JPH04164372A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH04164372A
JPH04164372A JP2292573A JP29257390A JPH04164372A JP H04164372 A JPH04164372 A JP H04164372A JP 2292573 A JP2292573 A JP 2292573A JP 29257390 A JP29257390 A JP 29257390A JP H04164372 A JPH04164372 A JP H04164372A
Authority
JP
Japan
Prior art keywords
gate electrode
integrated circuit
floating gate
insulating film
trench
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2292573A
Other languages
Japanese (ja)
Inventor
Hiroto Taneda
種田 洋人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electronic Device Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Microelectronics Corp filed Critical Toshiba Corp
Priority to JP2292573A priority Critical patent/JPH04164372A/en
Publication of JPH04164372A publication Critical patent/JPH04164372A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Abstract

PURPOSE:To improve flatness of the upper surface of a substrate, and prevent disconnection of a metal wiring formed on an interlayer insulating film, by burying the bottom part of a floating gate electrode in a trench formed on the surface of an integrated circuit board. CONSTITUTION:A trench 14 is formed between two source.drain regions of an information storage transistor 3 on the element region surface of an integrated circuit board. A gate insulating film 7' is formed also on the inner wall of the trench 14, and at least the bottom part of the floating gate electrode 8 is buried in the inside of the trench 14, via the gate insulating film 7'. A thin tunnel film 15 is formed between a part of the side surface of the floating gate electrode 8 and a part of the inner side surface of the trench 14. Since, in this manner, at least the bottom part of the floating gate electrode 8 is buried in the trench 14 formed on a part of the integrated circuit board surface, the level difference on the substrate upper surface is reduced, and the flatness of the substrate upper surface is improved.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、半導体集積回路に係り、特に2層以上のゲー
ト構造を有する半導体集積回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a semiconductor integrated circuit, and particularly to a semiconductor integrated circuit having a gate structure of two or more layers.

(従来の技術) 従来の例えばMO3型集積回路では、例えばフィールド
酸化膜やゲート電極などの構造により凹凸が発生した基
板上面にアルミニウムなどの金属配線を施した場合に断
線あるいは短絡などが発生することを防止する目的で、
基板上面を平坦化するためのりフロー技術が用いられて
いる。特に2層以上のポリシリコンゲート構造を有する
集積回路、例えばEFROM(紫外線消去・再書込み可
能な読み出し専用メモリ)とかEEFROM(電気的消
去・再書込み可能な読み出し専用メモリ)などの不揮発
性メモリのように、浮遊ゲート電極および制御ゲート電
極が積層されたスタックゲート構造を有するMOS  
FET(絶縁ゲート型電界効果トランジスタ)のアレイ
を内蔵スル集積回路においては、1層ポリシリコンゲー
ト構造を有する集積回路と比べて基板上面の凹凸の抑制
に対する要求が厳しくなっている。
(Prior Art) In conventional MO3 type integrated circuits, for example, disconnections or short circuits occur when metal wiring such as aluminum is placed on the top surface of a substrate that has irregularities due to structures such as field oxide films and gate electrodes. For the purpose of preventing
Glue flow technology is used to planarize the top surface of the substrate. In particular, integrated circuits with two or more layers of polysilicon gate structures, such as nonvolatile memories such as EFROM (ultraviolet erasable and rewritable read-only memory) and EEFROM (electrically erasable and rewritable read-only memory), MOS having a stacked gate structure in which a floating gate electrode and a control gate electrode are stacked.
In integrated circuits with built-in arrays of FETs (insulated gate field effect transistors), there are stricter requirements for suppressing irregularities on the top surface of the substrate than in integrated circuits having a single-layer polysilicon gate structure.

第2図は、従来のEEFROMにおけるEEFROMセ
ルの一例の断面構造を示しており、20は集積回路基板
、21は集積回路基板の素子領域の表面に選択的に形成
された不純物拡散層からなるドレイン・ソース領域、2
3はEEFROMセルの情報記憶用トランジスタ、24
および25は情報記憶用トランジスタ23に直列接続さ
れているEEFROMセルの選択用あるいは・読み出し
用のMOS)ランジスタ、26は集積回路基板表面上の
ゲート絶縁膜、27はトンネル膜部分、28は浮遊ゲー
ト電極、28°は浮遊ゲート電極のトンネル窓部分、2
9は上記情報記憶用トランジスタ23の制御ゲート電極
、30は上記浮遊ゲート電極28と制御ゲート電極29
との間のゲート絶縁膜、31および32は上記選択用あ
るいは読み出し用のMOSトランジスタ24および25
の制御ゲート電極である。ここで、上記各ゲート電極は
ポリシリコンが用いられている。
FIG. 2 shows a cross-sectional structure of an example of an EEFROM cell in a conventional EEFROM, in which 20 is an integrated circuit board, and 21 is a drain consisting of an impurity diffusion layer selectively formed on the surface of an element region of the integrated circuit board.・Source area, 2
3 is an information storage transistor of the EEFROM cell, 24
25 is a MOS transistor for selecting or reading an EEFROM cell connected in series with the information storage transistor 23; 26 is a gate insulating film on the surface of the integrated circuit board; 27 is a tunnel film portion; and 28 is a floating gate. electrode, 28° is the tunnel window part of the floating gate electrode, 2
9 is the control gate electrode of the information storage transistor 23; 30 is the floating gate electrode 28 and the control gate electrode 29;
The gate insulating films 31 and 32 are connected to the selection or readout MOS transistors 24 and 25.
control gate electrode. Here, polysilicon is used for each of the gate electrodes.

しかし、上記のような2層以上のポリシリコンゲート構
造を有する集積回路においては、上層のポリシリコンゲ
ート上にBPSG (ボロン・リン・シリケートガラス
)膜あるいはpsc (リンシリケートガラス)膜など
の層間絶縁膜を堆積した際に、上記ポリシリコンゲート
のエツジ付近で局所的に層間絶縁膜が薄くなる。そして
、この後のリン雰囲気中のりフロー工程において、雰囲
気中の高濃度のリンが例えばBPSG膜中のボロンと反
応して析出物が生じ、これが突起物として成長してしま
うという不具合が生じる。この突起物は、この後に形成
される金属配線(図示せず)の断線あるいは短絡などを
引き起こし、集積回路の歩留′1.。
However, in integrated circuits having a polysilicon gate structure of two or more layers as described above, interlayer insulation such as a BPSG (boron phosphorus silicate glass) film or a PSC (phosphorus silicate glass) film is used on the upper polysilicon gate. When the film is deposited, the interlayer insulating film becomes locally thin near the edge of the polysilicon gate. Then, in the subsequent glue flow process in a phosphorous atmosphere, the high concentration of phosphorus in the atmosphere reacts with, for example, boron in the BPSG film to generate precipitates, which then grow as protrusions. These protrusions cause disconnections or short circuits in metal wiring (not shown) that will be formed later, resulting in a reduction in the yield of the integrated circuit. .

りの低下、信頼性の□低下につながる。This leads to a decrease in performance and □reliability.

また、第2図に示したように、浮遊ゲート電極28底面
下の薄いトンネル膜部分27を介してトンネル電流によ
り半導体基板側から浮遊ゲート電極28に対する電荷の
注入、引き抜きを行う情報記憶用のトランジスタ23を
有するEEFROMセルのアレイを内蔵する従来のE 
E F ROMは、その製造に際して、トンネル膜部分
27の膜厚および面積の高精度に制御することが技術的
に困難であり、トンネル膜部分27の面積を小さくする
ことが困難であった。
Further, as shown in FIG. 2, a transistor for information storage injects and extracts charge from the semiconductor substrate side to the floating gate electrode 28 by tunneling current through a thin tunnel film portion 27 under the bottom surface of the floating gate electrode 28. A conventional EEFROM cell containing an array of EEFROM cells having 23
When manufacturing the E F ROM, it is technically difficult to control the thickness and area of the tunnel film portion 27 with high accuracy, and it is difficult to reduce the area of the tunnel film portion 27.

(発明が解決しようとする課題) 上記したように従来の半導体集積回路は、ポリシリコン
ゲート上にBPSG膜などの絶縁膜を堆積した後のりフ
ロー工程においてポリシリコンゲートのエツジ付近で突
起物が成長し、この後に形成される金属配線の断線ある
いは短絡などを引き起こし、製造上の歩留り、信頼性が
低下するという問題がある。
(Problems to be Solved by the Invention) As described above, in conventional semiconductor integrated circuits, protrusions grow near the edges of the polysilicon gate in the oxidation flow process after depositing an insulating film such as a BPSG film on the polysilicon gate. However, there is a problem in that the metal wiring formed thereafter may be disconnected or short-circuited, resulting in a decrease in manufacturing yield and reliability.

また、浮遊ゲート電極底面下の薄いトンネル膜部分を介
してトンネル電流により半導体基板側から浮遊ゲート電
極に対する電荷の注入、引き抜きを行う情報記憶用のト
ランジスタを有するEEFROMセルを内蔵する従来の
集積回路は、その製造に際して、トンネル膜部分の膜厚
および面積の高精度に制御することか技術的に困難であ
った。
In addition, conventional integrated circuits that incorporate an EEFROM cell that has an information storage transistor that injects and extracts charge from the semiconductor substrate side to the floating gate electrode by means of a tunnel current through a thin tunnel film under the bottom surface of the floating gate electrode. During its manufacture, it was technically difficult to control the thickness and area of the tunnel membrane portion with high accuracy.

本発明は、上記問題点を解決すべくなされたもので、そ
の目的は、基板上面の平坦性が優れた構造を有し、層間
絶縁膜上に形成される金属配線の断線あるいは短絡など
が生じ難く、製造上の歩留り、信頼性の向上を図り得る
半導体集積回路を提供することにある。
The present invention has been made to solve the above-mentioned problems, and its purpose is to provide a structure with excellent flatness on the upper surface of the substrate, so that the metal wiring formed on the interlayer insulating film may be disconnected or short-circuited. It is an object of the present invention to provide a semiconductor integrated circuit which is difficult to manufacture and can improve manufacturing yield and reliability.

また、本発明の他の目的は、トンネル電流により浮遊ゲ
ートに対する電荷の注入、引き抜きを行うことにより情
報の記憶を行うEEFROMセルあるいはそのアレイを
内蔵する集積回路の製造に際して、薄いトンネル膜の膜
厚および面積の制御性が容易になり、トンネル膜の面積
を小さくして高結合比を得ることによってEEP−RO
Mセルの動作電圧を下げることが可能になり、高信頼性
、高密度化が可能になる半導体集積回路を提供すること
にある。
Another object of the present invention is to reduce the thickness of a thin tunnel film when manufacturing an integrated circuit incorporating an EEFROM cell or an array thereof, which stores information by injecting and extracting charges to and from a floating gate using a tunnel current. EEP-RO
It is an object of the present invention to provide a semiconductor integrated circuit which enables lowering of the operating voltage of an M cell and which enables high reliability and high density.

[発明の構成コ (課題を解決するための手段) 第1の発明は、集積回路基板と、上記基板に形成された
溝と、少なくとも底部が上記溝の内部にゲート絶縁膜を
介して埋め込まれている浮遊ゲート電極と、上記浮遊ゲ
ート電極上にゲート絶縁膜を介して積層された制御ゲー
ト電極とからなるスタックゲート構造を有する絶縁ゲー
ト型電界効果トランジスタを具備したことを特徴とする
[Structure of the Invention (Means for Solving the Problems) A first invention includes an integrated circuit substrate, a groove formed in the substrate, and at least a bottom portion embedded in the groove via a gate insulating film. The present invention is characterized by comprising an insulated gate field effect transistor having a stacked gate structure consisting of a floating gate electrode and a control gate electrode stacked on the floating gate electrode with a gate insulating film interposed therebetween.

第2の発明は、第1の発明におけるスタックゲート構造
を有するトランジスタが、浮遊ゲート電極と集積回路基
板表面との間の薄いトンネル膜を介してトンネル電流に
より半導体基板側から浮遊ゲート電極に対する電荷の注
入、引き抜きを行うEEPROMセルの情報記憶用のト
ランジスタであり、上記浮遊ゲート電極の側面の一部と
前記溝の内側面の一部との間にトンネル膜が形成されて
いることを特徴とする。
A second invention is a transistor having a stacked gate structure according to the first invention, in which charge is transferred from the semiconductor substrate side to the floating gate electrode by a tunnel current through a thin tunnel film between the floating gate electrode and the surface of the integrated circuit substrate. A transistor for storing information in an EEPROM cell that performs injection and extraction, and is characterized in that a tunnel film is formed between a part of the side surface of the floating gate electrode and a part of the inner surface of the groove. .

(作 用) 第1の発明によれば、浮遊ゲート電極の少なくとも底部
が集積回路基板表面に形成された溝内に埋め込まれた構
造を有するので、基板上面の段差が軽減され、つまり、
基板上面の平坦性が優れており、層間絶縁膜上に形成さ
れる金属配線の断線あるいは短絡などが生じ難く、製造
上の歩留り、信頼性の向上を図ることが可能になる。
(Function) According to the first invention, since at least the bottom of the floating gate electrode has a structure embedded in the groove formed on the surface of the integrated circuit substrate, the level difference on the top surface of the substrate is reduced.
The top surface of the substrate has excellent flatness, and metal wiring formed on the interlayer insulating film is less likely to be disconnected or short-circuited, making it possible to improve manufacturing yield and reliability.

また、第2の発明によれば、トンネル膜の膜厚は、上記
浮遊ゲート電極の一側面と溝の一側面との対向距離によ
り決まり、トンネル膜の面積は、上記浮遊ゲート電極の
ポリシリコン膜厚により決まるので、いずれも制御性が
容易である。これにより、トンネル膜の面積を小さくし
て高結合比を得ることによってEEFROMセルの動作
電圧を下げることが可能になり、高信頼性、高密度化(
高集積化)が可能になる。
Further, according to the second invention, the thickness of the tunnel film is determined by the facing distance between one side surface of the floating gate electrode and one side surface of the groove, and the area of the tunnel film is determined by the distance between one side surface of the floating gate electrode and one side surface of the groove. Since it is determined by the thickness, controllability is easy in both cases. This makes it possible to lower the operating voltage of the EEFROM cell by reducing the area of the tunnel film and obtaining a high coupling ratio, resulting in higher reliability and higher density (
high integration) becomes possible.

(実施例) 以下、図面を参照して本発明の一実施例を詳細に説明す
る。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図(a)は、EEFROMにおけるメモリセルアレ
イの一部の平面パターンを示しており、第1図(a)中
のB−B線に沿う断面構造を第1図(b)に示している
FIG. 1(a) shows a planar pattern of a part of a memory cell array in an EEFROM, and FIG. 1(b) shows a cross-sectional structure along line B-B in FIG. 1(a). .

第1図(a)および(b)において、1は第1導電型の
集積回路基板、2・・・はこの集積回路基板の素子領域
の表面に選択的に形成された基板とは逆導電型(第2導
電型)の不純物拡散層からなるドレイン・ソース領域、
3はEEPROMセルの情報記憶用トランジスタ、4お
よび5は上記情報記憶用トランジスタ3に直列接続され
ているEEFROMセルの選択用あるいは読み出し用の
MOSトランジスタ、6は集積回路基板表面に選択的に
形成された素子分離領域、7は集積回路基板表面上のゲ
ート絶縁膜、8は例えばポリシリコンが用いられた浮遊
ゲート電極、9は上記情報記憶用トランジスタ3の例え
ばポリシリコンが用いられた制御ゲート電極、10は上
記浮遊ゲート電極8と制御ゲート電極9との間のゲート
絶縁膜、11および12は上記選択用あるいは読み出し
用のMOSトランジスタ4および5の例えばポリシリコ
ンが用いられた制御ゲート電極、13は層間絶縁膜であ
る。この場合、集積回路基板の素子領域の表面の一部(
本例では情報記憶用トランジスタ3の2つのドレイン・
ソース領域2相互間)に溝14が形成されており、この
溝14の内壁にもゲート絶縁膜7′が形成されており、
上記浮遊ゲート電極8の少なくとも底部(本例ではほぼ
全部)が上記溝14の内部に上記ゲート絶縁膜7°を介
して埋め込まれている。そして、上記浮遊ゲート電極8
の側面の一部(本例では一側面)と溝14の内側面の一
部(本例では一側面)との間に薄いトンネル膜15が形
成されている、換言すれば、上記浮遊ゲート電極8の側
面の一部(本例では一側面)がトンネル窓となっている
In FIGS. 1(a) and (b), 1 is an integrated circuit board of the first conductivity type, 2... is a conductivity type opposite to that of the substrate selectively formed on the surface of the element region of this integrated circuit board. (second conductivity type) drain/source region consisting of an impurity diffusion layer;
Reference numeral 3 denotes an information storage transistor of the EEPROM cell; 4 and 5 MOS transistors for selecting or reading the EEFROM cell connected in series with the information storage transistor 3; and 6 MOS transistors selectively formed on the surface of the integrated circuit substrate. 7 is a gate insulating film on the surface of the integrated circuit substrate; 8 is a floating gate electrode made of, for example, polysilicon; 9 is a control gate electrode of the information storage transistor 3 made of, for example, polysilicon; 10 is a gate insulating film between the floating gate electrode 8 and the control gate electrode 9; 11 and 12 are the control gate electrodes of the selection or readout MOS transistors 4 and 5 made of polysilicon, for example; 13 is a gate insulating film between the floating gate electrode 8 and the control gate electrode 9; It is an interlayer insulating film. In this case, part of the surface of the element area of the integrated circuit board (
In this example, the two drains and
A groove 14 is formed between the source regions 2), and a gate insulating film 7' is also formed on the inner wall of this groove 14.
At least the bottom portion (almost the entire bottom in this example) of the floating gate electrode 8 is buried inside the trench 14 with the gate insulating film 7° interposed therebetween. Then, the floating gate electrode 8
A thin tunnel film 15 is formed between a part of the side surface (one side surface in this example) of the groove 14 and a part of the inner side surface (one side surface in this example) of the groove 14. In other words, the floating gate electrode A part of the side surface (in this example, one side surface) of No. 8 is a tunnel window.

なお、溝14の一側面に薄いトンネル膜15を形成する
方法としては、前記溝14を掘った後に全面にゲート絶
縁膜7′を形成し、さらに、溝14の一側面のゲート絶
縁膜7°を除去した後に薄いトンネル膜15を形成する
Note that a method for forming the thin tunnel film 15 on one side of the trench 14 is to form the gate insulating film 7' on the entire surface after digging the trench 14, and then to form the gate insulating film 7' on one side of the trench 14. After removing the thin tunnel film 15, a thin tunnel film 15 is formed.

上記構成によれば、浮遊ゲート電極8の少なくとも底部
が集積回路基板表面の一部に形成された溝14内に埋め
込まれた構造を有するので、基板上面の段差が軽減され
、つまり、基板上面の平坦性が優れており、層間絶縁膜
13上に形成される金属配線(図示せず)の断線あるい
は短絡などが生じ難く、製造上の歩留り、信頼性の向上
を図ることが可能になる。
According to the above configuration, since at least the bottom of the floating gate electrode 8 has a structure embedded in the groove 14 formed in a part of the surface of the integrated circuit substrate, the level difference on the top surface of the substrate is reduced. It has excellent flatness, and metal wiring (not shown) formed on the interlayer insulating film 13 is less likely to be disconnected or short-circuited, making it possible to improve manufacturing yield and reliability.

また、トンネル膜15の膜厚は、浮遊ゲート電極8の一
側面と溝14の一側面との対向距離により決まり、トン
ネル膜15の面積は、浮遊ゲート電極8のポリシリコン
膜厚により決まるので、い □ずれも制御性が容易であ
る。これにより、トンネル膜15の面積を小さくして高
結合比を得ることによってEEFROMセルの動作電圧
を下げることが可能になり、高信頼性、高密度化(高集
積化)が可能になる。
Further, the thickness of the tunnel film 15 is determined by the facing distance between one side of the floating gate electrode 8 and one side of the groove 14, and the area of the tunnel film 15 is determined by the thickness of the polysilicon film of the floating gate electrode 8. □ Misalignment is also easy to control. This makes it possible to lower the operating voltage of the EEFROM cell by reducing the area of the tunnel film 15 and obtaining a high coupling ratio, thereby making it possible to achieve high reliability and high density (high integration).

[発明の効果コ 上述したように本発明に点れば、基板上面の平坦性が優
れた構造を有し、層間絶縁膜上に形成される金属配線の
断線あるいは短絡などが生じ難く、製造上の歩留り、信
頼性の向上を図り得る半導体集積回路を実現することが
できる。
[Effects of the Invention] As described above, according to the present invention, the substrate has a structure with excellent flatness on the upper surface, and the metal wiring formed on the interlayer insulating film is less likely to be disconnected or short-circuited, making it easier to manufacture. A semiconductor integrated circuit that can improve yield and reliability can be realized.

また、本発明によれば、トンネル電流により浮遊ゲート
に対する電荷の注入、引き抜きを行うことにより情報の
記憶を行うEEFROMセルあるいはそのアレイを内蔵
する集積回路の製造に際して、薄いトンネル膜の膜厚お
よび面積の制御性が容易になり、トンネル膜の面積を小
さくして高結合比を得ることによってEEFROMセル
の動作電圧を下げることが可能になり、高信頼性、高密
度化が可能になる半導体集積回路を実現することができ
る。
Further, according to the present invention, when manufacturing an integrated circuit incorporating an EEFROM cell or an array thereof, which stores information by injecting and extracting charges to and from a floating gate using a tunnel current, the thickness and area of a thin tunnel film can be adjusted. Semiconductor integrated circuits that can be easily controlled, reduce the area of the tunnel film, and obtain a high coupling ratio to lower the operating voltage of the EEFROM cell, making it possible to achieve high reliability and high density. can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の半導体集積回路の一実施例に係
るEEFROMにおけるメモリセルアレイの一部の平面
パターンを示す図、第1図(b)は同図(a)中のB−
B線に沿う断面図、第2図は従来のEEFROMセルを
示す断面図である。 1・・・集積回路基板、2・・・ドレイン・ソース領域
、3・・・情報記憶用トランジスタ、4,5・・・MO
Sトランジスタ、6・・・素子分離領域、7,7′。 10・・・ゲート絶縁膜、8・・・浮遊ゲート電極、9
゜11.12・・・制御ゲート電極、13・・・層間絶
縁膜、14・・・溝、15・・・トンネル膜。 出願人代理人 弁理士 鈴江武彦 (a) 第1図 (b)
FIG. 1(a) is a diagram showing a planar pattern of a part of a memory cell array in an EEFROM according to an embodiment of the semiconductor integrated circuit of the present invention, and FIG.
A cross-sectional view taken along line B, and FIG. 2 is a cross-sectional view showing a conventional EEFROM cell. DESCRIPTION OF SYMBOLS 1... Integrated circuit board, 2... Drain/source region, 3... Information storage transistor, 4, 5... MO
S transistor, 6... element isolation region, 7, 7'. 10... Gate insulating film, 8... Floating gate electrode, 9
゜11.12...Control gate electrode, 13...Interlayer insulating film, 14...Trench, 15...Tunnel film. Applicant's agent Patent attorney Takehiko Suzue (a) Figure 1 (b)

Claims (2)

【特許請求の範囲】[Claims] (1)集積回路基板と、上記基板に形成された溝と、少
なくとも底部が上記溝の内部にゲート絶縁膜を介して埋
め込まれている浮遊ゲート電極と、上記浮遊ゲート電極
上にゲート絶縁膜を介して積層された制御ゲート電極と
からなるスタックゲート構造を有する絶縁ゲート型電界
効果トランジスタを具備したことを特徴とする半導体集
積回路。
(1) An integrated circuit substrate, a groove formed in the substrate, a floating gate electrode whose bottom portion is embedded at least inside the groove via a gate insulating film, and a gate insulating film on the floating gate electrode. 1. A semiconductor integrated circuit comprising an insulated gate field effect transistor having a stacked gate structure including a control gate electrode stacked therebetween.
(2)前記スタックゲート構造を有するトランジスタは
、浮遊ゲート電極と集積回路基板表面との間のゲート絶
縁膜のうちの薄いトンネル膜を介してトンネル電流によ
り浮遊ゲート電極に対する電荷の注入、引き抜きを行う
EEPROMセルの情報記憶用のトランジスタであり、
前記集積回路基板に形成された前記溝の側面と上記浮遊
ゲート電極の側面との間にトンネル膜が形成されている
ことを特徴とする請求項1記載の半導体集積回路。
(2) In the transistor having the stacked gate structure, charges are injected into and extracted from the floating gate electrode by a tunnel current through a thin tunnel film of the gate insulating film between the floating gate electrode and the surface of the integrated circuit substrate. A transistor for storing information in an EEPROM cell,
2. The semiconductor integrated circuit according to claim 1, wherein a tunnel film is formed between a side surface of the groove formed in the integrated circuit substrate and a side surface of the floating gate electrode.
JP2292573A 1990-10-29 1990-10-29 Semiconductor integrated circuit Pending JPH04164372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2292573A JPH04164372A (en) 1990-10-29 1990-10-29 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2292573A JPH04164372A (en) 1990-10-29 1990-10-29 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH04164372A true JPH04164372A (en) 1992-06-10

Family

ID=17783525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2292573A Pending JPH04164372A (en) 1990-10-29 1990-10-29 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH04164372A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0822598A1 (en) * 1996-07-30 1998-02-04 Nec Corporation Single-chip contact-less read-only memory (rom) device and the method for fabricating the device
WO1999044238A1 (en) * 1998-02-27 1999-09-02 Infineon Technologies Ag Electrically programmable memory cell arrangement and method for producing the same
DE10054172A1 (en) * 2000-11-02 2002-05-16 Infineon Technologies Ag Semiconductor memory cell and method for its production
US7190022B2 (en) 2003-06-27 2007-03-13 Infineon Technologies Ag One transistor flash memory cell
US7439131B2 (en) 2005-08-03 2008-10-21 Hynix Semiconductor Inc. Flash memory device having resistivity measurement pattern and method of forming the same
CN105990420A (en) * 2015-01-27 2016-10-05 中芯国际集成电路制造(上海)有限公司 Semiconductor device structure and manufacturing method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0822598A1 (en) * 1996-07-30 1998-02-04 Nec Corporation Single-chip contact-less read-only memory (rom) device and the method for fabricating the device
US6121670A (en) * 1996-07-30 2000-09-19 Nec Corporation Single-chip contact-less read-only memory (ROM) device and the method for fabricating the device
US6214669B1 (en) 1996-07-30 2001-04-10 Nec Corporation Single-chip contact-less read-only memory (ROM) device and the method for fabricating the device
WO1999044238A1 (en) * 1998-02-27 1999-09-02 Infineon Technologies Ag Electrically programmable memory cell arrangement and method for producing the same
DE10054172A1 (en) * 2000-11-02 2002-05-16 Infineon Technologies Ag Semiconductor memory cell and method for its production
DE10054172C2 (en) * 2000-11-02 2002-12-05 Infineon Technologies Ag Semiconductor memory cell with a floating gate electrode arranged in a trench and method for the production thereof
US6940121B2 (en) 2000-11-02 2005-09-06 Infineon Technology Ag Semiconductor memory cell
US7190022B2 (en) 2003-06-27 2007-03-13 Infineon Technologies Ag One transistor flash memory cell
US7439131B2 (en) 2005-08-03 2008-10-21 Hynix Semiconductor Inc. Flash memory device having resistivity measurement pattern and method of forming the same
US7829934B2 (en) 2005-08-03 2010-11-09 Hynix Semiconductor Inc. Flash memory device having resistivity measurement pattern and method of forming the same
CN105990420A (en) * 2015-01-27 2016-10-05 中芯国际集成电路制造(上海)有限公司 Semiconductor device structure and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3403877B2 (en) Semiconductor memory device and manufacturing method thereof
JP2921653B2 (en) Trench memory structure and method of manufacturing the same
US20020179962A1 (en) Semiconductor device having floating gate and method of producing the same
JPS62120070A (en) Semiconductor memory
JPH07130871A (en) Semiconductor memory device
JP3124334B2 (en) Semiconductor storage device and method of manufacturing the same
JP2824702B2 (en) Nonvolatile split-gate EPROM storage cell and self-aligned field isolation method for obtaining this cell
JPH0475390A (en) Semiconductor memory device
KR19990072300A (en) Nvram cell having increased coupling ratio between a control gate and floating gate without an increase in cell area
JPH09275196A (en) Semiconductor device and manufacturing method thereof
KR100231962B1 (en) Stacked gate eprom split cell with bit line reach-through and interruption immunity
JPS62269363A (en) Semiconductor memory device
JP3195785B2 (en) Semiconductor storage device and method of manufacturing the same
JPH04164372A (en) Semiconductor integrated circuit
JPH10107230A (en) Semiconductor device and its manufacture
JPS62193273A (en) Semiconductor memory
CN101203954B (en) Semiconductor device and method for making the same
JPH0347588B2 (en)
JP2560517B2 (en) Floating gate type semiconductor memory device and manufacturing method thereof
WO2006090477A1 (en) Semiconductor device and method for manufacturing same
JPH03270175A (en) Semiconductor nonvolatile memory device
JPH09330988A (en) Laminated gate-type non-volatile semiconductor memory device
CN104425500A (en) SONOS (silicon oxide nitride oxide semiconductor) nonvolatile memory and manufacturing method thereof
JP2752616B2 (en) MOS nonvolatile semiconductor memory device
JPH10256402A (en) Semiconductor memory and manufacture thereof