JPH04167406A - Photomagnetic recording medium - Google Patents

Photomagnetic recording medium

Info

Publication number
JPH04167406A
JPH04167406A JP29428590A JP29428590A JPH04167406A JP H04167406 A JPH04167406 A JP H04167406A JP 29428590 A JP29428590 A JP 29428590A JP 29428590 A JP29428590 A JP 29428590A JP H04167406 A JPH04167406 A JP H04167406A
Authority
JP
Japan
Prior art keywords
layers
film
magnetic film
transparent dielectric
superlattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29428590A
Other languages
Japanese (ja)
Inventor
Hiroshi Iwasaki
洋 岩崎
Shunichi Hashimoto
俊一 橋本
Yoshitaka Ochiai
落合 祥隆
Koichi Aso
阿蘇 興一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP29428590A priority Critical patent/JPH04167406A/en
Publication of JPH04167406A publication Critical patent/JPH04167406A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To make the Kerr angle of rotation large and to ensure a good squareness ratio by a method wherein a plurality of atrificial lattice magnetic films in which Co layers and Pt layers have been formed alternately are formed via transparent dielectric layers. CONSTITUTION:A recording layer 4 which has been sandwiched between dielectric layers 2, 3 for enhancement use is formed on a transparent substrate 1; in addition, a reflecting layer 5 composed of a metal is formed. For the recording layer 4, a plurality of Co-Pt artificial lattice magnetic films 6 and transparent dielectric layers 7 are formed alternately, and its whole film is made large. The Co-Pt artificial lattice magnetic films 6 are not formed as one continuous thick film, but have a structure which has been divided into a plurality of layers between which the transparent dielectric layers 7 are laid. Thereby, while the total sum of the whole thickness of the Co-Pt artificial lattice magnetic films 6 is made large, the squareness of a magnetization curve can be kept in a good state.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気光学効果を利用して情報信号の記録・再
生を行う光磁気記録媒体に関するものてあり、Co−P
t人工格子磁性膜を記録層とする光磁気記録媒体の改良
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magneto-optical recording medium that records and reproduces information signals by utilizing the magneto-optic effect.
This invention relates to the improvement of a magneto-optical recording medium that uses a superlattice magnetic film as a recording layer.

〔発明の概要〕[Summary of the invention]

本発明は、Co層とpt層とか交互に積層された人工格
子磁性膜を、透明誘電体層を介して複数層積層すること
により、カー回転角を大きなものとなし、しかも良好な
角形比を確保しようとするものである。
The present invention increases the Kerr rotation angle and achieves a good squareness ratio by laminating multiple layers of artificial lattice magnetic films in which Co layers and PT layers are alternately laminated via transparent dielectric layers. This is what we are trying to secure.

〔従来の技術〕[Conventional technology]

磁気光学効果を利用して情報信号の記録・再生を行う光
磁気記録媒体の記録材料としては、Gd。
Gd is used as a recording material for a magneto-optical recording medium that records and reproduces information signals using the magneto-optic effect.

Tb、Dy等の希土類元素とFe、Co等の遷移金属元
素とを組み合わせた非晶質合金か代表的なものである。
A typical example is an amorphous alloy in which rare earth elements such as Tb and Dy are combined with transition metal elements such as Fe and Co.

しかしなから、これら非晶質合金を構成している希土類
元素やFeは、非常に酸化され易く、基板等を透過して
侵入する酸素や水分等により容易に酸化物を形成する性
質かある。このような酸化か進行して腐食や孔食に至る
と、信号の脱落を誘起し、また特に希土類元素か選択酸
化を受けると、保磁力や残留磁気カー回転角か減少して
C/Nか劣化するという問題か生ずる。
However, the rare earth elements and Fe constituting these amorphous alloys are very easily oxidized and have the property of easily forming oxides due to oxygen, moisture, etc. penetrating through the substrate and the like. If such oxidation progresses and leads to corrosion or pitting, signal dropout will be induced, and if rare earth elements in particular undergo selective oxidation, the coercive force and residual magnetic Kerr rotation angle will decrease, resulting in poor C/N. The problem arises of deterioration.

そこで、希土類元素の代わりにPt、Pd等の貴金属を
含む磁性材料の光磁気記録媒体への応用か検討されてお
り、例えば本願出願人は、特開平2−56752号公報
において、Co層とPt層とを交互に積層した人工格子
磁性膜を記録層とする光磁気記録媒体を提案している。
Therefore, the application of magnetic materials containing precious metals such as Pt and Pd instead of rare earth elements to magneto-optical recording media is being considered. We have proposed a magneto-optical recording medium whose recording layer is an artificial lattice magnetic film in which layers are alternately laminated.

前述のCo−Pt人工格子磁性膜は、光磁気記録材料と
して良好な垂直磁化膜であり、1Co人程度の膜厚とす
ることにより、カー回転角か大きく反射率も適度に得ら
れる。また、この程度の膜厚ては、角形の良好なカー・
ループ(または磁化曲線)か容易に得られる。
The aforementioned Co--Pt superlattice magnetic film is a perpendicular magnetization film that is good as a magneto-optical recording material, and by making the film thickness about 1 Co, a large Kerr rotation angle can be obtained and a moderate reflectance can be obtained. Also, with this level of film thickness, it is possible to obtain a good square car.
loops (or magnetization curves) are easily obtained.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

ところで、光磁気記録媒体の特性の一層の向上を図るた
め、いわゆる4層構造等によりカー回転角のエンハンス
メントか行われることかある。
By the way, in order to further improve the characteristics of the magneto-optical recording medium, enhancement of the Kerr rotation angle is sometimes performed using a so-called four-layer structure or the like.

このようなエンハンスメントを行おうとした場合、カー
回転角の増大を目的として、多層構造中のCo−Pt人
工格子磁性膜に対して、1Co人よりも厚膜とすること
か要求されることかある。
When attempting to perform such enhancement, it may be necessary to make the Co-Pt superlattice magnetic film in the multilayer structure thicker than that of the 1Co film in order to increase the Kerr rotation angle. .

しかしなから、Co−Pt人工格子磁性膜の膜厚を増加
させると、カー・ループの角形の悪化を招くことになる
However, if the thickness of the Co--Pt superlattice magnetic film is increased, the squareness of the Kerr loop will deteriorate.

そこで本発明は、かかる実情に鑑みて提案されたもので
、Co−Pt人工格子磁性膜の膜厚を増加させてもカー
・ループの角形を悪化することのない光磁気記録媒体を
提供することを目的とする。
The present invention was proposed in view of the above circumstances, and an object of the present invention is to provide a magneto-optical recording medium in which the square shape of the Kerr loop does not deteriorate even when the thickness of the Co--Pt superlattice magnetic film is increased. With the goal.

〔課題を解決するだめの手段〕[Failure to solve the problem]

上述の目的を達成するために、本発明の光磁気記録媒体
は、Co層とPt層とか交互に積層された人工格子磁性
膜を記録層とし、該人工格子磁性膜か透明誘電体層を介
して複数層積層されたことを特徴とするものである。
In order to achieve the above object, the magneto-optical recording medium of the present invention uses an artificial lattice magnetic film in which a Co layer and a Pt layer are alternately laminated as a recording layer, and a transparent dielectric layer is interposed between the artificial lattice magnetic film and a transparent dielectric layer. It is characterized by being laminated in multiple layers.

〔作用〕[Effect]

Co−Pt人工格子磁性膜を連続した1枚の厚膜とする
のではなく、中間に透明誘電体層を介在させて複数層に
分割された構造とすることにより、これらCo−Pt人
工格子磁性膜全体の厚さの総和を大きくしなから、磁化
曲線の角形か良好な状態に保たれる。
By creating a structure in which the Co-Pt superlattice magnetic film is divided into multiple layers with a transparent dielectric layer interposed between them, instead of forming one continuous thick film, these Co-Pt superlattice magnetic Without increasing the total thickness of the entire film, the square shape of the magnetization curve can be maintained in good condition.

〔実施例〕〔Example〕

以下、本発明を適用した実施例について、図面を参照し
なから詳細に説明する。
Embodiments to which the present invention is applied will be described in detail below with reference to the drawings.

本実施例の光磁気記録媒体は、第1[iJに示すように
、透明基板(1)上にエンハンスメント用の誘電体層(
2)、 (3)で挟まれた記録層(4)を設け、さらに
金属からなる反射層(5)を積層形成してなるものであ
る。
The magneto-optical recording medium of this example has a dielectric layer for enhancement (
A recording layer (4) sandwiched between 2) and (3) is provided, and a reflective layer (5) made of metal is further laminated.

上記記録層(4)は、複数のCo−Pt人工格子磁性膜
(6)と透明誘電体層(7)とか交互に積層され、全体
の膜厚は大きなものとなっている。
The recording layer (4) is made up of a plurality of Co--Pt superlattice magnetic films (6) and transparent dielectric layers (7) which are alternately laminated, and the total film thickness is large.

ここで、Co−Pt人工格子磁性膜(6)の層数は2層
以上てあれは任意てあり、所望の特性に応して選定すれ
ばよい。
Here, the number of layers of the Co--Pt superlattice magnetic film (6) may be two or more, and may be selected depending on the desired characteristics.

上記Co−Pt人工格子磁性膜(6)は、Co層とPt
層とを原子レヘルて積層したもので、いわゆる人工格子
膜である。このとき、Co層とpt層の界面は、異種金
属原子か互いに入り乱れすにいわゆる超格子構造とされ
ていることか理想的であるか、界面にやや乱れを生しな
からも全体としては一定の周期を保って組成か変動する
。いわゆる組成変調構造を有するものであってもよい。
The Co-Pt superlattice magnetic film (6) has a Co layer and a Pt layer.
It is a so-called artificial lattice film, in which layers are stacked on an atomic level. At this time, the interface between the Co layer and the PT layer may be ideal because it has a so-called superlattice structure in which atoms of different metals mix with each other, but even though the interface is slightly disordered, it remains constant as a whole. The composition changes with a period of . It may have a so-called composition modulation structure.

また、このCo−Pt人工格子磁性膜(6)には、熱安
定性を高めたり、キュリー点を下げる等の目的で、各種
元素を添加してもよい。添加元素としては、B、C,A
1.Si、P、T4.V、Fe。
Moreover, various elements may be added to this Co--Pt superlattice magnetic film (6) for the purpose of increasing thermal stability, lowering the Curie point, etc. Additional elements include B, C, and A.
1. Si, P, T4. V, Fe.

Ni、  Cu、 Ga、 Ge、 Zr、 Nb、 
Mo。
Ni, Cu, Ga, Ge, Zr, Nb,
Mo.

In、Sn、Sb、Gd、Tb、Dy、Ta等か挙げら
れる。
Examples include In, Sn, Sb, Gd, Tb, Dy, and Ta.

上述のCo−Pt人工格子磁性膜(6)において、人工
格子を構成する各Co層の膜厚は2〜8人。
In the above-mentioned Co--Pt superlattice magnetic film (6), the thickness of each Co layer constituting the superlattice is 2 to 8 layers.

pt層の膜厚は3〜40人の範囲に設定される。The thickness of the PT layer is set in a range of 3 to 40 layers.

これは、前記範囲を外れると、磁気カー回転角や保磁力
か劣化する等、磁気光学特性の低下か見られるからであ
る。また、個々の人工格子磁性膜(6)の膜厚は50〜
8Co人、好ましくは50〜4Co人に設定される。こ
れは、各Co−Pt人工格子磁性膜(6)の膜厚か大き
すぎると、角形比か低下するからである。
This is because, outside the above range, the magneto-optical properties will deteriorate, such as the magnetic Kerr rotation angle and coercive force will deteriorate. Moreover, the film thickness of each superlattice magnetic film (6) is 50~
It is set to 8Co people, preferably 50 to 4Co people. This is because if the thickness of each Co--Pt superlattice magnetic film (6) is too large, the squareness ratio will decrease.

一方、前記人工格子磁性膜(6)の間に介在される透明
誘電体層(7)は、上記記録層(4)を構成するCo−
Pt人工格子磁性膜を分断する役割を果たすもので、通
常は10〜1Co0人、好ましくは50〜5Co人程度
の範囲に設定される。前記透明誘電体層(7)の膜厚か
あまり小さすぎると、Co−Pt人工格子磁性膜の分断
か不十分なものとなって角形比の低下を招き、逆に透明
誘電体層(7)の膜厚かあまり大きすぎると、記録層(
4)中に占める人工格子磁性膜(6)の割合か減って効
率的な記録再生か難しくなる。
On the other hand, the transparent dielectric layer (7) interposed between the artificial lattice magnetic films (6) is made of Co--
It plays the role of dividing the Pt superlattice magnetic film, and is usually set in the range of 10 to 1 Co, preferably 50 to 5 Co. If the thickness of the transparent dielectric layer (7) is too small, the Co--Pt artificial lattice magnetic film will not be sufficiently divided, leading to a decrease in squareness ratio, and conversely, the thickness of the transparent dielectric layer (7) will be insufficient. If the film thickness is too large, the recording layer (
4) The ratio of the superlattice magnetic film (6) in the recording medium decreases, making efficient recording and reproduction difficult.

上記透明誘電体層(7)は、光学的に透明であることか
必要であり、特に再生光を透過しないと多層構造にした
意味かなくなる。
The transparent dielectric layer (7) must be optically transparent, and if it does not transmit reproduction light, there is no point in having a multilayer structure.

したかって、上記透明誘電体層(7)には、S】02.
5ilN4.TlO2,MgO等の光学薄膜材料の他、
Co−0,Ni  O,Fe−0等の若干の光吸収を示
す材料も用いることかできる。また、この透明誘電体層
(7)は、非磁性体に限られるものてはなく、コバルト
・フェライト、バリウム・フェライト イツトリウム・
鉄・ガーネット等の磁気光学効果を示す材料を用いるこ
ともてきる。
Therefore, the transparent dielectric layer (7) has S]02.
5ilN4. In addition to optical thin film materials such as TlO2 and MgO,
Materials that exhibit some light absorption, such as Co-0, NiO, and Fe-0, may also be used. In addition, this transparent dielectric layer (7) is not limited to non-magnetic materials, such as cobalt ferrite, barium ferrite, yttrium,
Materials exhibiting magneto-optical effects such as iron and garnet can also be used.

次に、本発明を具体的な実験結果に基ついて説明する。Next, the present invention will be explained based on specific experimental results.

実験例1 本実験例では、ガラス基板上にCo−Pt人工格子磁性
膜、Co−0透明誘電体層、Co−Pt人工格子磁性膜
を順次堆積し、その特性を調へた。
Experimental Example 1 In this experimental example, a Co-Pt superlattice magnetic film, a Co-0 transparent dielectric layer, and a Co-Pt superlattice magnetic film were sequentially deposited on a glass substrate, and their properties were investigated.

したかって、分割されたCo−Pt人工格子磁性膜は2
層である。また、Co−〇透明誘電体層は、波長0.8
μmの光に対して吸収係数がlXl0”ao −’以下
の材料であり、光学的に十分透明である。
Therefore, the divided Co-Pt superlattice magnetic film is 2
It is a layer. In addition, the Co-〇 transparent dielectric layer has a wavelength of 0.8
The material has an absorption coefficient of 1X10''ao −' or less for light of μm, and is optically sufficiently transparent.

なお、本実験例で作成した試料においては、回転角エン
ハンスメント用の誘電体層や反射層は設けていない。
Note that in the sample prepared in this experimental example, no dielectric layer or reflective layer for rotational angle enhancement was provided.

先ず、ガラス基板上に膜厚90人のCo−Pt人工格子
磁性膜を成膜した。人工格子磁性膜の成膜に際しては、
Coについては直流スパッタリング(投入パワー 0.
40A、3CoV)、Piについては高周波スパッタリ
ング(投入パワー 4CoW)とした。
First, a Co--Pt superlattice magnetic film having a thickness of 90 mm was formed on a glass substrate. When forming an artificial lattice magnetic film,
For Co, DC sputtering (input power 0.
40A, 3CoV), and high frequency sputtering (input power 4CoW) was used for Pi.

次いて、このCo−Pt人工格子磁性膜上に、C0−0
透明誘電体層をCo金属ターゲットを用いた反応スパッ
タリングにより形成した。この反応スパッタリングの条
件は下記の通りである。
Next, on this Co-Pt superlattice magnetic film, C0-0
A transparent dielectric layer was formed by reactive sputtering using a Co metal target. The conditions for this reactive sputtering are as follows.

反応スパッタリング条件 Arガス圧       ・−4mTorr02分圧 
       ・−0,] l 4 mTorr投入電
力        ・・・3CoW (RF)また、成
膜したC0−0透明誘電体層の膜厚は、220λである
Reaction sputtering conditions Ar gas pressure -4mTorr02 partial pressure
-0,] l 4 mTorr Input power...3CoW (RF) Furthermore, the thickness of the C0-0 transparent dielectric layer formed is 220λ.

さらに、このC0−0透明誘電体層上に、再QCo−P
t人工格子磁性膜を成膜した。このC。
Furthermore, on this C0-0 transparent dielectric layer, re-QCo-P
A superlattice magnetic film was formed. This C.

−Pt人工格子磁性膜の成膜条件は最初に成膜した人工
格子磁性膜のそれと同様であり、膜厚もやはり90人で
ある。
The conditions for forming the -Pt superlattice magnetic film were the same as those for the first superlattice magnetic film, and the film thickness was also 90 mm.

このようにして作成した光磁気記録媒体について、ガラ
ス基板側と表面側の各Co−Pf人工格子磁性膜のヒス
テリシスをガラス基板側及び膜表面側からカー・ループ
を測定することによって調へた。各カー・ループを第2
図(A)及び第2図(B)にそれぞれ示す。
Regarding the magneto-optical recording medium thus produced, the hysteresis of each Co--Pf artificial lattice magnetic film on the glass substrate side and the surface side was investigated by measuring Kerr loops from the glass substrate side and the film surface side. Each car loop has a second
They are shown in Figure (A) and Figure 2 (B), respectively.

この試料においては、ガラス基板側に配されるCo−P
t人工格子磁性膜の保磁力H,C=230エルステッド
膜表面側に配されるCo−Pt人工格子磁性膜の保磁力
Hc二450エルステッドとなっている。各カー・ルー
プは、両方のCo−pt人工格子磁性膜の寄与を含んで
いるが、観察する側に近い方の膜の寄与が大部分である
ので、それぞれの人工格子磁性膜のヒステリシスループ
に分けて角形を確認することかできる。
In this sample, Co-P placed on the glass substrate side
The coercive force H, C of the t superlattice magnetic film is 230 Oersteds, and the coercive force Hc of the Co--Pt superlattice magnetic film disposed on the surface side of the Oersted film is 2450 Oersteds. Each Kerr loop includes the contribution of both Co-pt superlattice magnetic films, but since the contribution of the film closer to the observation side is the majority, the hysteresis loop of each superlattice magnetic film You can separate it and check the square shape.

このような観点から見たとき、本試料のCo−pt人工
格子磁性膜は、いずれも角形の悪化を生していない。
When viewed from this point of view, none of the Co-pt superlattice magnetic films of this sample exhibit any deterioration in squareness.

実験例2 本実験で作成した試料は、先の実験例1て作成した試料
と同様の構成を有するが、カラス基1反側のCo−Pt
人工格子磁性膜と膜表面側のCo−Pt人工格子磁性膜
の保磁力か揃えられている。
Experimental Example 2 The sample prepared in this experiment has the same structure as the sample prepared in Experimental Example 1, but with Co-Pt on the opposite side of the glass group 1.
The coercive forces of the superlattice magnetic film and the Co--Pt superlattice magnetic film on the film surface side are aligned.

また、Co−0透明誘電体層の反応スパッタリング条件
は下記の通りてあり、膜厚は210人である。
The reactive sputtering conditions for the Co-0 transparent dielectric layer were as follows, and the film thickness was 210 mm.

反応スパッタリング条件 Arガス圧       −4mTorr02分圧  
      −・−0,1] OmTorr投入電力 
       ・・・a o ow (RF)ガラス基
板側及び膜表面側から測定したカー・ループを第3図(
A)及び第3図(B)にそれぞれ示す。
Reaction sputtering conditions Ar gas pressure -4mTorr02 partial pressure
-・-0,1] OmTorr input power
...a o ow (RF) The Kerr loop measured from the glass substrate side and the membrane surface side is shown in Figure 3 (
A) and FIG. 3(B) respectively.

ガラス基板側から測定したカー・ループでも、膜表面側
から測定したカー・ループでも、保磁力Hcは250エ
ルステツドとなっている。また、いずれのカー・ループ
も角形は良好である。
The coercive force Hc is 250 oersted in both the Kerr loop measured from the glass substrate side and the Kerr loop measured from the film surface side. Also, all car loops have good square shapes.

〔発明の効果〕〔Effect of the invention〕

以上の説明からも明らかなように、本発明においては、
Co層とpt層とか交互に積層された人工格子磁性膜を
、透明誘電体層を介して復数層積層して記録層としてい
るので、良好な角形比を維持したまま記録層全体の膜厚
を大きなものとすることかでき、例えはエンハンスメン
ト等によってカー回転角を大きなものとすることか可能
である。
As is clear from the above description, in the present invention,
Since the recording layer is made by laminating multiple layers of artificial lattice magnetic films such as Co layers and PT layers alternately through transparent dielectric layers, the overall film thickness of the recording layer can be reduced while maintaining a good squareness ratio. For example, it is possible to increase the Kerr rotation angle by enhancement or the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用した光磁気記録媒体の構成例を示
す要部概略断面図である。 第2図(A)及び第2図(B)は実際に作成した試料の
カー・ループを示す特性図であり、第2図(A)はガラ
ス基板側から測定したカー・ループ、第2図(B)は膜
表面側から測定したカー・ループである。 第3図(A)及び第3図(B)は実際に作成した他の試
料のカー・ループを示す特性図であり、第3図(A)は
ガラス基板側から測定したカー・ループ、第3図(B)
は膜表面側から測定したカー・ループである。 1・・・基板 2.3・・・誘電体層 4・・・記録層 5・・・反射層 6・・・Co−Pt人工格子磁性膜 7・・・透明誘電体層
FIG. 1 is a schematic sectional view of a main part showing an example of the configuration of a magneto-optical recording medium to which the present invention is applied. Figure 2 (A) and Figure 2 (B) are characteristic diagrams showing the Kerr loop of the sample that was actually created, and Figure 2 (A) is the Kerr loop measured from the glass substrate side. (B) is the Kerr loop measured from the membrane surface side. Figure 3 (A) and Figure 3 (B) are characteristic diagrams showing the Kerr loop of other samples that were actually prepared, and Figure 3 (A) shows the Kerr loop and Kerr loop measured from the glass substrate side. Figure 3 (B)
is the Kerr loop measured from the membrane surface side. 1...Substrate 2.3...Dielectric layer 4...Recording layer 5...Reflection layer 6...Co-Pt artificial lattice magnetic film 7...Transparent dielectric layer

Claims (1)

【特許請求の範囲】[Claims]  Co層とPt層とが交互に積層された人工格子磁性膜
を記録層とし、該人工格子磁性膜が透明誘電体層を介し
て複数層積層されたことを特徴とする光磁気記録媒体。
A magneto-optical recording medium characterized in that the recording layer is an artificial lattice magnetic film in which Co layers and Pt layers are alternately laminated, and a plurality of layers of the artificial lattice magnetic film are laminated with transparent dielectric layers interposed therebetween.
JP29428590A 1990-10-31 1990-10-31 Photomagnetic recording medium Pending JPH04167406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29428590A JPH04167406A (en) 1990-10-31 1990-10-31 Photomagnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29428590A JPH04167406A (en) 1990-10-31 1990-10-31 Photomagnetic recording medium

Publications (1)

Publication Number Publication Date
JPH04167406A true JPH04167406A (en) 1992-06-15

Family

ID=17805725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29428590A Pending JPH04167406A (en) 1990-10-31 1990-10-31 Photomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPH04167406A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192328A (en) * 1993-12-02 1995-07-28 Lg Electron Inc Magneto-optical recording medium
EP0762412A1 (en) * 1995-08-25 1997-03-12 Eastman Kodak Company Optical storage medium including multiple data levels made of Co/Pt magneto-optical recording media
US6881497B2 (en) 2001-06-04 2005-04-19 Hitachi Global Storage Technologies Netherlands B.V. ‘Thermal spring’ magnetic recording media for writing using magnetic and thermal gradients
JP2008080150A (en) * 2007-11-30 2008-04-10 Daio Paper Corp Absorbent article and manufacturing method for it
US8979815B2 (en) 2012-12-10 2015-03-17 The Procter & Gamble Company Absorbent articles with channels
US9060904B2 (en) 2007-06-18 2015-06-23 The Procter & Gamble Company Disposable absorbent article with sealed absorbent core with substantially continuously distributed absorbent particulate polymer material
US9066838B2 (en) 2011-06-10 2015-06-30 The Procter & Gamble Company Disposable diaper having reduced absorbent core to backsheet gluing
US9072634B2 (en) 2007-06-18 2015-07-07 The Procter & Gamble Company Disposable absorbent article with substantially continuously distributed absorbent particulate polymer material and method
US9216116B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels
US9216118B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels and/or pockets
US9326896B2 (en) 2008-04-29 2016-05-03 The Procter & Gamble Company Process for making an absorbent core with strain resistant core cover
US9340363B2 (en) 2009-12-02 2016-05-17 The Procter & Gamble Company Apparatus and method for transferring particulate material
US9375358B2 (en) 2012-12-10 2016-06-28 The Procter & Gamble Company Absorbent article with high absorbent material content
US9468566B2 (en) 2011-06-10 2016-10-18 The Procter & Gamble Company Absorbent structure for absorbent articles
US9492328B2 (en) 2011-06-10 2016-11-15 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US9532910B2 (en) 2012-11-13 2017-01-03 The Procter & Gamble Company Absorbent articles with channels and signals
US9668926B2 (en) 2011-06-10 2017-06-06 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US9713557B2 (en) 2012-12-10 2017-07-25 The Procter & Gamble Company Absorbent article with high absorbent material content
US9713556B2 (en) 2012-12-10 2017-07-25 The Procter & Gamble Company Absorbent core with high superabsorbent material content
US9763835B2 (en) 2003-02-12 2017-09-19 The Procter & Gamble Company Comfortable diaper
US9789011B2 (en) 2013-08-27 2017-10-17 The Procter & Gamble Company Absorbent articles with channels
US9789009B2 (en) 2013-12-19 2017-10-17 The Procter & Gamble Company Absorbent articles having channel-forming areas and wetness indicator
US9974699B2 (en) 2011-06-10 2018-05-22 The Procter & Gamble Company Absorbent core for disposable absorbent articles
US10071002B2 (en) 2013-06-14 2018-09-11 The Procter & Gamble Company Absorbent article and absorbent core forming channels when wet
US10470948B2 (en) 2003-02-12 2019-11-12 The Procter & Gamble Company Thin and dry diaper
US10507144B2 (en) 2015-03-16 2019-12-17 The Procter & Gamble Company Absorbent articles with improved strength
US10517777B2 (en) 2011-06-10 2019-12-31 The Procter & Gamble Company Disposable diaper having first and second absorbent structures and channels
US10543129B2 (en) 2015-05-29 2020-01-28 The Procter & Gamble Company Absorbent articles having channels and wetness indicator
US10561546B2 (en) 2011-06-10 2020-02-18 The Procter & Gamble Company Absorbent structure for absorbent articles
US10632029B2 (en) 2015-11-16 2020-04-28 The Procter & Gamble Company Absorbent cores having material free areas
US10639215B2 (en) 2012-12-10 2020-05-05 The Procter & Gamble Company Absorbent articles with channels and/or pockets
US10736795B2 (en) 2015-05-12 2020-08-11 The Procter & Gamble Company Absorbent article with improved core-to-backsheet adhesive
US10736794B2 (en) 2013-08-27 2020-08-11 The Procter & Gamble Company Absorbent articles with channels
US10842690B2 (en) 2016-04-29 2020-11-24 The Procter & Gamble Company Absorbent core with profiled distribution of absorbent material
US11090199B2 (en) 2014-02-11 2021-08-17 The Procter & Gamble Company Method and apparatus for making an absorbent structure comprising channels
US11123240B2 (en) 2016-04-29 2021-09-21 The Procter & Gamble Company Absorbent core with transversal folding lines
US11154437B2 (en) 2013-09-19 2021-10-26 The Procter & Gamble Company Absorbent cores having material free areas
US11207220B2 (en) 2013-09-16 2021-12-28 The Procter & Gamble Company Absorbent articles with channels and signals
US11510829B2 (en) 2014-05-27 2022-11-29 The Procter & Gamble Company Absorbent core with absorbent material pattern

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192328A (en) * 1993-12-02 1995-07-28 Lg Electron Inc Magneto-optical recording medium
EP0762412A1 (en) * 1995-08-25 1997-03-12 Eastman Kodak Company Optical storage medium including multiple data levels made of Co/Pt magneto-optical recording media
US6881497B2 (en) 2001-06-04 2005-04-19 Hitachi Global Storage Technologies Netherlands B.V. ‘Thermal spring’ magnetic recording media for writing using magnetic and thermal gradients
US11135096B2 (en) 2003-02-12 2021-10-05 The Procter & Gamble Company Comfortable diaper
US11793682B2 (en) 2003-02-12 2023-10-24 The Procter & Gamble Company Thin and dry diaper
US11234868B2 (en) 2003-02-12 2022-02-01 The Procter & Gamble Company Comfortable diaper
US9763835B2 (en) 2003-02-12 2017-09-19 The Procter & Gamble Company Comfortable diaper
US10660800B2 (en) 2003-02-12 2020-05-26 The Procter & Gamble Company Comfortable diaper
US10470948B2 (en) 2003-02-12 2019-11-12 The Procter & Gamble Company Thin and dry diaper
US9060904B2 (en) 2007-06-18 2015-06-23 The Procter & Gamble Company Disposable absorbent article with sealed absorbent core with substantially continuously distributed absorbent particulate polymer material
US9072634B2 (en) 2007-06-18 2015-07-07 The Procter & Gamble Company Disposable absorbent article with substantially continuously distributed absorbent particulate polymer material and method
US9241845B2 (en) 2007-06-18 2016-01-26 The Procter & Gamble Company Disposable absorbent article with sealed absorbent core with substantially continuously distributed absorbent particulate polymer material
JP2008080150A (en) * 2007-11-30 2008-04-10 Daio Paper Corp Absorbent article and manufacturing method for it
US9326896B2 (en) 2008-04-29 2016-05-03 The Procter & Gamble Company Process for making an absorbent core with strain resistant core cover
US9340363B2 (en) 2009-12-02 2016-05-17 The Procter & Gamble Company Apparatus and method for transferring particulate material
US10004647B2 (en) 2009-12-02 2018-06-26 The Procter & Gamble Company Apparatus and method for transferring particulate material
US10561546B2 (en) 2011-06-10 2020-02-18 The Procter & Gamble Company Absorbent structure for absorbent articles
US11602467B2 (en) 2011-06-10 2023-03-14 The Procter & Gamble Company Absorbent structure for absorbent articles
US9649232B2 (en) 2011-06-10 2017-05-16 The Procter & Gamble Company Disposable diaper having reduced absorbent core to backsheet gluing
US9668926B2 (en) 2011-06-10 2017-06-06 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US10893987B2 (en) 2011-06-10 2021-01-19 The Procter & Gamble Company Disposable diapers with main channels and secondary channels
US11000422B2 (en) 2011-06-10 2021-05-11 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US9492328B2 (en) 2011-06-10 2016-11-15 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US11911250B2 (en) 2011-06-10 2024-02-27 The Procter & Gamble Company Absorbent structure for absorbent articles
US11110011B2 (en) 2011-06-10 2021-09-07 The Procter & Gamble Company Absorbent structure for absorbent articles
US9974699B2 (en) 2011-06-10 2018-05-22 The Procter & Gamble Company Absorbent core for disposable absorbent articles
US9468566B2 (en) 2011-06-10 2016-10-18 The Procter & Gamble Company Absorbent structure for absorbent articles
US9173784B2 (en) 2011-06-10 2015-11-03 The Procter & Gamble Company Disposable diaper having reduced absorbent core to backsheet gluing
US10245188B2 (en) 2011-06-10 2019-04-02 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US10813794B2 (en) 2011-06-10 2020-10-27 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US11135105B2 (en) 2011-06-10 2021-10-05 The Procter & Gamble Company Absorbent structure for absorbent articles
US10517777B2 (en) 2011-06-10 2019-12-31 The Procter & Gamble Company Disposable diaper having first and second absorbent structures and channels
US9066838B2 (en) 2011-06-10 2015-06-30 The Procter & Gamble Company Disposable diaper having reduced absorbent core to backsheet gluing
US10449097B2 (en) 2012-11-13 2019-10-22 The Procter & Gamble Company Absorbent articles with channels and signals
US9532910B2 (en) 2012-11-13 2017-01-03 The Procter & Gamble Company Absorbent articles with channels and signals
US9375358B2 (en) 2012-12-10 2016-06-28 The Procter & Gamble Company Absorbent article with high absorbent material content
US9216118B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels and/or pockets
US10639215B2 (en) 2012-12-10 2020-05-05 The Procter & Gamble Company Absorbent articles with channels and/or pockets
US9216116B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels
US8979815B2 (en) 2012-12-10 2015-03-17 The Procter & Gamble Company Absorbent articles with channels
US9713556B2 (en) 2012-12-10 2017-07-25 The Procter & Gamble Company Absorbent core with high superabsorbent material content
US9713557B2 (en) 2012-12-10 2017-07-25 The Procter & Gamble Company Absorbent article with high absorbent material content
US10071002B2 (en) 2013-06-14 2018-09-11 The Procter & Gamble Company Absorbent article and absorbent core forming channels when wet
US10765567B2 (en) 2013-08-27 2020-09-08 The Procter & Gamble Company Absorbent articles with channels
US10736794B2 (en) 2013-08-27 2020-08-11 The Procter & Gamble Company Absorbent articles with channels
US11612523B2 (en) 2013-08-27 2023-03-28 The Procter & Gamble Company Absorbent articles with channels
US11406544B2 (en) 2013-08-27 2022-08-09 The Procter & Gamble Company Absorbent articles with channels
US9789011B2 (en) 2013-08-27 2017-10-17 The Procter & Gamble Company Absorbent articles with channels
US10335324B2 (en) 2013-08-27 2019-07-02 The Procter & Gamble Company Absorbent articles with channels
US11759376B2 (en) 2013-08-27 2023-09-19 The Procter & Gamble Company Absorbent articles with channels
US11207220B2 (en) 2013-09-16 2021-12-28 The Procter & Gamble Company Absorbent articles with channels and signals
US11957551B2 (en) 2013-09-16 2024-04-16 The Procter & Gamble Company Absorbent articles with channels and signals
US11944526B2 (en) 2013-09-19 2024-04-02 The Procter & Gamble Company Absorbent cores having material free areas
US11154437B2 (en) 2013-09-19 2021-10-26 The Procter & Gamble Company Absorbent cores having material free areas
US10828206B2 (en) 2013-12-19 2020-11-10 Procter & Gamble Company Absorbent articles having channel-forming areas and wetness indicator
US11191679B2 (en) 2013-12-19 2021-12-07 The Procter & Gamble Company Absorbent articles having channel-forming areas and wetness indicator
US9789009B2 (en) 2013-12-19 2017-10-17 The Procter & Gamble Company Absorbent articles having channel-forming areas and wetness indicator
US10675187B2 (en) 2013-12-19 2020-06-09 The Procter & Gamble Company Absorbent articles having channel-forming areas and wetness indicator
US11090199B2 (en) 2014-02-11 2021-08-17 The Procter & Gamble Company Method and apparatus for making an absorbent structure comprising channels
US11510829B2 (en) 2014-05-27 2022-11-29 The Procter & Gamble Company Absorbent core with absorbent material pattern
US10507144B2 (en) 2015-03-16 2019-12-17 The Procter & Gamble Company Absorbent articles with improved strength
US11918445B2 (en) 2015-05-12 2024-03-05 The Procter & Gamble Company Absorbent article with improved core-to-backsheet adhesive
US10736795B2 (en) 2015-05-12 2020-08-11 The Procter & Gamble Company Absorbent article with improved core-to-backsheet adhesive
US11497657B2 (en) 2015-05-29 2022-11-15 The Procter & Gamble Company Absorbent articles having channels and wetness indicator
US10543129B2 (en) 2015-05-29 2020-01-28 The Procter & Gamble Company Absorbent articles having channels and wetness indicator
US10632029B2 (en) 2015-11-16 2020-04-28 The Procter & Gamble Company Absorbent cores having material free areas
US11123240B2 (en) 2016-04-29 2021-09-21 The Procter & Gamble Company Absorbent core with transversal folding lines
US10842690B2 (en) 2016-04-29 2020-11-24 The Procter & Gamble Company Absorbent core with profiled distribution of absorbent material

Similar Documents

Publication Publication Date Title
JPH04167406A (en) Photomagnetic recording medium
US4645722A (en) Photo-thermo-magnetic recording medium and method of preparing same
US5834085A (en) Grain isolated multilayer perpendicular recording medium
JPS62257618A (en) Magnetic recording medium
US5851656A (en) Magnetic recording medium
KR950005036B1 (en) Magneto/optical recording medium & system for use with short wavelength light
JP3670728B2 (en) Magnetic recording medium and magnetic recording apparatus using the same
EP1168308A2 (en) Magnetic recording medium and magnetic recording apparatus using the same
JPH03108144A (en) Photomagnetic recording medium
JPS6154059A (en) Magneto-optical recording film
JP3029485B2 (en) Magneto-optical recording medium
US20060107278A1 (en) Magnetic multilayer film and magneto-optical recording medium using magnetic multilayer film
EP0449252A1 (en) Magneto-optical recording media
JPH104013A (en) Magnetoresistance effect element and manufacture thereof
KR100509664B1 (en) Magneto-optical recording media
JP2727582B2 (en) Perpendicular magnetization film
JPH0380445A (en) Magneto-optical recording medium
JPH0528553A (en) Magneto-optical recording medium and production thereof
JPH03157838A (en) Magneto-optical recording device
Zeper Magneto-optical recording media based on cobalt/platinum multilayers.
JPS63153749A (en) Magneto-optical recording medium
JPH06325419A (en) Magneto-optical recording medium
JPH0380421A (en) Perpendicular magnetic recording medium
Ishida et al. High magnetic field sensitivity of TbFeCo layer and Pt/Co multilayers with an ultra-thin RE-rich RE-TM layer
JPH04301242A (en) Magneto-optical recording medium