JPH04165311A - Manufacture of photo waveguide passage - Google Patents

Manufacture of photo waveguide passage

Info

Publication number
JPH04165311A
JPH04165311A JP2292947A JP29294790A JPH04165311A JP H04165311 A JPH04165311 A JP H04165311A JP 2292947 A JP2292947 A JP 2292947A JP 29294790 A JP29294790 A JP 29294790A JP H04165311 A JPH04165311 A JP H04165311A
Authority
JP
Japan
Prior art keywords
optical fiber
refractive index
curable resin
cured part
photo curable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2292947A
Other languages
Japanese (ja)
Inventor
Takao Iwasaki
岳雄 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2292947A priority Critical patent/JPH04165311A/en
Publication of JPH04165311A publication Critical patent/JPH04165311A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To provide a refractive index distribution type photo waveguide passage through the low number of processes with a high yield by immersing the emission end of an optical fiber in a photo curable material, waveguiding light through an optical fiber to form a cured part at an emission end, and polishing the cured part to an end part. CONSTITUTION:When, after an emission end 12a of an optical fiber 12 is im mersed in light transmissive photo curable resin 11, the incident end of the optical fiber 12 is irradiated with ultraviolet rays from a light source 13, the photo curable resin 11 in the vicinity of the emission end 12a is started to cure and finally forms a cured part 14. The cured part 14 is taken out from the uncured photo curable resin 11 together with the optical fiber 12. After the uncured photo curable resin 11 is washed, the surface thereof is coated with light transmissive resin 15 having a refractive index lower than that of the photo curable resin 11. Cutting and grinding are applied on a cured part 14A, formed by cutting the cured part 14 from the optical fiber 12, by a cutting and a grinding means to form an end surface 14b. This method simplifies provi sion of a refractive index distribution type photo waveguide passage 20.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光伝送路として光書き込み装置や光読み取り
装置又は光回路等に用いられる光導波路の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing an optical waveguide used as an optical transmission line in an optical writing device, an optical reading device, an optical circuit, or the like.

〔従来の技術〕[Conventional technology]

従来、この種の屈折率分布型光導波路もしくは屈折率分
布型ロッドレンズの製造方法としては、次に説明する方
法があった。
Conventionally, as a method for manufacturing this kind of graded index optical waveguide or graded index rod lens, there has been the method described below.

即ち、ガラス棒を溶融塩に長時間浸漬することにより、
あらかじめガラス中にドープした電子分極率が大きく高
温でガラス中を移動しゃすい一価イオンを、前記溶融塩
中のアルカリイオンと交換する。その結果生じるイオン
拡散分布の放物線近似性を利用して導波路又はレンズ状
媒質に必要な屈折率分布を形成する。次いで、切断、研
磨によって必要な位置に端面を形成して略円筒状の形状
に形成することによって、屈折率分布型先導波路もしく
は屈折率分布型ロッドレンズを得るという製造方法であ
る。
That is, by immersing a glass rod in molten salt for a long time,
Monovalent ions doped into the glass in advance and having a high electronic polarizability and easily moving through the glass at high temperatures are exchanged with alkali ions in the molten salt. The parabolic approximation of the resulting ion diffusion distribution is utilized to form the refractive index distribution required for the waveguide or lenticular medium. Next, by cutting and polishing, end faces are formed at necessary positions to form a substantially cylindrical shape, thereby obtaining a gradient index leading waveguide or a gradient index rod lens.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前述のごとき製造方法を用いて光伝送路
としての光導波路を得るには、工程数が多く、また歩ど
まりが良くないという問題点かあった。
However, in order to obtain an optical waveguide as an optical transmission line using the above-mentioned manufacturing method, there are problems in that the number of steps is large and the yield is not good.

本発明は、上述した問題点を解決するためになされたも
のであり、少い工程数で、歩留りよく屈折率分布型の光
導波路を得ることができる光導波路の製造方法を提供す
ることを目的とする。
The present invention was made in order to solve the above-mentioned problems, and an object of the present invention is to provide a method for manufacturing an optical waveguide that can obtain a gradient index optical waveguide with a high yield with a small number of steps. shall be.

〔課題を解決するための手段〕[Means to solve the problem]

この目的を達成するために本発明の光導波路の製造方法
は、光硬化性材料中に光ファイバの出射端を浸す第1工
程と、前記光ファイバ中に光を導波させ前記出射端から
出射させることにより前記光ファイバの出射端に前記光
硬化材料による硬化部を形成する第2工程と、前記硬化
部を研磨して端部を形成することにより光導波路を作成
する第3工程と、を備えた。
In order to achieve this object, the method for manufacturing an optical waveguide of the present invention includes a first step of immersing the output end of an optical fiber in a photocurable material, and guiding light into the optical fiber and emitting it from the output end. a second step of forming a hardened portion of the photocurable material at the output end of the optical fiber by polishing the hardened portion, and a third step of creating an optical waveguide by polishing the hardened portion to form an end portion. Prepared.

〔作用〕[Effect]

本発明によれば、第1工程で、光硬化材料中に光ファイ
バが浸される。第2工程で浸された光ファイバの出射端
から光が出射されるが、この出射光の光パワ密度分布に
従って光硬化性材料が分子量分布をもって硬化される。
According to the invention, in a first step, an optical fiber is dipped into a photocurable material. Light is emitted from the emitting end of the immersed optical fiber in the second step, and the photocurable material is cured with a molecular weight distribution according to the optical power density distribution of the emitted light.

すなわち、この分子量′分布が屈折率分布となって光の
導波構造となる。
That is, this molecular weight' distribution becomes a refractive index distribution and becomes a light waveguide structure.

第3工程で、前記硬化部を研磨して光導波路を作成する
In a third step, the hardened portion is polished to create an optical waveguide.

〔実施例〕〔Example〕

以下、本発明を具体化した実施例を図面を参照、して説
明する。
Embodiments embodying the present invention will be described below with reference to the drawings.

以下、順を追って光導波路の製造方法における工程を説
明する。第1図(′a)〜(d)は、本発明に係る光導
波路の製造方法を示す。
Hereinafter, the steps in the method for manufacturing an optical waveguide will be explained in order. FIGS. 1('a) to 1(d) show a method for manufacturing an optical waveguide according to the present invention.

先ず、第1図(a)に示すように、透光性の光硬化性樹
脂11中に、光ファイバ12の出射端12aを浸す。光
硬化性樹脂11としては紫外線硬化性樹脂を用い、例え
ば、フッ素系モノマー、又は、アクリル系モノマーにイ
ニシエータ−(光反応開始剤)を混入させたものが挙げ
られる。具体的には、フッ素系モノマーであるDefe
nsa  479−18(商品名、大日本インキ化学工
業社製、硬化前の屈折率1.512、硬化後の屈折率1
.535)を用いた。光ファイバ12にはプラスチック
光ファイバを用い、具体的にはエスカCK−10(商品
名、三菱レイヨン社製、直径250μm1開口角30°
)を用いた。
First, as shown in FIG. 1(a), the output end 12a of the optical fiber 12 is immersed in a transparent photocurable resin 11. As the photocurable resin 11, an ultraviolet curable resin is used, such as a fluorine-based monomer or an acrylic monomer mixed with an initiator (photoreaction initiator). Specifically, the fluorine-based monomer Defe
nsa 479-18 (trade name, manufactured by Dainippon Ink & Chemicals Co., Ltd., refractive index before curing 1.512, refractive index after curing 1
.. 535) was used. A plastic optical fiber is used for the optical fiber 12, specifically Esca CK-10 (trade name, manufactured by Mitsubishi Rayon Co., Ltd., diameter 250 μm, aperture angle 30°).
) was used.

次いで、第1図(b)に示すように、光ファイバ12の
入射端12bへ光源13より紫外線を入射する。紫外線
は、光ファイバ12中を導波され出射端12aより開口
角度30°で出射される。
Next, as shown in FIG. 1(b), ultraviolet light is applied from the light source 13 to the input end 12b of the optical fiber 12. The ultraviolet rays are guided through the optical fiber 12 and emitted from the emission end 12a at an aperture angle of 30°.

これによって出射端12a付近の光硬化性樹脂11は硬
化を開始し、最終的には図に示すモスク型の形状を有す
る硬化部14となる。出射端12aから出射される紫外
線のパワを波長360Iで300μWであるとすると、
本光硬化性樹脂は約5秒で図に示される形状を有する硬
化部14となった。硬化部14は、幅が1.2+o+で
長さは8.5mであった。また、硬化部14は、後述の
如く中心軸から放射状に屈折率分布を有するため、硬化
部14単体で光導波構造を有する。
As a result, the photocurable resin 11 near the output end 12a starts to harden, and finally becomes a hardened portion 14 having a mosque-shaped shape as shown in the figure. Assuming that the power of the ultraviolet rays emitted from the emission end 12a is 300 μW at a wavelength of 360I,
This photocurable resin became a cured portion 14 having the shape shown in the figure in about 5 seconds. The cured portion 14 had a width of 1.2+o+ and a length of 8.5 m. Moreover, since the hardened portion 14 has a refractive index distribution radially from the central axis as described later, the hardened portion 14 alone has an optical waveguide structure.

次に、第1図(c)に示すように、硬化部14を光ファ
イバ12ごと未硬化の光硬化樹脂11から取り出し、表
面に残留している未硬化の光硬化樹脂11を洗い流した
後、表面に光硬化樹脂11より更に屈折率の低い透光性
樹脂15をコーティングする。透光性樹脂15には、硬
化部14の表面を塵や傷から保護し、強度を上げる効果
の他に、硬化部14に入射された光ビームが散乱等の原
因で側面14aより漏れ出てしまうのを極力防止する効
果がある。前記透光性樹脂15の具体例としてPMMA
 (屈折率1.49)等が挙げられる。
Next, as shown in FIG. 1(c), the cured portion 14 and the optical fiber 12 are taken out from the uncured photocuring resin 11, and after washing off the uncured photocuring resin 11 remaining on the surface, The surface is coated with a translucent resin 15 having a lower refractive index than the photocuring resin 11. The translucent resin 15 has the effect of protecting the surface of the cured part 14 from dust and scratches and increasing its strength, and also prevents the light beam incident on the cured part 14 from leaking out from the side surface 14a due to scattering or other causes. It has the effect of preventing it from being put away as much as possible. A specific example of the translucent resin 15 is PMMA.
(refractive index 1.49), etc.

次に、第1図(d)に示すように、光ファイバ12から
硬化部14を切り離して硬化部14Aとし、この硬化部
14Aに切断、研削等の手段を用いて表面粗さ0.01
μm以下程度の端面14bを形成することにより円筒形
状に加工し、最終的な屈折率分布型の光導波路20を得
る。
Next, as shown in FIG. 1(d), the hardened portion 14 is separated from the optical fiber 12 to form a hardened portion 14A, and the hardened portion 14A is cut, ground, etc. to a surface roughness of 0.01.
By forming the end face 14b of about μm or less, the end face 14b is processed into a cylindrical shape, and the final graded index optical waveguide 20 is obtained.

次に、第2図(a)〜(c)を用いて前述の硬化部14
の形成状況を時間を追って説明する。
Next, using FIGS. 2(a) to (c), the above-mentioned hardened part 14 is
We will explain the formation status over time.

第21M (a)に示すように、光ファイバ12から紫
外線21が30’の角度(開口角)をもって光硬化性樹
脂11中に出射される。このとき、紫外線21の光パワ
密度分布22は、光ファイバ12の光軸延長線23上を
最大値とする2次元ガウス分布を示し、光硬化性樹脂1
1は、この先パワ密度分布22に従ってパワの強い部位
から序々に硬化を開始する。図中には紫外線21の経路
が矢印をもって示されている。
As shown in 21M (a), ultraviolet light 21 is emitted from the optical fiber 12 into the photocurable resin 11 at an angle (aperture angle) of 30'. At this time, the optical power density distribution 22 of the ultraviolet rays 21 shows a two-dimensional Gaussian distribution with the maximum value on the optical axis extension line 23 of the optical fiber 12, and the photocurable resin 1
1 starts curing gradually from the region where the power is stronger according to the power density distribution 22. In the figure, the path of the ultraviolet rays 21 is shown with an arrow.

次いで第2図(b)に示すように、光軸延長線23上は
紫外線21のパフ密度が一番高い部位であるから、光硬
化性樹脂11は、まずこのパワ密度が一番高い部位から
ポリマー化され硬化する。
Next, as shown in FIG. 2(b), since the area on the optical axis extension line 23 is the area where the puff density of the ultraviolet rays 21 is highest, the photocurable resin 11 is first applied from the area where the puff density of the ultraviolet rays 21 is highest. Polymerized and hardened.

この現象は、分子量が大きくなって屈折率が高(なるこ
とと等しい。
This phenomenon is equivalent to an increase in the molecular weight and a high refractive index.

以上の作用によって光軸延長線23がら放射状に屈折率
分布が形成されるため、光ファイバ12の出射端12a
より30’の角度で拡がって出射された紫外線21は、
その光路を屈折率差により内側に曲げられて進むように
なることが観察された。
Due to the above action, a refractive index distribution is formed radially along the optical axis extension line 23, so that the output end 12a of the optical fiber 12
The ultraviolet rays 21 emitted are spread out at an angle of 30',
It was observed that the optical path was bent inward due to the difference in refractive index.

次イテ、第2図(C)に示すように、ポリマー化された
光硬化性樹脂11が光軸延長線23がら放射状に屈折率
分布を有しているため、紫外線21は光軸延長線23に
沿って図の矢印に示される通り蛇行して進み、先々で同
様に屈折率分布を形成し続ける。このため光軸方向に長
いモスク形状の硬化部14が形成される。しかしながら
、光硬化性樹脂11中を進む紫外線21は伝送損失のた
め序々に減衰していき、ある長さ以上は光硬化性樹脂1
1を硬化させることができない。そのため、第1図を用
いて示した条件では8.5mmの長さ以上には長くなら
なかった。なお、硬化部14の幅および長さは、光硬化
性樹脂の種類と紫外線21の光パワの大きさによって決
定されることから目的に応じて種々の変更を加えること
が可能である。
Next, as shown in FIG. 2(C), since the polymerized photocurable resin 11 has a refractive index distribution radially along the optical axis extension line 23, the ultraviolet rays 21 are emitted from the optical axis extension line 23. It continues to meander along the path as shown by the arrow in the figure, and continues to form a refractive index distribution in the same way. Therefore, a mosque-shaped hardened portion 14 that is long in the optical axis direction is formed. However, the ultraviolet rays 21 traveling through the photocurable resin 11 gradually attenuate due to transmission loss, and beyond a certain length, the ultraviolet rays 21 propagating through the photocurable resin 11
1 cannot be cured. Therefore, under the conditions shown in FIG. 1, the length did not exceed 8.5 mm. Note that the width and length of the cured portion 14 are determined by the type of photocurable resin and the optical power of the ultraviolet rays 21, and therefore, various changes can be made depending on the purpose.

次に、第3図を用いて光導波路20の動作を説明する。Next, the operation of the optical waveguide 20 will be explained using FIG.

光導波路20の入射端20aに入射された光ビーム30
は、光導波路20のもつ中心軸に対する放射状の屈折率
分布に従って光導波路20中を図中矢印で示したように
蛇行しながら進行し、出射端20bから開口角15.2
°で出射される。このため低損失で良質な光導波路とな
り得る。
Light beam 30 incident on the input end 20a of the optical waveguide 20
travels through the optical waveguide 20 in a meandering manner as shown by the arrow in the figure according to the radial refractive index distribution with respect to the central axis of the optical waveguide 20, and from the output end 20b has an aperture angle of 15.2
It is emitted at °. Therefore, it is possible to obtain a high-quality optical waveguide with low loss.

なお、本発明は、上記の実施例に限定されるものではな
く適宜変更を加えることが可能である。
Note that the present invention is not limited to the above-described embodiments, and can be modified as appropriate.

例えば、第1図(C)に示される透光性樹脂のコーティ
ング工程を省くことによっても同様な光導波路を得るこ
とができる。
For example, a similar optical waveguide can be obtained by omitting the step of coating the transparent resin shown in FIG. 1(C).

また、光導波路の屈折率分布を中心軸から半径方向の距
離をrとして no :中心軸上での屈折率 A :屈折率分布定数 で示されるように構成することによって屈折率分布型ロ
ッドレンズを得ることも可能である。
In addition, by configuring the refractive index distribution of the optical waveguide as shown by where r is the radial distance from the central axis, no: refractive index on the central axis A: refractive index distribution constant, a refractive index distribution type rod lens can be obtained. It is also possible to obtain

〔発明の効果〕〔Effect of the invention〕

以上詳述したことから明らかなように、本発明によれば
、少い工程数で歩止りよく屈折率分布型の光導波路を得
ることができるという効果を奏する。
As is clear from the detailed description above, according to the present invention, it is possible to obtain a gradient index optical waveguide with a high yield with a small number of steps.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は、本発明の製造工程を示す図、 第2図(a)〜(c)は、光硬化性材料の硬化状況を示
す図、 第3図は、本発明の動作説明図である。 11・・・光硬化性材料 12・・・光ファイバ 14・・・硬化部 15・・・透光性材料 出願人代理人  石  川  泰  男(a/)   
      (b ) 某 I 囚 (C)    藝2図
Figures 1 (a) to (d) are diagrams showing the manufacturing process of the present invention, Figures 2 (a) to (c) are diagrams showing the curing status of the photocurable material, and Figure 3 is a diagram showing the present invention. FIG. 3 is an explanatory diagram of the operation of the invention. 11...Photocurable material 12...Optical fiber 14...Curing part 15...Transparent material Yasushi Ishikawa (a/)
(b) A certain prisoner (C) Art 2

Claims (1)

【特許請求の範囲】 光硬化性材料中に光ファイバの出射端を浸す第1工程と
、 前記光ファイバ中に光を導波させ前記出射端から出射さ
せることにより前記光ファイバの出射端に前記光硬化材
料による硬化部を形成する第2工程と、 前記硬化部を研磨して端部を形成することにより光導波
路を作成する第3工程と、 を備えたことを特徴とする光導波路の製造方法。
[Scope of Claims] A first step of immersing the output end of the optical fiber in a photocurable material; and guiding light into the optical fiber and emitting the light from the output end. Manufacturing an optical waveguide, comprising: a second step of forming a hardened portion using a photocurable material; and a third step of creating an optical waveguide by polishing the hardened portion to form an end portion. Method.
JP2292947A 1990-10-30 1990-10-30 Manufacture of photo waveguide passage Pending JPH04165311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2292947A JPH04165311A (en) 1990-10-30 1990-10-30 Manufacture of photo waveguide passage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2292947A JPH04165311A (en) 1990-10-30 1990-10-30 Manufacture of photo waveguide passage

Publications (1)

Publication Number Publication Date
JPH04165311A true JPH04165311A (en) 1992-06-11

Family

ID=17788482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2292947A Pending JPH04165311A (en) 1990-10-30 1990-10-30 Manufacture of photo waveguide passage

Country Status (1)

Country Link
JP (1) JPH04165311A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002258095A (en) * 2001-02-27 2002-09-11 Ibiden Co Ltd Method of forming optical waveguide
US6703188B1 (en) 1999-03-29 2004-03-09 Kabushiki Kaisha Toyota Chuo Kenkyusho Method of fabricating optical waveguide structure
JP2005173195A (en) * 2003-12-11 2005-06-30 Nippon Telegr & Teleph Corp <Ntt> Optical module and its manufacturing method
US6932880B2 (en) 2001-06-12 2005-08-23 Toyoda Gosei Co., Ltd. Method of manufacturing optical waveguide device
JP2006284988A (en) * 2005-04-01 2006-10-19 Toyoda Gosei Co Ltd Optical waveguide and method of manufacturing the same
WO2008038730A1 (en) 2006-09-28 2008-04-03 Kabushiki Kaisha Toyota Chuo Kenkyusho Method for producing self-formation optical waveguide
JP2009015133A (en) * 2007-07-06 2009-01-22 Nippon Telegr & Teleph Corp <Ntt> Method of splicing optical fibers

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6703188B1 (en) 1999-03-29 2004-03-09 Kabushiki Kaisha Toyota Chuo Kenkyusho Method of fabricating optical waveguide structure
JP2002258095A (en) * 2001-02-27 2002-09-11 Ibiden Co Ltd Method of forming optical waveguide
US6932880B2 (en) 2001-06-12 2005-08-23 Toyoda Gosei Co., Ltd. Method of manufacturing optical waveguide device
JP2005173195A (en) * 2003-12-11 2005-06-30 Nippon Telegr & Teleph Corp <Ntt> Optical module and its manufacturing method
JP2006284988A (en) * 2005-04-01 2006-10-19 Toyoda Gosei Co Ltd Optical waveguide and method of manufacturing the same
JP4682672B2 (en) * 2005-04-01 2011-05-11 豊田合成株式会社 Manufacturing method of optical waveguide
WO2008038730A1 (en) 2006-09-28 2008-04-03 Kabushiki Kaisha Toyota Chuo Kenkyusho Method for producing self-formation optical waveguide
JP2008083447A (en) * 2006-09-28 2008-04-10 Toyota Central R&D Labs Inc Manufacturing method of self-forming optical waveguide
US7998374B2 (en) 2006-09-28 2011-08-16 Kabushiki Kaisha Toyota Chuo Kenkyusho Fabrication method of self-written optical waveguide
JP2009015133A (en) * 2007-07-06 2009-01-22 Nippon Telegr & Teleph Corp <Ntt> Method of splicing optical fibers

Similar Documents

Publication Publication Date Title
WO2006062781A1 (en) Optical waveguide devices and method of making the same
JP3444352B2 (en) Optical transmission line manufacturing method
JPH04165311A (en) Manufacture of photo waveguide passage
JPS6370209A (en) Photoconductive fiber having tapered end section with lens
JPH02131202A (en) Manufacture of optical waveguide
Yamashita et al. Fabrication of light-induced self-written waveguides with a W-shaped refractive index profile
JPS61138903A (en) Production of optical waveguide
JP2007183468A (en) Manufacturing method of optical waveguide with mirror
JP2007183467A (en) Optical waveguide with mirror and its manufacturing method
EP0132874B1 (en) Geodesic optical component
JPH1090532A (en) Optical waveguide and its production
JPH0312612A (en) Connecting element between optical elements
JPH01134309A (en) Production of light guide
JP3077188B2 (en) Manufacturing method of optical waveguide
JPH0843678A (en) Optical fiber lens and its production
JPH04165310A (en) Manufacture of photo waveguide passage
JP3750671B2 (en) Manufacturing method of optical transmission line
JPS5929210A (en) Production of optical transmission coupler
JPH01134310A (en) Production of light guide
US20050018985A1 (en) Method for controlling numerical aperture of graded index plastic optical fiber through end rounding treatment thereof
JP4211526B2 (en) Optical transmission path and photocurable resin solution for optical transmission path formation
JP3849217B2 (en) Manufacturing method and manufacturing apparatus for resin-bonded lens
JP6101790B2 (en) Optical coupling device and method of manufacturing the same
JPH0481805A (en) Optical waveguide and production thereof
JPS6019107A (en) Manufacture of optical waveguide