524B2 (en) 2010-05-06 2013-04-02 Micron Technology, Inc. Techniques for refreshing a semiconductor memory device
US8411513B2 (en) 2010-03-04 2013-04-02 Micron Technology, Inc. Techniques for providing a semiconductor memory device having hierarchical bit lines
US8416636B2 (en) 2010-02-12 2013-04-09 Micron Technology, Inc. Techniques for controlling a semiconductor memory device
US8498157B2 (en) 2009-05-22 2013-07-30 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US8508994B2 (en) 2009-04-30 2013-08-13 Micron Technology, Inc. Semiconductor device with floating gate and electrically floating body
US8531878B2 (en) 2011-05-17 2013-09-10 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US8536628B2 (en) 2007-11-29 2013-09-17 Micron Technology, Inc. Integrated circuit having memory cell array including barriers, and method of manufacturing same
US8537610B2 (en) 2009-07-10 2013-09-17 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US8547738B2 (en) 2010-03-15 2013-10-01 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US8710566B2 (en) 2009-03-04 2014-04-29 Micron Technology, Inc. Techniques for forming a contact to a buried diffusion layer in a semiconductor memory device
US8748959B2 (en) 2009-03-31 2014-06-10 Micron Technology, Inc. Semiconductor memory device
US8873283B2 (en) 2005-09-07 2014-10-28 Micron Technology, Inc. Memory cell and memory cell array having an electrically floating body transistor, and methods of operating same
US8964479B2 (en) 2010-03-04 2015-02-24 Micron Technology, Inc. Techniques for sensing a semiconductor memory device
US9019788B2 (en) 2008-01-24 2015-04-28 Micron Technology, Inc. Techniques for accessing memory cells
US9276000B2 (en) 2007-03-29 2016-03-01 Micron Technology, Inc. Manufacturing process for zero-capacitor random access memory circuits
US9559216B2 (en) 2011-06-06 2017-01-31 Micron Technology, Inc. Semiconductor memory device and method for biasing same

Cited By (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7732816B2 (en) 2001-06-18 2010-06-08 Innovative Silicon Isi Sa Semiconductor device
US7733693B2 (en) 2003-05-13 2010-06-08 Innovative Silicon Isi Sa Semiconductor memory device and method of operating same
US7736959B2 (en) 2003-07-22 2010-06-15 Innovative Silicon Isi Sa Integrated circuit device, and method of fabricating same
US11031069B2 (en) 2005-09-07 2021-06-08 Ovonyx Memory Technology, Llc Memory cell and memory cell array having an electrically floating body transistor, and methods of operating same
US8873283B2 (en) 2005-09-07 2014-10-28 Micron Technology, Inc. Memory cell and memory cell array having an electrically floating body transistor, and methods of operating same
US10418091B2 (en) 2005-09-07 2019-09-17 Ovonyx Memory Technology, Llc Memory cell and memory cell array having an electrically floating body transistor, and methods of operating same
US7683430B2 (en) 2005-12-19 2010-03-23 Innovative Silicon Isi Sa Electrically floating body memory cell and array, and method of operating or controlling same
US7940559B2 (en) 2006-04-07 2011-05-10 Micron Technology, Inc. Memory array having a programmable word length, and method of operating same
US8134867B2 (en) 2006-04-07 2012-03-13 Micron Technology, Inc. Memory array having a programmable word length, and method of operating same
US8295078B2 (en) 2006-05-02 2012-10-23 Micron Technology, Inc. Semiconductor memory cell and array using punch-through to program and read same
US7933142B2 (en) 2006-05-02 2011-04-26 Micron Technology, Inc. Semiconductor memory cell and array using punch-through to program and read same
US8402326B2 (en) 2006-06-26 2013-03-19 Micron Technology, Inc. Integrated circuit having memory array including ECC and column redundancy and method of operating same
US8069377B2 (en) 2006-06-26 2011-11-29 Micron Technology, Inc. Integrated circuit having memory array including ECC and column redundancy and method of operating the same
US8395937B2 (en) 2006-07-11 2013-03-12 Micron Technology, Inc. Integrated circuit including memory array having a segmented bit line architecture and method of controlling and/or operating same
US7969779B2 (en) 2006-07-11 2011-06-28 Micron Technology, Inc. Integrated circuit including memory array having a segmented bit line architecture and method of controlling and/or operating same
US8492209B2 (en) 2007-01-26 2013-07-23 Micron Technology, Inc. Semiconductor device with electrically floating body
US8796770B2 (en) 2007-01-26 2014-08-05 Micron Technology, Inc. Semiconductor device with electrically floating body
US8264041B2 (en) 2007-01-26 2012-09-11 Micron Technology, Inc. Semiconductor device with electrically floating body
US9276000B2 (en) 2007-03-29 2016-03-01 Micron Technology, Inc. Manufacturing process for zero-capacitor random access memory circuits
US9257155B2 (en) 2007-05-30 2016-02-09 Micron Technology, Inc. Integrated circuit having voltage generation circuitry for memory cell array, and method of operating and/or controlling same
US8659956B2 (en) 2007-05-30 2014-02-25 Micron Technology, Inc. Integrated circuit having voltage generation circuitry for memory cell array, and method of operating and/or controlling same
US8064274B2 (en) 2007-05-30 2011-11-22 Micron Technology, Inc. Integrated circuit having voltage generation circuitry for memory cell array, and method of operating and/or controlling same
US8085594B2 (en) 2007-06-01 2011-12-27 Micron Technology, Inc. Reading technique for memory cell with electrically floating body transistor
US8446794B2 (en) 2007-09-17 2013-05-21 Micron Technology, Inc. Refreshing data of memory cells with electrically floating body transistors
US8194487B2 (en) 2007-09-17 2012-06-05 Micron Technology, Inc. Refreshing data of memory cells with electrically floating body transistors
US8797819B2 (en) 2007-09-17 2014-08-05 Micron Technology, Inc. Refreshing data of memory cells with electrically floating body transistors
US8536628B2 (en) 2007-11-29 2013-09-17 Micron Technology, Inc. Integrated circuit having memory cell array including barriers, and method of manufacturing same
US11081486B2 (en) 2007-11-29 2021-08-03 Ovonyx Memory Technology, Llc Integrated circuit having memory cell array including barriers, and method of manufacturing same
US10304837B2 (en) 2007-11-29 2019-05-28 Ovonyx Memory Technology, Llc Integrated circuit having memory cell array including barriers, and method of manufacturing same
US8349662B2 (en) 2007-12-11 2013-01-08 Micron Technology, Inc. Integrated circuit having memory cell array, and method of manufacturing same
US9019788B2 (en) 2008-01-24 2015-04-28 Micron Technology, Inc. Techniques for accessing memory cells
US8325515B2 (en) 2008-02-06 2012-12-04 Micron Technology, Inc. Integrated circuit device
US8014195B2 (en) 2008-02-06 2011-09-06 Micron Technology, Inc. Single transistor memory cell
US8189376B2 (en) 2008-02-08 2012-05-29 Micron Technology, Inc. Integrated circuit having memory cells including gate material having high work function, and method of manufacturing same
US7957206B2 (en) 2008-04-04 2011-06-07 Micron Technology, Inc. Read circuitry for an integrated circuit having memory cells and/or a memory cell array, and method of operating same
US9553186B2 (en) 2008-09-25 2017-01-24 Micron Technology, Inc. Recessed gate silicon-on-insulator floating body device with self-aligned lateral isolation
US8790968B2 (en) 2008-09-25 2014-07-29 Micron Technology, Inc. Recessed gate silicon-on-insulator floating body device with self-aligned lateral isolation
US7947543B2 (en) 2008-09-25 2011-05-24 Micron Technology, Inc. Recessed gate silicon-on-insulator floating body device with self-aligned lateral isolation
US7933140B2 (en) 2008-10-02 2011-04-26 Micron Technology, Inc. Techniques for reducing a voltage swing
US8315083B2 (en) 2008-10-02 2012-11-20 Micron Technology Inc. Techniques for reducing a voltage swing
US7924630B2 (en) 2008-10-15 2011-04-12 Micron Technology, Inc. Techniques for simultaneously driving a plurality of source lines
US8223574B2 (en) 2008-11-05 2012-07-17 Micron Technology, Inc. Techniques for block refreshing a semiconductor memory device
US8213226B2 (en) 2008-12-05 2012-07-03 Micron Technology, Inc. Vertical transistor memory cell and array
US8319294B2 (en) 2009-02-18 2012-11-27 Micron Technology, Inc. Techniques for providing a source line plane
US9064730B2 (en) 2009-03-04 2015-06-23 Micron Technology, Inc. Techniques for forming a contact to a buried diffusion layer in a semiconductor memory device
US8710566B2 (en) 2009-03-04 2014-04-29 Micron Technology, Inc. Techniques for forming a contact to a buried diffusion layer in a semiconductor memory device
US9093311B2 (en) 2009-03-31 2015-07-28 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US8748959B2 (en) 2009-03-31 2014-06-10 Micron Technology, Inc. Semiconductor memory device
US8508970B2 (en) 2009-04-27 2013-08-13 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US9425190B2 (en) 2009-04-27 2016-08-23 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US8861247B2 (en) 2009-04-27 2014-10-14 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US8400811B2 (en) 2009-04-27 2013-03-19 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device having ganged carrier injection lines
US8351266B2 (en) 2009-04-27 2013-01-08 Micron Technology, Inc. Techniques for controlling a direct injection semiconductor memory device
US8139418B2 (en) 2009-04-27 2012-03-20 Micron Technology, Inc. Techniques for controlling a direct injection semiconductor memory device
US8508994B2 (en) 2009-04-30 2013-08-13 Micron Technology, Inc. Semiconductor device with floating gate and electrically floating body
US9240496B2 (en) 2009-04-30 2016-01-19 Micron Technology, Inc. Semiconductor device with floating gate and electrically floating body
US8792276B2 (en) 2009-04-30 2014-07-29 Micron Technology, Inc. Semiconductor device with floating gate and electrically floating body
US8982633B2 (en) 2009-05-22 2015-03-17 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US8498157B2 (en) 2009-05-22 2013-07-30 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US9331083B2 (en) 2009-07-10 2016-05-03 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US8817534B2 (en) 2009-07-10 2014-08-26 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US8537610B2 (en) 2009-07-10 2013-09-17 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US8947965B2 (en) 2009-07-27 2015-02-03 Micron Technology Inc. Techniques for providing a direct injection semiconductor memory device
US9679612B2 (en) 2009-07-27 2017-06-13 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US8964461B2 (en) 2009-07-27 2015-02-24 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US8587996B2 (en) 2009-07-27 2013-11-19 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US8315099B2 (en) 2009-07-27 2012-11-20 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US9076543B2 (en) 2009-07-27 2015-07-07 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US8199595B2 (en) 2009-09-04 2012-06-12 Micron Technology, Inc. Techniques for sensing a semiconductor memory device
US9812179B2 (en) 2009-11-24 2017-11-07 Ovonyx Memory Technology, Llc Techniques for reducing disturbance in a semiconductor memory device
US8174881B2 (en) 2009-11-24 2012-05-08 Micron Technology, Inc. Techniques for reducing disturbance in a semiconductor device
US8310893B2 (en) 2009-12-16 2012-11-13 Micron Technology, Inc. Techniques for reducing impact of array disturbs in a semiconductor memory device
US8416636B2 (en) 2010-02-12 2013-04-09 Micron Technology, Inc. Techniques for controlling a semiconductor memory device
US8964479B2 (en) 2010-03-04 2015-02-24 Micron Technology, Inc. Techniques for sensing a semiconductor memory device
US8411513B2 (en) 2010-03-04 2013-04-02 Micron Technology, Inc. Techniques for providing a semiconductor memory device having hierarchical bit lines
US8369177B2 (en) 2010-03-05 2013-02-05 Micron Technology, Inc. Techniques for reading from and/or writing to a semiconductor memory device
US9524971B2 (en) 2010-03-15 2016-12-20 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US9019759B2 (en) 2010-03-15 2015-04-28 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US8547738B2 (en) 2010-03-15 2013-10-01 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US8411524B2 (en) 2010-05-06 2013-04-02 Micron Technology, Inc. Techniques for refreshing a semiconductor memory device
US9142264B2 (en) 2010-05-06 2015-09-22 Micron Technology, Inc. Techniques for refreshing a semiconductor memory device
US8630126B2 (en) 2010-05-06 2014-01-14 Micron Technology, Inc. Techniques for refreshing a semiconductor memory device
US9263133B2 (en) 2011-05-17 2016-02-16 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US8531878B2 (en) 2011-05-17 2013-09-10 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US9559216B2 (en) 2011-06-06 2017-01-31 Micron Technology, Inc. Semiconductor memory device and method for biasing same

Similar Documents

Publication Publication Date Title
JPH04176163A (en) Semiconductor device and manufacture thereof
US6489224B1 (en) Method for engineering the threshold voltage of a device using buried wells
US8252642B2 (en) Fabrication methods for radiation hardened isolation structures
US6249027B1 (en) Partially depleted SOI device having a dedicated single body bias means
US8084342B2 (en) Method of manufacturing a CMOS device with zero soft error rate
US7586155B2 (en) Apparatus and method for improving drive-strength and leakage of deep submicron MOS transistors
TWI260779B (en) Logic switch and circuits utilizing the switch
CN106653752A (en) Semiconductor device
JPH10189761A (en) Semiconductor device
CN109585531B (en) MOS field effect transistor for resisting total dose effect
US4829359A (en) CMOS device having reduced spacing between N and P channel
CN113594256A (en) High-voltage single-particle-irradiation-resistant PSOI LDMOS device structure
JPH0652792B2 (en) Semiconductor device
JPS60100469A (en) Semiconductor device
JP6873336B1 (en) Semiconductor image sensor
US20030205765A1 (en) Semiconductor device and method for manufacturing the same
JPS56162860A (en) Semiconductor device
JPH0265254A (en) Semiconductor device
Cham et al. A study of the trench surface inversion problem in the trench CMOS technology
JPS62136867A (en) Semiconductor device
JPS58218158A (en) Complementary type metal oxide semiconductor device
TW200907625A (en) A semiconductor device including a bias voltage generator
TW507333B (en) SOI NFET with self-connecting body tie
JPS60144963A (en) Mis type semiconductor integrated circuit
JPS6112693Y2 (en)