JPH04168330A - Light wavelength meter - Google Patents

Light wavelength meter

Info

Publication number
JPH04168330A
JPH04168330A JP29450790A JP29450790A JPH04168330A JP H04168330 A JPH04168330 A JP H04168330A JP 29450790 A JP29450790 A JP 29450790A JP 29450790 A JP29450790 A JP 29450790A JP H04168330 A JPH04168330 A JP H04168330A
Authority
JP
Japan
Prior art keywords
light
wavelength
interferometer
light source
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29450790A
Other languages
Japanese (ja)
Inventor
Arinori Tokuhashi
有紀 徳橋
Keisuke Saito
圭介 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP29450790A priority Critical patent/JPH04168330A/en
Publication of JPH04168330A publication Critical patent/JPH04168330A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve a higher stability by performing a wavelength measurement using a fixed Fabry Perot interferometer based on the results of the wavelength measurment using a two flux interferometer to facilitate a highly accurate measurement of an unknown wavelength. CONSTITUTION:Light 1 to be measured is branched in two with a halfmirror 2 and one part thereof is impinged into a two-flux interferometer 8 to detect an interference fringe thereof with a photodetecting section 10. The other part of the light is impinged into a fixed Fabry Perot interferometer 5 through a lens system 3. The lens system 3 works to expand a luminous flux or bring an angle of expanse to the flux so that four or six interference fringes with the interferometer 5 appear. Reference light with a known wavelength lambdatau emitted from a semiconductor laser light source 7 is branched in two with a halfmirror 4 and after impinged into the interferometers 8 and 5 respectively, the respective parts of the light are detected with a photodetecting section 9 and a line sensor 6. Output signals of the photodetecting sections 9 and 10 and the sensor 6 are processed with a signal processing section 11 to calculate a wavelength lambdax of the light 1 to be measured. The wavelength lambdatau is stabilized with a light source control section 12 so as to keep the interference fringe of the reference light with the interferometer 5 from changing.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高精度干渉計測例えば半導体レーザ光源等の
コヒーレント光源の波長の測定に用いられる光波長計に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical wavelength meter used for high-precision interferometric measurement, for example, measuring the wavelength of a coherent light source such as a semiconductor laser light source.

〔従来の技術〕[Conventional technology]

従来の波長計としては、二光束干渉計測を利用したもの
がある。その例を第5図に示す。基準レーザ光源35を
発した既知の波長λ、の参照光と未知の波長λつの被測
定光が重ね合わせられ、二光束干渉計に入射する。そし
て、重ね合わせられた光はビームスプリッタ36で2方
向に分離され、その一方は可動ミラー37、他方は固定
ミラー38で反射された後、ビームスプリッタ36で重
ね合わせられ、参照光と被測定光に分離されて別々の光
検出器39及び40に入射する。ここで、可動ミラー3
7の移動量をLとすると、ビームスプリッタ36で重ね
合わせられた三光束の光路長差の変化は2nL(nは媒
質の屈折率)となり、このときの被測定光の干渉縞の変
化数N8と参照先の干渉縞の変化数N、には次の様な関
係がある。
Some conventional wavelength meters utilize two-beam interference measurement. An example is shown in FIG. A reference light with a known wavelength λ emitted from the reference laser light source 35 and a measured light with an unknown wavelength λ are superimposed and enter the two-beam interferometer. The superimposed lights are separated into two directions by a beam splitter 36, one of which is reflected by a movable mirror 37 and the other by a fixed mirror 38, and then superimposed by the beam splitter 36 to form a reference beam and a measured beam. The light is separated into two and enters separate photodetectors 39 and 40. Here, movable mirror 3
7 is moved by L, the change in the optical path length difference of the three beams superimposed by the beam splitter 36 is 2nL (n is the refractive index of the medium), and the number of changes in the interference fringes of the measured light at this time is N8 There is the following relationship between N and the number of changes N in interference fringes of the reference destination.

2nL=λ、N、=λ、 N、 −−−−−−−−(1
)従って、これから被測定光の波長λヨはλ8=λ、・
N、/N、  ・・・・・・・・(2)となり、干渉縞
の変化数の比から求めることができる。
2nL=λ, N, =λ, N, −−−−−−−(1
) Therefore, from now on, the wavelength λ of the light to be measured is λ8=λ,・
N, /N, (2), which can be determined from the ratio of the number of changes in interference fringes.

第6図は他の従来例として、複数の固定ファブリ・ペロ
ー干渉計を用いた波長計の概要を示している(参考文献
 A、Fisher、 R,Kullmer andW
、Demtroder : Opt、Commun、3
9 (1981) 277、 )。
Figure 6 shows an overview of a wavelength meter using multiple fixed Fabry-Perot interferometers as another conventional example (References A, Fisher, R, Kullmer and W.
,Demtroder: Opt,Commun,3
9 (1981) 277, ).

未知の波長λ、をもつ被測定光と既知の波長λ、もつ参
照先は同一光路を通る。ハーフミラ−41に入射した光
の一部はモノクロメータ−42へ入射し、残りはハーフ
ミラ−43,44,ミラー45により、共振器長の異な
る3個の固定ファブリ・ペロー干渉計46.47.48
に入射する。この図では省略しているが、固定ファブリ
・ペロー干渉計46.47.48の入射光は、4ないし
6個の干渉縞が現われるように僅かな広がり角をもって
いる。モノクロメータ−42と3個の固定ファブリ・ペ
ロー干渉計46.47.48の出力は夫々ダイオードア
レイ49.51,52.53で検出される。
The measured light having an unknown wavelength λ and the reference target having a known wavelength λ pass through the same optical path. A part of the light incident on the half mirror 41 is incident on the monochromator 42, and the rest is transmitted through the half mirrors 43, 44, and 45 to three fixed Fabry-Perot interferometers 46, 47, and 48 with different cavity lengths.
incident on . Although not shown in this figure, the incident light of the fixed Fabry-Perot interferometers 46, 47, and 48 has a slight divergence angle so that 4 to 6 interference fringes appear. The outputs of monochromator 42 and three fixed Fabry-Perot interferometers 46, 47, 48 are detected by diode arrays 49.51, 52.53, respectively.

次に固定ファブリ・ペロー干渉計による波長測定の方法
について説明する。固定ファブリ・ペロー干渉計の共振
器長をd、共振器内部の屈折率をn、被測定光の波長を
λ8、参照光の波長をλ。
Next, a method of wavelength measurement using a fixed Fabry-Perot interferometer will be explained. The resonator length of the fixed Fabry-Perot interferometer is d, the refractive index inside the resonator is n, the wavelength of the measured light is λ8, and the wavelength of the reference light is λ.

とすると、 λ 反射による位相変化□Φの波長依存性を無視π すれば、 λ 2nd+□Φ=m0.λ+ ”matλ、 −−−(3
)π が成り立つ。ここで、m 6 Hg m a *は各波
長による干渉次数であり、一般に整数ではないので、m
、、=m、+e、、m□= m t + e x・・φ
・(4)とする。m19m、はリング状の干渉縞の最も
内側の明線の干渉次数を意味する整数であり、e。
Then, if λ ignores the wavelength dependence of phase change □Φ due to reflection π, then λ 2nd+□Φ=m0. λ+ ”matλ, ---(3
) π holds true. Here, m 6 Hg m a * is the interference order due to each wavelength, and is generally not an integer, so m
,,=m,+e,,m□=m t + e x・・φ
・Set as (4). m19m is an integer that means the interference order of the innermost bright line of the ring-shaped interference fringe, and e.

、eヶは干渉縞の中心部での次数の少数部(端数)であ
る。端数e r r  e xは、いくつかのリング状
の干渉縞の直径を測定することから決定でき、整数m、
、m、は整数合致法として知られている方法で決定され
ている。整数部m99m、を正確に決定するためには、
ある程度の精度で波長の近似値を知っておく必要があり
、次数が大きいほど、従って測定分解能が上がるほど、
高精度の近似値が必要になる。そのため第6図に示した
ように、モノクロメータ−42で求めた波長を初期値と
し、共振器間隔の異なる固定ファブリ・ペロー干渉計4
6.47.48の干渉縞を利用して順次波長の測定精度
を上げていけば高精度の波長測定が可能となる。
, e is the decimal part (fraction) of the order at the center of the interference fringe. The fraction e r r e x can be determined by measuring the diameters of several ring-shaped interference fringes, and is an integer m,
, m, are determined by a method known as the integer matching method. In order to accurately determine the integer part m99m,
It is necessary to know the approximate value of the wavelength with a certain degree of accuracy, and the larger the order, and therefore the measurement resolution, the better.
A highly accurate approximation is required. For this reason, as shown in FIG.
By using the interference fringes of 6.47.48 and increasing the accuracy of wavelength measurement one by one, highly accurate wavelength measurement becomes possible.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、第5図に示したものでは、精度を上げるために
は可動ミラー37の可動距離りを大きくすればいいが、
そうすると機械的な不安定性が増し、精度が低下すると
いう問題がある。又、可動ミラー37をスムーズに動か
すために高度な技術を要することになり、コストが高く
なってしまうという問題がある。
However, in the case shown in FIG. 5, in order to improve accuracy, it is sufficient to increase the movable distance of the movable mirror 37;
This poses a problem in that mechanical instability increases and accuracy decreases. Further, in order to move the movable mirror 37 smoothly, a sophisticated technique is required, resulting in an increase in cost.

又、第6図に示したものは、ある程度高精度な固定ファ
ブリ・ペロー干渉計を3個も必要とするため、高価にな
ってしまうという問題がある。
Furthermore, the system shown in FIG. 6 requires three fixed Fabry-Perot interferometers with a certain level of precision, and therefore has the problem of being expensive.

また、この他に、スキャニング・ファブリ・ペロー干渉
計を用いた高精度な測定法もあるが、その中でピエゾ素
子を用いたものは、機械的に不安定な上に、ピエゾ素子
の非線形性が影響して精度が悪くなる可能性がある。尚
、気圧、温度、湿度の影響を除いてピエゾ素子の線形性
を高めるために真空ポンプを用いて圧力掃引するものは
、装置が非常に大型になり、測定時間もかかるため、実
用的ではない。
In addition, there is a high-precision measurement method using a scanning Fabry-Perot interferometer, but methods using piezo elements are not only mechanically unstable but also suffer from the nonlinearity of piezo elements. may affect the accuracy. However, it is not practical to use a vacuum pump to sweep the pressure in order to eliminate the effects of atmospheric pressure, temperature, and humidity and improve the linearity of the piezo element, as it requires a very large device and takes a long time to measure. .

本発明は、上記問題点に鑑み、高精度で安価な光波長計
を提供することを目的としている。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a highly accurate and inexpensive optical wavelength meter.

〔課題を解決するための手段及び作用〕本発゛明による
光波長計は、既知の波長をもつ参照光と未知の波長をも
つ被測定光とを二光束干渉計に入射し、各々の光による
干渉測長の結果を比較して被測定光の波長測定を行い、
更に既知の共振器長を持つ固定ファブリ・ペロー干渉計
に被測とから、より高精度な波長測定を行なうようにし
たものである。そして、固定ファブリ・ペロー干渉計が
一個で済むので、安価である。
[Means and effects for solving the problem] The optical wavelength meter according to the present invention inputs a reference light having a known wavelength and a measured light having an unknown wavelength into a two-beam interferometer, and calculates the difference between each light beam. The wavelength of the light to be measured is measured by comparing the results of interferometric length measurement using
Furthermore, by using a fixed Fabry-Perot interferometer with a known resonator length, wavelength measurement can be performed with higher precision. Furthermore, since only one fixed Fabry-Perot interferometer is required, it is inexpensive.

また、本発明による光波長計では、参照光源として、そ
の波長が予め前記固定ファブリ・ペロー干渉計を用いて
別の標準波長と比較され、フィードバック制御により波
長安定化された半導体レーザ光源を用いている。従って
、より安価に構成することができる。 以下、第1図に
示した概念図に基づき、より詳細に説明する。
Furthermore, in the optical wavelength meter according to the present invention, a semiconductor laser light source whose wavelength is compared in advance with another standard wavelength using the fixed Fabry-Perot interferometer and whose wavelength is stabilized by feedback control is used as a reference light source. There is. Therefore, it can be constructed at a lower cost. A more detailed explanation will be given below based on the conceptual diagram shown in FIG.

図中、lは未知の波長λ、の被測定光、2,4はハーフ
ミラ−13はレンズ系、5は固定ファブリ・ペロー干渉
計、6はラインセンサー、7は半導体レーザ光源、8は
二光束干渉計、9.lOは光検出部、11は信号処理部
である。
In the figure, l is the light to be measured with an unknown wavelength λ, 2 and 4 are half mirrors, 13 is a lens system, 5 is a fixed Fabry-Perot interferometer, 6 is a line sensor, 7 is a semiconductor laser light source, and 8 is a dual beam Interferometer, 9. IO is a photodetector, and 11 is a signal processor.

被測定光lはハーフミラ−2で二つに分岐される。その
一方は二光束干渉計8に入射し、その干渉縞が光検出部
lOで検出される。他方はレンズ系3を通って固定ファ
ブリ・ペロー干渉計5に入射する。レンズ系3は固定フ
ァブリ・ペロー干渉計による干渉縞が4ないし6個現わ
れるように、光束を広げるかあるいは光束に広がり角を
もたす作用をする。半導体レーザ光源7から発せられた
既知の波長λ、をもつ参照光はハーフミラ−4で二つに
分岐され、それぞれが二光束干渉系8及び固定ファブリ
・ペロー干渉計5に入射した後、光検出部9及びライン
センサー6で検出される。光検出部9.lO及びライン
センサー6の出力信号は、信号処理部11で処理され、
被測定光の波長λ、が計算される。また、固定ファブリ
・ペロー干渉計5による参照光の干渉縞が変動しないよ
うに、光源制御部12で半導体レーザ光源7の波長λ、
を安定化するように制御する。半導体レーザ光源7の波
長λ、の絶対値は、予め標準光源例えば非常に高精度に
波長安定化されたレーザ光源の波長と比較測定しておく
。この比較測定には固定ファブリ・ペロー干渉計5が用
いられ、そこで共振器長およびλ8と干渉縞の関係も測
定される。
The light to be measured 1 is split into two by a half mirror 2. One of them enters the two-beam interferometer 8, and its interference fringes are detected by the photodetector lO. The other beam passes through lens system 3 and enters fixed Fabry-Perot interferometer 5 . The lens system 3 functions to spread the light beam or give it a divergence angle so that four to six interference fringes appear due to the fixed Fabry-Perot interferometer. A reference beam with a known wavelength λ emitted from a semiconductor laser light source 7 is split into two by a half mirror 4, and each beam enters a two-beam interference system 8 and a fixed Fabry-Perot interferometer 5, and then is optically detected. 9 and the line sensor 6. Light detection section 9. The output signals of lO and line sensor 6 are processed by signal processing section 11,
The wavelength λ of the light to be measured is calculated. In addition, in order to prevent the interference fringes of the reference light from the fixed Fabry-Perot interferometer 5 from changing, the light source controller 12 controls the wavelength λ of the semiconductor laser light source 7;
control to stabilize. The absolute value of the wavelength λ of the semiconductor laser light source 7 is measured in advance by comparing it with the wavelength of a standard light source, for example, a laser light source whose wavelength has been stabilized with very high precision. A fixed Fabry-Perot interferometer 5 is used for this comparative measurement, and the relationship between the cavity length and λ8 and the interference fringes is also measured there.

この測定結果をもとに、半導体レーザ光源7にフィード
 バック制御をかければ、安定した波長λ7の参照光源
が得られる。
By applying feedback control to the semiconductor laser light source 7 based on this measurement result, a stable reference light source of wavelength λ7 can be obtained.

被測定光1の波長λ8の計算方法が、まず第5図に示し
た従来例と同様に、二光束干渉計8の干渉縞の変化数の
比から近似値λ□ ′を得る。次に、固定ファブリ・ペ
ロー干渉計5の干渉次数を求める。第6図に示した従来
例と同様に、固定ファブリ・ペロー干渉計5の共振器長
をd、屈折率をn、波長λ1.λ、による次数を夫々m
、十e、。
To calculate the wavelength λ8 of the light to be measured 1, an approximate value λ□' is first obtained from the ratio of the number of changes in the interference fringes of the two-beam interferometer 8, as in the conventional example shown in FIG. Next, the interference order of the fixed Fabry-Perot interferometer 5 is determined. Similar to the conventional example shown in FIG. 6, the fixed Fabry-Perot interferometer 5 has a cavity length of d, a refractive index of n, and a wavelength of λ1. λ, the order by m
, 10e.

m x + e x とすると、 =2nd+□  ・・・・・・・・・・・・(5)π e、)λ、は、反射による位相変化を含んだ実効的な共
振器長であり、既に測定されている。ただし、温度が影
響するような状況下では、温度も測定しておく。次数に
対してλ8が高い精度で求められていれば、整数m8を
決定でき、その結果測定の精度は端数e、の測定精度で
きまるため、測定精度が向上する。
When m x + e x , =2nd+□ ・・・・・・・・・・・・(5) π e, ) λ is the effective resonator length including the phase change due to reflection, Already measured. However, in situations where temperature is a factor, the temperature should also be measured. If λ8 is determined with high accuracy for the order, the integer m8 can be determined, and as a result, the measurement accuracy is determined by the measurement accuracy of the fraction e, so that the measurement accuracy is improved.

〔実施例〕〔Example〕

以下、図示した実施例に基づき本発明の詳細な説明する
Hereinafter, the present invention will be described in detail based on the illustrated embodiments.

第2図は第1実施例の光学系を示しており、図中13は
被測定光、14は被測定光13を偏光によって二つの被
測定光13a、13bに分割する偏光ビームスプリッタ
−115は被測定光13aを広げるビームエキスパンダ
ーである。16は偏光ビームスプリッタ−であって、後
述の参照光22を二つの参照光22a、22bに分割す
るとともに、被測定光13aと参照光22aの光軸を−
致させるようになっている。17は球面ファブリ・ペロ
ー干渉計、18は温度安定化装置、19はラインセンサ
ー、20はS偏光のみ通す偏光フィルター、21は参照
光源となる半導体レーザ光源、22は参照光、23は信
号処理部、24は半導体λ レーザ光源制御部、25.31は□板、26はミラー、
27は偏光ビームスプリッタ−128゜32はミラー、
29.33は一体となって移動する可動コーナーキュー
ブである。30は被測定光13a、13bによる干渉縞
を検出する干渉縞検出部、34は参照光22a、22b
による干渉縞を検出する干渉縞検出部であって、詳細は
省略するが、いずれも偏光素子、光検出器などで構成さ
れている。そして、偏光ビームスプリッタ−27とミラ
ー28.32と可動コーナーキューブ29゜33とで二
光束干渉計を構成している。
FIG. 2 shows the optical system of the first embodiment, in which reference numeral 13 denotes the light to be measured, and 14 denotes a polarizing beam splitter 115 that splits the measured light 13 into two measured beams 13a and 13b by polarization. This is a beam expander that expands the light to be measured 13a. Reference numeral 16 denotes a polarizing beam splitter that splits a reference light 22 (described later) into two reference lights 22a and 22b, and also splits the optical axes of the measured light 13a and the reference light 22a.
It is designed to allow 17 is a spherical Fabry-Perot interferometer, 18 is a temperature stabilizer, 19 is a line sensor, 20 is a polarizing filter that passes only S-polarized light, 21 is a semiconductor laser light source that serves as a reference light source, 22 is a reference light, and 23 is a signal processing section , 24 is a semiconductor λ laser light source control unit, 25.31 is a square plate, 26 is a mirror,
27 is a polarizing beam splitter - 128° 32 is a mirror,
29.33 is a movable corner cube that moves as one. 30 is an interference fringe detection unit that detects interference fringes caused by the measured beams 13a and 13b, and 34 is a reference beam 22a and 22b.
This is an interference fringe detection section that detects interference fringes caused by the interference fringe, and although the details are omitted, each is composed of a polarizing element, a photodetector, and the like. The polarizing beam splitter 27, mirrors 28, 32, and movable corner cube 29.33 constitute a two-beam interferometer.

次に、作用について説明する。Next, the effect will be explained.

被測定光13は偏光ビームスプリッタ−14でP偏光成
分の被測定光13aとS偏光成分の被測定光13bに分
割される。被測定光13bは、λ □板25を透過してその偏光の向きが456回転し、ミ
ラー26で反射して偏光ビームスプリッタ−27に入射
する。そして、偏光ビームスプリッタ−27でP偏光成
分とS偏光成分とに分割され、前者はミラー28及びコ
ーナーキューブ29、後者はミラー32及びコーナーキ
ューブ33で反射した後、偏光ビームスプリッタ−27
で重ね合わせられ、干渉縞を発生し、干渉縞検出部30
に入射する。干渉縞検出部30の出力は信号処理部23
に送られ、コーナーキューブ29.33の移動に伴う干
渉縞の変化がカウントされる。−方、被測定光13aは
、ビームエキスパンダー15により光束径が拡大されて
球面ファブリ・ペロー干渉計17に入射し、干渉縞が第
3図に示した如くラインセンサー19で検出される。ま
た、参照光22のP偏光成分である参照光22bは、λ 偏光ビームスプリッタ16を透過し、□板3■を透過し
てその偏光の向きが45°回転し、偏光ビームスプリッ
タ27に入射する。そして、ここで被測定光tabと同
様に、二つの偏光成分に分割され、コーナーキューブ2
9.33で夫々反射して干渉縞検出部34に入射し、干
渉縞の変化がカウントされる。このように偏光ビームス
プリッタ−27で分離されてから再び偏光ビームスプリ
ッタ−27で重ね合わせられるまで被測定光13bと参
照光22bは同一光路を通るようになっている。一方、
参照光22のS偏光成分である参照光22aは偏光ビー
ムスプリッタ−16で反射して球面ファブリ・ペロー干
渉計17に入射し、第3図に示した如く偏光フィルター
20を透過してラインセンサー19で検出される。即ち
、ビームエキスパンダー15で拡大されて球面ファブリ
・ペロー干渉計17に入射した被測定光13aの干渉縞
は、リング状に4ないし5本現われ、その位置がライン
センサー19で検出される。又、参照光22aは、ビー
ムのままラインセンサー19の中央部付近に入射する。
The light to be measured 13 is split by a polarizing beam splitter 14 into light to be measured 13a having a P polarization component and light to be measured 13b having an S polarization component. The light to be measured 13b passes through the λ□ plate 25, the direction of its polarization is rotated by 456 rotations, is reflected by the mirror 26, and enters the polarizing beam splitter 27. The polarized beam splitter 27 then splits the light into a P polarized component and an S polarized component. The former is reflected by a mirror 28 and a corner cube 29, and the latter is reflected by a mirror 32 and a corner cube 33.
are superimposed on each other to generate interference fringes, and the interference fringe detection unit 30
incident on . The output of the interference fringe detection section 30 is sent to the signal processing section 23.
The changes in the interference fringes caused by the movement of the corner cubes 29 and 33 are counted. On the other hand, the beam diameter of the light to be measured 13a is expanded by the beam expander 15 and enters the spherical Fabry-Perot interferometer 17, and interference fringes are detected by the line sensor 19 as shown in FIG. Further, the reference light 22b, which is the P-polarized component of the reference light 22, passes through the λ polarization beam splitter 16, passes through the □ plate 3■, rotates its polarization direction by 45 degrees, and enters the polarization beam splitter 27. . Then, like the measured light tab, it is divided into two polarized components, and the corner cube 2
9.33 and enters the interference fringe detection section 34, and changes in the interference fringes are counted. In this way, the measured light 13b and the reference light 22b pass through the same optical path after being separated by the polarizing beam splitter 27 until they are combined again by the polarizing beam splitter 27. on the other hand,
The reference light 22a, which is the S-polarized component of the reference light 22, is reflected by the polarizing beam splitter 16, enters the spherical Fabry-Perot interferometer 17, and is transmitted through the polarizing filter 20 as shown in FIG. 3 to the line sensor 19. Detected in That is, four or five interference fringes of the measured light 13a that has been expanded by the beam expander 15 and entered the spherical Fabry-Perot interferometer 17 appear in a ring shape, and the positions of the interference fringes are detected by the line sensor 19. Further, the reference light 22a enters the vicinity of the center of the line sensor 19 as a beam.

又、波長λ、が変動すると、それがラインセンサー19
により強度変化として検出され、信号処理部23を介し
て光源制御部24にフィード バックされ、該光源制御
部24により半導体レーザ光源21が制御されて波長λ
、の変動が除去される。尚、偏光フィルター20がある
ため、被測定光13aが同時に検出されることはない。
Also, when the wavelength λ changes, it changes to the line sensor 19.
is detected as an intensity change by the signal processing section 23, and is fed back to the light source control section 24, which controls the semiconductor laser light source 21 to change the wavelength λ.
, are removed. Note that since the polarizing filter 20 is provided, the light to be measured 13a is not detected at the same time.

一方、被測定光13aはリングの直径を求めれば良いの
で、中央部付近で検出する必要がない。
On the other hand, since the measurement target light 13a only needs to be determined by the diameter of the ring, there is no need to detect it near the center.

信号処理部23では、干渉縞検出部30.34及びライ
ンセンサー19の出力から、被測定光13の波長を計算
する。可動コーナーキューブ29゜33の移動量をΔL
とすると、各光による干渉縞の変化は、 N r ’= 4 nΔL/λ7.N、=4nΔL/λ
、・・・・・・・・・・(6) となり、(2)式でλ1が決まる。lo−6程度の精度
を得られれば良いため、N、、N、は10’程度となり
、N、、N、が□まで読めるならΔLは50mm程度で
良い。また、参照光22の波長の安定度はlo−7程度
でかまわないので、比較的容易に制御可能である。
The signal processing section 23 calculates the wavelength of the light to be measured 13 from the outputs of the interference fringe detection section 30.34 and the line sensor 19. The amount of movement of the movable corner cube 29°33 is ΔL
Then, the change in interference fringes due to each light is N r '= 4 nΔL/λ7. N, = 4nΔL/λ
, . . . (6), and λ1 is determined by equation (2). Since it is sufficient to obtain an accuracy of about lo-6, N,, N, should be about 10', and if N,, N, can be read up to □, ΔL should be about 50 mm. Further, since the stability of the wavelength of the reference light 22 may be about lo-7, it can be controlled relatively easily.

次に、被測定光13による球面ファブリ・ペロー干渉計
17の干渉次数m −+ e xが4X10’程度以下
であれば、(5)式からmxが決定できる。
Next, if the interference order m −+ e x of the spherical Fabry-Perot interferometer 17 by the light to be measured 13 is about 4×10′ or less, mx can be determined from equation (5).

これは例えばλ、=780nmなら共振器長約80mm
に相等し、e8を0.01のオーダーまで求めれば、λ
、の測定精度として5X10−”が得られる。
For example, if λ = 780 nm, the cavity length is approximately 80 mm.
If e8 is found to the order of 0.01, then λ
, a measurement accuracy of 5×10−” is obtained.

このように本実地例は、未知の波長λ、の高精度測定が
可能であり、高精度測定部(球面ファブリ・ペロー干渉
計17)には機械的な可動部分がないため安定性に優れ
ている。又、球面ファブリ・ペロー干渉計17が一個で
済むので安価である。
In this way, this practical example enables high-precision measurement of the unknown wavelength λ, and has excellent stability because the high-precision measurement section (spherical Fabry-Perot interferometer 17) has no mechanically moving parts. There is. Furthermore, since only one spherical Fabry-Perot interferometer 17 is required, the cost is low.

また、低精度測定部(二光束干渉計)の参照光源として
波長安定化半導体レーザ光源21を用い、その波長の別
の標準波長との比較には高精度測定部で使用する固定フ
ァブリ・ペロー干渉計17を用いているため、より安価
に構成できる。
In addition, a wavelength-stabilized semiconductor laser light source 21 is used as a reference light source for the low-precision measurement section (two-beam interferometer), and a fixed Fabry-Perot interference device used in the high-precision measurement section is used to compare the wavelength with another standard wavelength. Since a total of 17 units are used, it can be constructed at a lower cost.

尚、本実施例では球面ファブリ・ペロー干渉計17を用
いているが、平面ファブリ・ペロー干渉計を用いてもか
まわない。この場合、ビームエキスパンダー15の代わ
りに、被測定光13aに僅かな広がり角を与えるための
レンズ系を用いる。
In this embodiment, a spherical Fabry-Perot interferometer 17 is used, but a planar Fabry-Perot interferometer may also be used. In this case, instead of the beam expander 15, a lens system is used to give a slight spread angle to the light to be measured 13a.

第4図は第2実施例の光学系の概略図であって、これは
被測定光lを分割するハーフミラ−と半導体レーザ光源
7からの参照光を分割するハーフミラ−とを一つのビー
ムスプリッタ−27−で兼用  □させると共に、被測
定光と参照光とが重なった後でも波長依存性の高いフレ
ネルレンズ3−で一方の光束のみを拡大することにより
ラインセンサー6で適切な測定が行なえるようにしたも
のである。
FIG. 4 is a schematic diagram of the optical system of the second embodiment, in which a half mirror that splits the light to be measured l and a half mirror that splits the reference light from the semiconductor laser light source 7 are combined into one beam splitter. In addition, even after the measured light and the reference light overlap, the Fresnel lens 3-, which has high wavelength dependence, magnifies only one of the light beams, so that the line sensor 6 can perform appropriate measurements. This is what I did.

その他の構成は第一実施例と基本的に同じである。The other configurations are basically the same as the first embodiment.

本実施例は、第1実施例の効果に加えて、ハーフミラ−
を−個減らしたた分コンパクトに構成できるという利点
がある。
In addition to the effects of the first embodiment, this embodiment has a half mirror.
It has the advantage that it can be configured more compactly by reducing the number of .

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明による光波長計は、二光束干渉計を
用いた波長測定の結果をもとに固定ファブリ・ペロー干
渉計を用いた波長測定を行なうため、未知の波長の高精
度な測定が比較的容易にできると共に、固定ファブリ・
ペロー干渉計には機械的な可動部分がないため、安定性
に優れている。
As described above, the optical wavelength meter according to the present invention performs wavelength measurement using a fixed Fabry-Perot interferometer based on the results of wavelength measurement using a two-beam interferometer, so it is possible to measure unknown wavelengths with high precision. can be done relatively easily, and fixed fabrication/
The Perot interferometer has no mechanically moving parts, so it has excellent stability.

又、固定ファブリ・ペロー干渉計が一個で済むので、安
価である。また、参照光源には波長安定化された半導体
レーザ光源を用い、その波長の別の標準波長との比較に
は波長測定用の固定ファブリ・ペロー干渉計を利用する
ため、他の波長基準器を備える必要がなく、−層安価に
構成することができる。
Furthermore, since only one fixed Fabry-Perot interferometer is required, the cost is low. In addition, a wavelength-stabilized semiconductor laser light source is used as the reference light source, and a fixed Fabry-Perot interferometer for wavelength measurement is used to compare the wavelength with another standard wavelength, so other wavelength standards are used. It is not necessary to provide a layer, and it can be constructed at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による光波長計の光学系の概念図、第2
図は第1実施例の光学系を示す図、第3図は上記第1実
施例のラインセンサー上における被測定光と参照光の投
影状態を示す図、第4図は第2実施例の光学系の概略図
、第5図及び第6図は夫々従来例の光学系を示す図であ
る。  1. 13・・・被測定光、2,4・・・ハー
フミラ−13・・・レンズ系、3′φ・中フレネルレン
ズ、5・・・固定ファブリ・ペロー干渉計、6,19・
・・ラインセンサー、7,21・・・半導体レーザ光源
、8・・・二光束干渉計、9.lO・・・光検出部、1
1.23・・・信号処理部、12・・・光源制御部、1
4,16.27・・・偏光ビームスプリッタ−115・
・・ビームエキスパンダー、17・・・球面ファブリ・
ペロー干渉計、18・・・温度安定化装置、20・・・
偏光フィルター、22・・・参照光、24・・・半導体
レーザー光源制御部、25.31・・・λ/2板、26
.28.32・・・ミラー、27′・・・ビームスプリ
ッタ−129,33・・・可動コーナーキューブ、30
.34・・・干渉縞検出部。 第2図 フL 第3図 1?4図
Figure 1 is a conceptual diagram of the optical system of the optical wavelength meter according to the present invention;
The figure shows the optical system of the first embodiment, FIG. 3 shows the projection state of the measured light and reference light on the line sensor of the first embodiment, and FIG. 4 shows the optical system of the second embodiment. Schematic diagrams of the system, FIGS. 5 and 6, each show a conventional optical system. 1. 13... Light to be measured, 2,4... Half mirror 13... Lens system, 3'φ medium Fresnel lens, 5... Fixed Fabry-Perot interferometer, 6,19...
... Line sensor, 7, 21 ... Semiconductor laser light source, 8 ... Two-beam interferometer, 9. lO...light detection section, 1
1.23...Signal processing section, 12...Light source control section, 1
4,16.27...Polarizing beam splitter-115.
・Beam expander, 17... Spherical Fabry・
Perot interferometer, 18... temperature stabilizer, 20...
Polarizing filter, 22... Reference light, 24... Semiconductor laser light source control unit, 25.31... λ/2 plate, 26
.. 28.32... Mirror, 27'... Beam splitter-129, 33... Movable corner cube, 30
.. 34...Interference fringe detection section. Figure 2 F Figure 3 Figure 1-4

Claims (2)

【特許請求の範囲】[Claims] (1)既知の波長をもつ第一の光及び未知の波長をもつ
第2の光が同時に入射する二光束干渉計と、該二光束干
渉計を通過した第1の光による干渉縞を検出する第1の
光検出部と、前記二光束干渉計を通過した第2の光によ
る干渉縞を検出する第2の光検出部と、第1の光及び第
2の光が入射する固定ファブリ・ペロー干渉計と、該固
定ファブリ・ペロー干渉計の出力を検出する第3の光検
出部と、前記二光束干渉計及び前記固定ファブリ・ペロ
ー干渉計の双方に第1及び第2の光を導く光学素子と、
前記第1、第2及び第3の光検出部の出力信号を入力・
処理する信号処理部と、前記第3の光検出部の出力信号
に基づき第1の光の光源を制御する光源制御部とを具備
し、第1の光による二光束干渉信号と第2の光による二
光束干渉信号とを比較して第2の光の波長測定を行い、
その結果と前記固定ファブリ・ペロー干渉計による干渉
信号からより高精度の波長測定を行なうようにして成る
光波長計。
(1) A two-beam interferometer into which a first light with a known wavelength and a second light with an unknown wavelength are simultaneously incident, and interference fringes caused by the first light that has passed through the two-beam interferometer are detected. a first photodetection section; a second photodetection section that detects interference fringes due to the second light that has passed through the two-beam interferometer; and a fixed Fabry-Perot device into which the first light and the second light are incident. an interferometer, a third light detection unit that detects the output of the fixed Fabry-Perot interferometer, and optics that guide first and second lights to both the two-beam interferometer and the fixed Fabry-Perot interferometer. Motoko and
Input the output signals of the first, second and third photodetectors.
a signal processing unit that processes a signal, and a light source control unit that controls a light source of the first light based on the output signal of the third light detection unit, and includes a two-beam interference signal of the first light and a second light The wavelength of the second light is measured by comparing the two-beam interference signal by
An optical wavelength meter that measures the wavelength with higher precision from the result and the interference signal from the fixed Fabry-Perot interferometer.
(2)前記第1の光の光源はその波長が予め前記固定フ
ァブリ・ペロー干渉計を用いて別の標準と比較され前記
光源制御部を介するフィードバック制御により波長安定
化された半導体レーザ光源であることを特徴とする請求
項(1)に記載の光波長計。
(2) The light source of the first light is a semiconductor laser light source whose wavelength has been compared in advance with another standard using the fixed Fabry-Perot interferometer and stabilized by feedback control via the light source controller. The optical wavelength meter according to claim 1, characterized in that:
JP29450790A 1990-10-31 1990-10-31 Light wavelength meter Pending JPH04168330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29450790A JPH04168330A (en) 1990-10-31 1990-10-31 Light wavelength meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29450790A JPH04168330A (en) 1990-10-31 1990-10-31 Light wavelength meter

Publications (1)

Publication Number Publication Date
JPH04168330A true JPH04168330A (en) 1992-06-16

Family

ID=17808676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29450790A Pending JPH04168330A (en) 1990-10-31 1990-10-31 Light wavelength meter

Country Status (1)

Country Link
JP (1) JPH04168330A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202203A (en) * 2000-12-28 2002-07-19 Anritsu Corp Optical wavelength measuring device
JP2009115492A (en) * 2007-11-02 2009-05-28 Canon Inc Chemical sensor element, sensing device, and sensing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202203A (en) * 2000-12-28 2002-07-19 Anritsu Corp Optical wavelength measuring device
JP2009115492A (en) * 2007-11-02 2009-05-28 Canon Inc Chemical sensor element, sensing device, and sensing method
US8877519B2 (en) 2007-11-02 2014-11-04 Canon Kabushiki Kaisha Chemical sensor element, sensing apparatus, and sensing method

Similar Documents

Publication Publication Date Title
US6208424B1 (en) Interferometric apparatus and method for measuring motion along multiple axes
US4802765A (en) Differential plane mirror having beamsplitter/beam folder assembly
US5153669A (en) Three wavelength optical measurement apparatus and method
US4746216A (en) Angle measuring interferometer
US7355719B2 (en) Interferometer for measuring perpendicular translations
US4693605A (en) Differential plane mirror interferometer
US5159408A (en) Optical thickness profiler using synthetic wavelengths
JPH0552540A (en) Interferometer laser surface roughness meter
JPH07181007A (en) Measuring device wherein interferometer is applied
US7675628B2 (en) Synchronous frequency-shift mechanism in Fizeau interferometer
JP2009300263A (en) Two-wavelength laser interferometer and method of adjusting optical axis in the same
US4717250A (en) Angle measuring interferometer
US8345258B2 (en) Synchronous frequency-shift mechanism in fizeau interferometer
US4802764A (en) Differential plane mirror interferometer having beamsplitter/beam folder assembly
JPH07101166B2 (en) Interferometer
US20150103356A1 (en) Interferometer, System, and Method of Use
JPH07239208A (en) Device for measuring application of interference
JPH11183116A (en) Method and device for light wave interference measurement
US5189489A (en) Interferometric measurement device with non stabilized light source
JPS58169004A (en) Highly accurate interference length measuring method in atmosphere
JPH04168330A (en) Light wavelength meter
JPH0843015A (en) Interference length measuring system
US6525824B1 (en) Dual beam optical interferometer
JP2712509B2 (en) Reflection film characteristic measuring device
GB2389896A (en) Interferometer for measurement of angular displacement