JPH04164814A - Production of ultra-fine zinc oxide powder having excellent dispersibility - Google Patents

Production of ultra-fine zinc oxide powder having excellent dispersibility

Info

Publication number
JPH04164814A
JPH04164814A JP29242690A JP29242690A JPH04164814A JP H04164814 A JPH04164814 A JP H04164814A JP 29242690 A JP29242690 A JP 29242690A JP 29242690 A JP29242690 A JP 29242690A JP H04164814 A JPH04164814 A JP H04164814A
Authority
JP
Japan
Prior art keywords
zinc oxide
aqueous solution
oxide powder
zinc
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29242690A
Other languages
Japanese (ja)
Inventor
Kyoko Kawamura
川村 京子
Akira Nishihara
明 西原
Motohiko Yoshizumi
素彦 吉住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP29242690A priority Critical patent/JPH04164814A/en
Publication of JPH04164814A publication Critical patent/JPH04164814A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain ultra-fine zinc oxide powder having excellent dispersibility without passing through a calcination process by dropping an alkali aqueous solution to the aqueous solution of a zinc salt and preparing the precipitates of zinc oxide having a prescribed average particle size under a specified condition. CONSTITUTION:The aqueous solution of a zinc salt is dropped in an alkali aqueous solution at a temperature of >=60 deg.C, and the precipitates of zinc oxide are produced at a final pH of >=9 to provide ultra-fine zinc oxide powder having an average particle size of 0.02-0.05mum. In the production method, the aqueous solution of the zinc salt is dropped in the alkali aqueous solution and the reaction temperature is preferably maintained at a temperature of >=60 deg.C for >=30min. The utilization of the ultra-fine particle zinc oxide powder permits to prepare coating films having high transparency in a visible region and an excellent UV ray shielding effect. The zinc oxide powder can be further utilized for anti-suntanned cosmetics and UV ray-shielding protecting films for automobiles, furnitures, optical materials, etc. The utilization of the dispersion of the powder allows to readily prepare coatings or pastes.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は分散性に優れた超微粒子酸化亜鉛粉末の製造方
法に関する。本発明に係る酸化亜鉛粉末を分散させた膜
あるいは成形体及びペーストは、透明でかつ紫外線遮断
効果を有するので1例えば。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing ultrafine zinc oxide powder with excellent dispersibility. For example, the film or molded body and paste in which zinc oxide powder according to the present invention is dispersed is transparent and has an ultraviolet blocking effect.

日焼は止め化粧料、自動車、家具、光学材料等の紫外線
遮断保護膜に利用できる。
It can be used in sunscreen cosmetics, UV-blocking protective films for automobiles, furniture, optical materials, etc.

〔従来技術と課題〕[Conventional technology and issues]

紫外線遮断効果を有する材料は昔から良く知られており
、有機系ではベンゾトリアゾール、ベンゾフェノン等が
あり、また無機系では酸化チタン、酸化亜鉛などがある
。これらの中で有機系は皮膚刺激性やそれ自身の光分解
等の問題があり、また無機系は粒子が大きく透明性を比
すことができない。最近無機粉体の透明性を出すため超
微粒子化が検討され、光の散乱を小さくして透明性を向
上させた超微粒子酸化チタン、超微粒子酸化亜鉛が市販
されている。しかし超微粒子化により透明性は向上した
が、粉末の表面処理、分散方法等多くの問題がまだ残さ
れており、また透明性も十分とは言えない。
Materials that have an ultraviolet blocking effect have been well known for a long time, and organic materials include benzotriazole and benzophenone, and inorganic materials include titanium oxide and zinc oxide. Among these, organic types have problems such as skin irritation and photodecomposition, and inorganic types have large particles and cannot be compared in transparency. Recently, ultrafine particles have been studied to improve the transparency of inorganic powders, and ultrafine titanium oxide and zinc oxide, which reduce light scattering and improve transparency, are commercially available. However, although transparency has improved due to ultrafine particle size, many problems still remain, such as surface treatment of powder and dispersion method, and transparency cannot be said to be sufficient.

更に従来の超微粒子酸化亜鉛粉末は、塩基性炭酸亜鉛、
シュウ酸亜鉛、水酸化亜鉛等を生成させ、これを脱水乾
燥後、焼成することにより製造しているため、ij集し
やすく分散性に劣る。
Furthermore, conventional ultrafine zinc oxide powder contains basic zinc carbonate,
Since it is manufactured by generating zinc oxalate, zinc hydroxide, etc., dehydrating it, drying it, and then firing it, it tends to aggregate and has poor dispersibility.

〔lll!題解決の知見〕[llll! Problem-solving knowledge〕

亜鉛塩の水溶液は、アルカリ性下で加水分解して亜鉛の
ヒドロシルが生成することが知られている。本発明者は
、可視域での高い透明性と優れた紫外線遮断効果を有す
る超微粒子酸化亜鉛粉末の製造法につき鋭意検討し1強
アルカリ性下で、かつ60℃以上の温度で反応させるこ
とにより焼成工程を経ることなく、分散性に優れた超微
粒子酸化亜鉛粉末を製造できることを見出した。
It is known that an aqueous solution of zinc salt is hydrolyzed under alkaline conditions to produce zinc hydrosyl. The present inventor has conducted extensive studies on a method for producing ultrafine zinc oxide powder that has high transparency in the visible range and excellent UV blocking effect, and has developed a method for producing ultrafine zinc oxide powder, which is fired by reacting it under strongly alkaline conditions and at a temperature of 60°C or higher. We have discovered that it is possible to produce ultrafine zinc oxide powder with excellent dispersibility without going through any process.

[118!の解決手段:発明の構成〕 本発明によれば、60℃以上の温度下で、アルカリ水溶
液に亜鉛塩の水溶液を滴下し、最終PH9以上で酸化亜
鉛の沈澱を生成させて平均粒径0.02〜0.05μ園
の超微粒子酸化亜鉛粉末を製造することを特−徴とする
方法が提供される。
[118! According to the present invention, an aqueous solution of zinc salt is dropped into an alkaline aqueous solution at a temperature of 60° C. or higher, and zinc oxide precipitates are formed at a final pH of 9 or higher, so that the average particle size is 0. A method is provided for producing ultrafine zinc oxide powder having a particle size of 0.02 to 0.05 μm.

またその好適な態様として、アルカリ水溶液に亜鉛塩の
水溶液を滴下した後に、30分以上反応温度を60℃以
上に保持する方法が提供される。
A preferred embodiment thereof is a method in which the aqueous zinc salt solution is dropped into the alkaline aqueous solution and then the reaction temperature is maintained at 60° C. or higher for 30 minutes or more.

本発明に使用される亜鉛塩の水溶液は、硫酸亜鉛、塩化
亜鉛、硝酸亜鉛等を水に溶かして調製される。また、本
発明に使用されるアルカリ溶液は、水酸化ナトリウム、
水酸化カリウム、水酸化リチウム等の強アルカリを水に
溶かして調製される。
The aqueous solution of zinc salt used in the present invention is prepared by dissolving zinc sulfate, zinc chloride, zinc nitrate, etc. in water. In addition, the alkaline solution used in the present invention includes sodium hydroxide,
It is prepared by dissolving a strong alkali such as potassium hydroxide or lithium hydroxide in water.

なお、アンモニア水溶液は、亜鉛のヒドロシルを生成し
やすいため、更に、上記強アルカリ剤を加えて液性を調
整する必要がある。
Since the ammonia aqueous solution tends to generate zinc hydrosil, it is necessary to further adjust the liquid properties by adding the strong alkaline agent mentioned above.

前記亜鉛塩およびアルカリ原料はいずれも市販品をその
まま用いることができる。反応に用いるこれらの亜鉛塩
およびアルカリの水溶液の濃度は0.01〜10モル/
1が好ましい。0.01モル/〕未満の濃度では生産効
率が低下するため好ましくなく、また10モル/1を超
えると反応効率が低下するので好ましくない。
Commercially available products can be used as they are for both the zinc salt and the alkali raw material. The concentration of the zinc salt and alkali aqueous solution used in the reaction is 0.01 to 10 mol/
1 is preferred. A concentration of less than 0.01 mol/1 is undesirable because the production efficiency decreases, and a concentration of more than 10 mol/1 is undesirable because the reaction efficiency decreases.

また本発明において、結晶性の高い超微粒子酸化亜鉛粉
末を得るためには、亜鉛の水溶液をアルカリ水溶液に滴
下する際、最終pHを9以上に調整する。pH9未満の
領域では亜鉛のヒドロシルが混在するため本発明の目的
とする良好な酸化亜鉛粉末が得られない。更に、本発明
においては、反応液中の加水分解を促進するために反応
温度を60℃以上に調整する。60℃未満では、亜鉛の
ヒドロシルが混合し、純度の高い超微粒子酸化亜鉛粉末
を得ることはできない。
Further, in the present invention, in order to obtain ultrafine zinc oxide powder with high crystallinity, the final pH is adjusted to 9 or higher when dropping the zinc aqueous solution into the alkaline aqueous solution. In a pH range of less than 9, zinc hydrosyl is present, making it impossible to obtain a good zinc oxide powder, which is the object of the present invention. Furthermore, in the present invention, the reaction temperature is adjusted to 60°C or higher in order to promote hydrolysis in the reaction solution. If the temperature is lower than 60° C., zinc hydrosil will be mixed, making it impossible to obtain ultrafine zinc oxide powder with high purity.

亜鉛塩の水溶液の滴下が終った後さらに30分以上反応
温度を保持することが好ましい。
It is preferable to maintain the reaction temperature for an additional 30 minutes or more after the dropwise addition of the zinc salt aqueous solution is completed.

なお、亜鉛塩の水溶液にアルカリ水溶液を滴下すると生
成する酸化亜鉛の粒子が0.05μlより大きくなる傾
向があり、 0.02〜0.05μ鰯の粒径を有する酸
化亜鉛粉末を得るのが難しい。
Furthermore, when an alkaline aqueous solution is dropped into an aqueous solution of zinc salt, the particles of zinc oxide produced tend to be larger than 0.05 μl, making it difficult to obtain zinc oxide powder having a particle size of 0.02 to 0.05 μl. .

ここで得られた酸化亜鉛は平均粒径0.02〜0.05
μ■の超微粒子酸化亜鉛であり、水洗して塩類を除去し
た後、乾燥工程を経ることなく直接、水あるいは溶媒に
分散させて塗料、ペーストなどの添加材として利用する
ことができる。また、必要に応じて表面処理することに
より、更に分散性を高めることもできる。この場合にお
いても、乾燥工程を必要としないため液中での表面処理
が容易に行える。なお、表面処理は従来公知の方法を適
用することができる。
The zinc oxide obtained here has an average particle size of 0.02 to 0.05
It is ultrafine zinc oxide with a particle size of μ■. After washing with water to remove salts, it can be directly dispersed in water or a solvent without going through a drying process and used as an additive for paints, pastes, etc. Moreover, the dispersibility can be further improved by surface treatment as necessary. Even in this case, surface treatment in liquid can be easily performed since no drying step is required. Note that a conventionally known method can be applied to the surface treatment.

〔発明の効果〕〔Effect of the invention〕

本発明による酸化亜鉛粉末の製造方法によれば、焼成工
程を経ることなく、分散性に優れた超lII粒子酸化亜
鉛粉末を得ることができ、この粉末を利用すれば、可視
域での高い透明性と優れた紫外線遮断効果を有する塗膜
を製造することができる。
According to the method for producing zinc oxide powder according to the present invention, it is possible to obtain a super lII particle zinc oxide powder with excellent dispersibility without going through a firing process. It is possible to produce a coating film that has high properties and excellent ultraviolet blocking effects.

更に1本発明による超微粒子酸化亜鉛粉末は5日焼は止
め化粧料、自動車、家具、光学材料等の紫外線遮断保護
膜に利用することができる。また、この粉末の分散液を
利用すると、塗料化、ペースト化を容易に行うことがで
きる。
Furthermore, the ultrafine zinc oxide powder according to the present invention can be used in UV-blocking protective films for sunscreen cosmetics, automobiles, furniture, optical materials, etc. Further, by using this powder dispersion, it can be easily made into a paint or a paste.

前述の如く、従来の製造方法によって得られる酸化亜鉛
粉末は、塩基性炭酸亜鉛、シュウ酸亜鉛、水酸化亜鉛等
を脱水乾燥して焼成するために凝集し易く5分散性に劣
る。一方1本発明によって得られる超微粒子酸化亜鉛粉
末は、焼成しなくても高い結晶性を有し分散性に優れる
As mentioned above, zinc oxide powder obtained by conventional manufacturing methods tends to aggregate and has poor dispersibility because basic zinc carbonate, zinc oxalate, zinc hydroxide, etc. are dehydrated and dried and then fired. On the other hand, the ultrafine zinc oxide powder obtained by the present invention has high crystallinity and excellent dispersibility even without firing.

〔実施例〕〔Example〕

実施例1 100℃の水酸化ナトリウム水溶液(1モル/l) 1
90ccに硫酸亜鉛水溶液(1モル/1)looccを
滴下した後、30分間温度を100℃に保持して超微粒
子酸化亜鉛を生成させた。このときの溶液のpHは9で
あった。
Example 1 100°C sodium hydroxide aqueous solution (1 mol/l) 1
After dropping an aqueous zinc sulfate solution (1 mol/1) LOOC into 90 cc, the temperature was maintained at 100° C. for 30 minutes to generate ultrafine zinc oxide particles. The pH of the solution at this time was 9.

反応後、水洗により塩類を除去し、濾別、風乾した。こ
の粉末の比表面積をBET法により測定したところ、比
表面積40rl/g、−次粒子径0.03μ■の分散性
に優れた超微粒子酸化亜鉛粉末が得られた。
After the reaction, salts were removed by washing with water, filtered, and air-dried. When the specific surface area of this powder was measured by the BET method, an ultrafine zinc oxide powder with excellent dispersibility and a specific surface area of 40 rl/g and a secondary particle size of 0.03 μm was obtained.

この粉末は、第1図の透過型電子顕微鏡写真に示すよう
に、粒子の凝集もなく分散性に優れている。
As shown in the transmission electron micrograph of FIG. 1, this powder has excellent dispersibility without particle agglomeration.

また、これをX線回折法により測定したところ、第2図
に示すように、亜鉛のヒドロシルの生成もなく酸化亜鉛
の高い結晶性を示した。
Furthermore, when this was measured by X-ray diffraction method, as shown in FIG. 2, no zinc hydrosyl was formed and the zinc oxide exhibited high crystallinity.

実施例2 60℃の水酸化リチウム水溶液(1モル/L)220c
cに硫酸亜鉛水溶液(1モル/l) 100ccを滴下
した後、30分間温度を60℃に保持して超微粒子酸化
亜鉛を生成させた。このときの溶液のpHは12であっ
た。反応後、水洗により塩類を除去し濾別、風乾した。
Example 2 Lithium hydroxide aqueous solution (1 mol/L) 220c at 60°C
After dropping 100 cc of an aqueous zinc sulfate solution (1 mol/l) into C, the temperature was maintained at 60° C. for 30 minutes to generate ultrafine zinc oxide particles. The pH of the solution at this time was 12. After the reaction, salts were removed by washing with water, filtered, and air-dried.

この粉末の比表面積をBET法により測定したところ、
比表面積25m/g、−次粒子径0.04μmの分散性
に優れた超微粒子酸化亜鉛粉末が得られた。
When the specific surface area of this powder was measured by the BET method,
Ultrafine zinc oxide powder with excellent dispersibility and a specific surface area of 25 m/g and a secondary particle size of 0.04 μm was obtained.

実施例3 80℃の水酸化カリウム水溶液(1モル/1)220c
cに塩化亜鉛水溶液(1モル/1HOOccを滴下した
後、30分間温度を80℃に保持して超微粒子酸化亜鉛
を生成させ、水洗により塩類を除去し濾別、風乾した。
Example 3 Potassium hydroxide aqueous solution (1 mol/1) 220c at 80°C
After adding a zinc chloride aqueous solution (1 mol/1 HOOcc) dropwise to c, the temperature was maintained at 80° C. for 30 minutes to produce ultrafine zinc oxide particles. Salts were removed by washing with water, filtered, and air-dried.

この粉末の比表面積をBET法により測定したところ、
比表面積20m/g、−次粒子径0.05μmの分散性
に優れた超微粒子酸化亜鉛粉末が得られた。
When the specific surface area of this powder was measured by the BET method,
Ultrafine zinc oxide powder with excellent dispersibility and a specific surface area of 20 m/g and a secondary particle size of 0.05 μm was obtained.

〔比較例〕[Comparative example]

比較例1 40℃の水酸化ナトリウム水溶液(1モル/1)220
ccに硫酸亜鉛水溶液(1モル/1)100ccを滴下
した後、30分間温度を40℃に保持して沈澱を生成さ
せた。このときの溶液のpHは12であった。反応後水
洗により塩類を除去し濾別、風乾した。この沈澱をX線
回折法により測定したとろ、酸化亜鉛とともに亜鉛のヒ
ドロシルの生成が見られた。
Comparative Example 1 40°C sodium hydroxide aqueous solution (1 mol/1) 220
After dropping 100 cc of an aqueous zinc sulfate solution (1 mol/1) into the cc, the temperature was maintained at 40° C. for 30 minutes to form a precipitate. The pH of the solution at this time was 12. After the reaction, salts were removed by washing with water, filtered, and air-dried. When this precipitate was measured by X-ray diffraction, it was found that zinc oxide and zinc hydrosyl were formed.

比較例2 60℃の塩化亜鉛水溶液(1モル/1)100ccに水
酸化ナトリウム水溶液(1モル/1)220ccを滴下
した後、30分間温度を60℃に保持して酸化亜鉛を生
成させ(ρ旧2)、水洗により塩類を除去し濾別、風乾
した。
Comparative Example 2 After dropping 220 cc of sodium hydroxide aqueous solution (1 mol/1) into 100 cc of zinc chloride aqueous solution (1 mol/1) at 60°C, the temperature was maintained at 60°C for 30 minutes to generate zinc oxide (ρ Former 2), salts were removed by washing with water, filtered, and air-dried.

この粉末の比表面積をBET法により測定したところ、
比表面積10 m / g 、−次粒子径0.1μmで
あり。
When the specific surface area of this powder was measured by the BET method,
It has a specific surface area of 10 m/g and a secondary particle size of 0.1 μm.

ここで得られた酸化亜鉛の粒子径は、実施例と比較して
大きかった。
The particle size of the zinc oxide obtained here was larger than that in Examples.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1で得られた超微粒子酸化亜鉛粉末の粒
子構造を示す透過型電子顕微鏡写真、第2図は同じ試料
のX線回折チャートである。
FIG. 1 is a transmission electron micrograph showing the particle structure of the ultrafine zinc oxide powder obtained in Example 1, and FIG. 2 is an X-ray diffraction chart of the same sample.

Claims (2)

【特許請求の範囲】[Claims] (1)60℃以上の温度下で、アルカリ水溶液に亜鉛塩
の水溶液を滴下し、最終pH9以上で酸化亜鉛の沈澱を
生成させて平均粒径0.02〜0.05μmの超微粒子
酸化亜鉛粉末を製造することを特徴とする方法。
(1) At a temperature of 60°C or higher, an aqueous solution of zinc salt is dropped into an aqueous alkaline solution, and at a final pH of 9 or higher, zinc oxide precipitates are formed to produce ultrafine zinc oxide powder with an average particle size of 0.02 to 0.05 μm. A method characterized by manufacturing.
(2)アルカリ水溶液に亜鉛塩の水溶液を滴下した後に
、30分以上反応温度を60℃以上に保持する第1請求
項の製造方法。
(2) The manufacturing method according to claim 1, wherein the reaction temperature is maintained at 60° C. or higher for 30 minutes or more after dropping the zinc salt aqueous solution into the alkaline aqueous solution.
JP29242690A 1990-10-30 1990-10-30 Production of ultra-fine zinc oxide powder having excellent dispersibility Pending JPH04164814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29242690A JPH04164814A (en) 1990-10-30 1990-10-30 Production of ultra-fine zinc oxide powder having excellent dispersibility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29242690A JPH04164814A (en) 1990-10-30 1990-10-30 Production of ultra-fine zinc oxide powder having excellent dispersibility

Publications (1)

Publication Number Publication Date
JPH04164814A true JPH04164814A (en) 1992-06-10

Family

ID=17781638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29242690A Pending JPH04164814A (en) 1990-10-30 1990-10-30 Production of ultra-fine zinc oxide powder having excellent dispersibility

Country Status (1)

Country Link
JP (1) JPH04164814A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH684387A5 (en) * 1993-04-22 1994-09-15 Greiter Ag Cosmetic or pharmaceutical product for topical application to the skin and the mucous membranes
US5945211A (en) * 1996-02-22 1999-08-31 Mitsui Mining And Smelting Co., Ltd. Composite material carrying zinc oxide fine particles adhered thereto and method for preparing same
EP1172334A1 (en) * 1999-02-05 2002-01-16 Showa Denko K K Ultra-fine particles of zinc oxide, method for preparing the same and cosmetic comprising the same
WO2003048047A1 (en) * 2001-12-07 2003-06-12 Sung Park A METHOD FOR PREPARING ZnO NANOPOWDER
US6710091B1 (en) 1999-02-23 2004-03-23 Bayer Aktiengesellschaft Nanoparticulate, redispersible zinc oxide gels
US7371337B2 (en) * 2003-09-22 2008-05-13 Evonik Degussa Gmbh Zinc oxide powder aggregates present in circular, ellipsoidal, linear and branched form
JP2009132599A (en) * 2007-11-07 2009-06-18 Sumitomo Metal Mining Co Ltd Method for producing ultraviolet shielding material fine particle, ultraviolet shielding material fine particle dispersion, and ultraviolet shielding body
US7666506B2 (en) 2005-06-03 2010-02-23 Basf Se Surface-modified metal oxides prepared by precipitation in the presence of a copolymer having N-vinylamide units, production processes and use thereof in cosmetic preparations
CN103408061A (en) * 2013-07-25 2013-11-27 南京航空航天大学 Preparation method for zinc oxide nanocrystalline
CN103482681A (en) * 2013-09-22 2014-01-01 常州大学 Method for preparing monodisperse spherical nano ZnO
CN104843764A (en) * 2015-03-31 2015-08-19 南京工业大学 Method for preparing nano zinc oxide by using fluidized calcinated alkali zinc carbonate

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH684387A5 (en) * 1993-04-22 1994-09-15 Greiter Ag Cosmetic or pharmaceutical product for topical application to the skin and the mucous membranes
US5945211A (en) * 1996-02-22 1999-08-31 Mitsui Mining And Smelting Co., Ltd. Composite material carrying zinc oxide fine particles adhered thereto and method for preparing same
EP1172334A1 (en) * 1999-02-05 2002-01-16 Showa Denko K K Ultra-fine particles of zinc oxide, method for preparing the same and cosmetic comprising the same
EP1172334A4 (en) * 1999-02-05 2005-03-16 Showa Denko Kk Ultra-fine particles of zinc oxide, method for preparing the same and cosmetic comprising the same
JP4864205B2 (en) * 1999-02-23 2012-02-01 ランクセス・ドイチュランド・ゲーエムベーハー Method for producing nano-sized zinc oxide particles
US6710091B1 (en) 1999-02-23 2004-03-23 Bayer Aktiengesellschaft Nanoparticulate, redispersible zinc oxide gels
WO2003048047A1 (en) * 2001-12-07 2003-06-12 Sung Park A METHOD FOR PREPARING ZnO NANOPOWDER
US7371337B2 (en) * 2003-09-22 2008-05-13 Evonik Degussa Gmbh Zinc oxide powder aggregates present in circular, ellipsoidal, linear and branched form
US7666506B2 (en) 2005-06-03 2010-02-23 Basf Se Surface-modified metal oxides prepared by precipitation in the presence of a copolymer having N-vinylamide units, production processes and use thereof in cosmetic preparations
JP2009132599A (en) * 2007-11-07 2009-06-18 Sumitomo Metal Mining Co Ltd Method for producing ultraviolet shielding material fine particle, ultraviolet shielding material fine particle dispersion, and ultraviolet shielding body
CN103408061A (en) * 2013-07-25 2013-11-27 南京航空航天大学 Preparation method for zinc oxide nanocrystalline
CN103482681A (en) * 2013-09-22 2014-01-01 常州大学 Method for preparing monodisperse spherical nano ZnO
CN104843764A (en) * 2015-03-31 2015-08-19 南京工业大学 Method for preparing nano zinc oxide by using fluidized calcinated alkali zinc carbonate

Similar Documents

Publication Publication Date Title
JP2783417B2 (en) Manufacturing method of rutile type titanium oxide sol
JP3307667B2 (en) Process for producing particulate titanium dioxide, particulate titanium dioxide and aqueous suspension thereof
JP2875993B2 (en) Anatase dispersion and method for producing the same
US3861946A (en) Titanium dioxide nacreous pigments and process for the preparation thereof
US5776239A (en) Hydrothermal process for making ultafine metal oxide powders
JPH09272815A (en) Composite metal oxide fine particle and production of the same
JPH0465098B2 (en)
US5248556A (en) Systhetic whitener pigment
US5976511A (en) Ultraviolet rays-absorbing composition and process for producing the same
JPH04164814A (en) Production of ultra-fine zinc oxide powder having excellent dispersibility
GB2070636A (en) Iron blue nacreous pigments
JP2687640B2 (en) Ultrafine zinc oxide powder having excellent ultraviolet absorption capacity and method for producing the same
US5380360A (en) Ultra-fine granular barium sulfate-coated flaky pigment and method of preparing the same
JPH04357114A (en) Production of zinc oxide powder of ultrafine particle
CN108128798B (en) Simple preparation method of flaky nano zinc oxide sun-screening agent
JPH02296726A (en) Ultraviolet ray absorptive granular material
JPH0113511B2 (en)
KR101763357B1 (en) Preparation method of rutile titanium dioxide powder
JP2009029645A (en) Flake-like hydrous titanium oxide, production method of the same and flake-like titanium oxide
JPH06650B2 (en) Titanium oxide / cerium oxide composite sol and transparent thin film formed from this sol
JP3398640B2 (en) Manufacturing method of oriented flake zinc oxide
JP2972881B1 (en) Method for producing titanium dioxide
JP2002284527A (en) Method for producing fine powder of zinc oxide, fine powder of zinc oxide and resin composition containing it
JPH04164813A (en) Production of zinc oxide powder
JP3559293B2 (en) Flaky zinc oxide powder and method for producing the same