JPH0416221A - Fluid mixing device - Google Patents

Fluid mixing device

Info

Publication number
JPH0416221A
JPH0416221A JP2120660A JP12066090A JPH0416221A JP H0416221 A JPH0416221 A JP H0416221A JP 2120660 A JP2120660 A JP 2120660A JP 12066090 A JP12066090 A JP 12066090A JP H0416221 A JPH0416221 A JP H0416221A
Authority
JP
Japan
Prior art keywords
duct
fluid
orifice
exhaust gas
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2120660A
Other languages
Japanese (ja)
Other versions
JPH0775658B2 (en
Inventor
Hiroshi Suzuki
博 鈴木
Noboru Yamashita
登 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Engineering Co Ltd
Original Assignee
Niigata Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Engineering Co Ltd filed Critical Niigata Engineering Co Ltd
Priority to JP2120660A priority Critical patent/JPH0775658B2/en
Publication of JPH0416221A publication Critical patent/JPH0416221A/en
Publication of JPH0775658B2 publication Critical patent/JPH0775658B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To permit different kinds of fluids to be homogeneously intermixed effectively by providing in a duct adapted to allow a first fluid to flow therethrough an orifice smaller in diameter than this duct, on the downstream side of the injection openings provided in the duct to supply a second fluid. CONSTITUTION:An injection nozzle 20 (injection pipe) having six injection openings 21 formed therein to supply a second fluid is inserted into a duct 2 adapted to allow a first fluid (e.g. exhaust gas) to flow to the direction of the arrow A, and an orifice plate 22 provided with an orifice 23 smaller in diameter than the duct 2 is fixed into a duct flange 31, on the downstream side of the injection nozzle 20. Since the orifice 23 is smaller in diameter than the duct, the fluid velocity is sharply increased, when the fluid is passing through the orifice 23. In this way, the fluid becomes turbulent violently, resulting in a complete intermixing of the two kinds of the fluids.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、異種の流体を効果的に均一混合するための
流体混合装置に関するものである。 かような流体混合装置は、例えば内燃機関の排ガス中に
含まれる窒素酸化物を、還元剤および選択接触還元触媒
を用いて除去する形式の排ガス脱硝装置において、排ガ
ス中に還元剤を均一に混合させるために好ましく使用す
ることができる。
The present invention relates to a fluid mixing device for effectively and uniformly mixing different types of fluids. Such a fluid mixing device is used, for example, in an exhaust gas denitrification device that uses a reducing agent and a selective catalytic reduction catalyst to remove nitrogen oxides contained in the exhaust gas of an internal combustion engine. It can be preferably used to

【従来の技術】[Conventional technology]

ディーゼルエンジンのごとき内燃機関からの排ガス中に
は環境メダ染の原因となる窒素酸化物(No  )か含
まれているため、大気へ放出する前に排ガス中のNOを
分解する脱硝処理を施す必要がある。かような脱硝処理
のために従来から慣用されている代表的な排ガス脱硝装
置を第6図を参照して説明する。 内燃機関例えばディーゼルエンジン1の排ガス出口から
排出される排ガスは、ダクト2を介して排ガス消音器3
、さらには脱硝反応器4へ導かれ、最終的に煙突5から
大気へ放出される。 ダクト2にはバイパス6が設けられ、必要に応じてバル
ブ7.8を操作することにより消音器3から出た排ガス
をバイパス6を通して煙突5へ直接導けるようになって
いる。消音器3と脱硝反応器4との間でかつ脱硝反応器
4の近傍のダクト2には、還元剤注入袋W17の還元剤
注入口10が設けられている。還元剤注入装置17は、
流量測定器11、流量制御弁12およびこれらの配管系
から構成され、還元剤注入口W9からの還元剤を流量測
定器11および流量制御弁12を介して還元剤注入口1
0からダクト2中を流れる排ガスに注入するようになっ
ている。ダクト中の排ガス量および排ガス中のNO濃度
は、上記還元剤注入口10上流に検出端がそれぞれ設け
られた排ガス流量測定器14およびNO濃度計13によ
り測定され、これらの測定値を基にして制御信号が制御
装置15から還元剤流量制御弁12へ送られ、還元剤注
入口10からの還元剤注入量が制御される。 還元剤としてはアンモニアガスのごとき気体還元剤や、
アンモニア水、尿素水のごとき液体還元剤が使用されて
おり、かような還元剤を注入された排ガスは、脱硝反応
器4内で触媒と接触し、排ガス中のNOは還元反応によ
り無害なN2とN20に転換されたのち、排ガスととも
に煙突5から大気へ放出されることになる。
Exhaust gas from internal combustion engines such as diesel engines contains nitrogen oxides (NO) that cause environmental pollution, so it is necessary to perform denitrification treatment to decompose NO in the exhaust gas before releasing it into the atmosphere. There is. A typical exhaust gas denitrification apparatus that has been conventionally used for such denitrification processing will be explained with reference to FIG. 6. Exhaust gas discharged from the exhaust gas outlet of an internal combustion engine, for example, a diesel engine 1, is passed through a duct 2 to an exhaust gas muffler 3.
It is further guided to the denitrification reactor 4 and finally released into the atmosphere from the chimney 5. A bypass 6 is provided in the duct 2, and the exhaust gas discharged from the muffler 3 can be led directly to the chimney 5 through the bypass 6 by operating a valve 7.8 as required. A reducing agent inlet 10 of a reducing agent injection bag W17 is provided in the duct 2 between the muffler 3 and the denitrification reactor 4 and in the vicinity of the denitrification reactor 4. The reducing agent injection device 17 is
Consisting of a flow rate measuring device 11, a flow rate control valve 12, and a piping system thereof, the reducing agent from the reducing agent inlet W9 is transferred to the reducing agent inlet 1 via the flow rate measuring device 11 and the flow rate control valve 12.
0 into the exhaust gas flowing through the duct 2. The amount of exhaust gas in the duct and the concentration of NO in the exhaust gas are measured by the exhaust gas flow rate meter 14 and the NO concentration meter 13, each of which has a detection end upstream of the reducing agent inlet 10, and based on these measured values. A control signal is sent from the control device 15 to the reducing agent flow rate control valve 12, and the amount of reducing agent injected from the reducing agent inlet 10 is controlled. As a reducing agent, a gaseous reducing agent such as ammonia gas,
A liquid reducing agent such as ammonia water or urea water is used, and the exhaust gas injected with such a reducing agent comes into contact with a catalyst in the denitrification reactor 4, and NO in the exhaust gas is converted into harmless N2 by a reduction reaction. After being converted into N20, it is released into the atmosphere from the chimney 5 along with the exhaust gas.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

上記したような脱硝装置では、還元剤注入口10から注
入された還元剤と排ガスとを均一に効果的に混合するた
めに、種々の工夫が必要となる。 例えば、ダクト内のガス流れ方向に垂直な面に、複数の
管を配置した管列を少なくとも2重に、かつこれらの管
列の方向が互いに交差するように配置したガス混合器を
設けること、またこの管列の個々の管の形状を断面三角
形にすること(実公昭60−36331号公報)などが
提案されている。 さらには、還元剤注入装置の注入部の構造として、煙道
内のガスの流れ方向と直交する方向に沿って配置された
母管と、この母管の後面に取り付けられて母管の後流領
域内に噴出口(注入口)を有するノズルとからなる混合
器W(特公昭59−15006)も提案されている。 また気体還元剤を用いる場合には、第6図に示したよう
に、送風機16により気体還元剤を予混合することによ
って排ガスとの混合を完全にする工夫を還元剤注入装置
に施すことも多い。 しかしなから、上述したような特殊構造のガス混合器を
設置したり特殊形状の噴出ノズルを作製することは、そ
れたけ脱硝装置コストを増加させることになるため、装
置コストを増加させずに還元剤と排ガスとの効果的な均
一混合かできる工夫が望まれるところである。 そこでこの発明は、還元剤と排ガスのごとき異種の流体
を効果的に均一混合することができる、極めて簡単な構
造の流体混合装置を提供することを目的としてなされた
ものである。
In the denitrification device as described above, various measures are required to uniformly and effectively mix the reducing agent injected from the reducing agent inlet 10 and the exhaust gas. For example, providing a gas mixer in which a plurality of tubes are arranged in at least two rows on a plane perpendicular to the gas flow direction in the duct, and the directions of these tube rows are arranged to cross each other; It has also been proposed to make each tube in this tube row triangular in cross section (Japanese Utility Model Publication No. 36331/1983). Furthermore, the structure of the injection part of the reducing agent injection device includes a main pipe arranged along the direction perpendicular to the flow direction of gas in the flue, and a downstream region of the main pipe attached to the rear surface of the main pipe. A mixer W (Japanese Patent Publication No. 59-15006) has also been proposed, which includes a nozzle having an injection port (inlet) therein. Furthermore, when using a gaseous reducing agent, as shown in Figure 6, the reducing agent injection device is often devised to premix the gaseous reducing agent with a blower 16 to ensure complete mixing with the exhaust gas. . However, installing a gas mixer with a special structure as described above or manufacturing a specially shaped jet nozzle will increase the cost of the denitrification equipment, so it is difficult to reduce the amount of nitrogen without increasing the equipment cost. There is a need for a device that can effectively and uniformly mix the agent and the exhaust gas. SUMMARY OF THE INVENTION An object of the present invention is to provide a fluid mixing device with an extremely simple structure that can effectively and uniformly mix different types of fluids such as a reducing agent and exhaust gas.

【問題点を解決するための手段1 すなわちこの発明は、第1の流体が流れるダクトに設け
られた第2の流体を注入する注入口と、この注入口の下
流側ダクト内に配設された該ダクト直径より小さいオリ
フィスを有するオリフィス板とからなることを特徴とす
る流体混合装置である。 この発明において使用する第2の流体の注入口は、流体
か流れているダクト内に異種の流体を注入するためのも
のであれば、どのように形成してもよく、異種流体を注
入するために従来から慣用されている構造のダクト内に
配設された各種の注入手段や吐出手段等において形成さ
れた注入口でもよく、単に注入管をダクト内に挿入して
該注入管先端を開口した状態で設けた注入口やダクトの
側壁に注入管先端口を接続連通した状態の単に側壁に設
けた注入口でもよい。 またオリフィス板のダクト内への設置は、例えばダクト
のフランジ部にオリフィス板を挟み込み固定することに
よって簡単に行うことかできる。 この発明の流体混合装置は、第6図に示したような内燃
機関の排ガス脱硝装置に組み込んで、第1の流体を内燃
機関からの排ガスとし、第2の流体をこの排ガスに混合
する還元剤とした場合に、特に好ましく使用することが
できる。 【作 用】 ダクト内を流れる第1の流体に、注入口から第2の流体
が注入されると、2種の流体は均一に混合されないまま
ダクト内を下流へと流れ、オリフィス板に到達する。 このオリフィス板に設けられたオリフィスはダクト直径
よりも小さいため、流体がオリフィスを通過する際に流
体の流速は急激に高められる。その結果、流体は激しい
乱流状態となり、2種の流体は完全混合されることにな
る。 また、第6図に示したような内燃機関の排ガス脱硝装置
においてダクト内で排ガスと還元剤との混合を行う場合
には、内燃機関の排ガスには脈動が生ずるため、オリフ
ィスによる乱流と排ガスの脈動とにより相乗的に混合が
促進される。
[Means for solving the problem 1] That is, the present invention includes an inlet for injecting the second fluid provided in a duct through which the first fluid flows, and an inlet disposed in the duct downstream of the inlet. and an orifice plate having an orifice smaller than the diameter of the duct. The second fluid inlet used in this invention may be formed in any manner as long as it is for injecting a different type of fluid into the duct through which the fluid is flowing. It may be an injection port formed in various injection means or discharge means arranged in a duct having a structure conventionally used in the past, or simply by inserting an injection pipe into the duct and opening the tip of the injection pipe. The injection port may be simply provided on the side wall of the duct, or the injection port may be simply provided on the side wall of the duct, with the tip end of the injection tube connected and communicating with the side wall of the duct. Further, the orifice plate can be easily installed in the duct by, for example, sandwiching and fixing the orifice plate to the flange portion of the duct. The fluid mixing device of the present invention is incorporated into an exhaust gas denitrification device for an internal combustion engine as shown in FIG. It can be particularly preferably used when [Function] When the second fluid is injected from the injection port into the first fluid flowing in the duct, the two fluids flow downstream in the duct without being uniformly mixed, and reach the orifice plate. . Since the orifice provided in this orifice plate is smaller than the duct diameter, the flow rate of the fluid is rapidly increased as the fluid passes through the orifice. As a result, the fluid becomes highly turbulent and the two fluids are completely mixed. In addition, when the exhaust gas and reducing agent are mixed in the duct in the exhaust gas denitrification system for an internal combustion engine as shown in Figure 6, pulsations occur in the exhaust gas from the internal combustion engine, so turbulence due to the orifice and exhaust gas Mixing is promoted synergistically by the pulsation of

【実施例】【Example】

以下に図面に示す実施例を参照してこの発明を説明する
。 第1図〜第3図はこの発明の流体混合装置の1つの実施
例を示すものであり、ダクト2内に挿入された注入ノズ
ル20に設けられた注入口21とオリフィス板22とか
ら構成されている。 すなわち、第1の流体(例えば排ガス)が矢印A方向に
流れているダクト2内に、第2の流体(例えば還元剤)
の注入口21を6個配列した注入ノズル(注入管)20
を挿入し、この注入ノズル20の下流側のダクト・フラ
ンジ31に、ダクト2直径より小さいオリフィス23を
備えたオリフィス板22を挾み込んで固定しである。 図示の例では、注入口形成部とオリフィス板固定部とを
具備したダクト部分2aからなる流体混合装置が、フラ
ンジ32.33を介してダクト本体部分2に着脱自在と
されている。 注入口21とオリフィス板22との距離およびオリフィ
ス23内径は、この発明の流体混合装置を実際に適用す
るダクト2の寸法、流体の種類や流量等によって変動す
るため、簡単な実験により完全混合に適した最適値を決
定すればよい。 オリフィス23内径が小さくなればダクト2内を流れる
流体のオリフィス23通過時の圧損か大きくなり、流体
混合効果も犬となる。しかしながら、内燃機関の排ガス
に還元剤を注入、混合するような場合には、オリフィス
23での圧損が過大になると、内燃機関の排ガス出口さ
らには内燃機関自体に負荷がかかって好ましくない。従
ってオリフィス23での圧損の上限値は、各内燃機関の
排ガス出口圧力の限度によって決められる。一般的には
、オリフィス23での流体の圧損が約30■1^qまた
はそれ以上となるようなオリフィス内径とすることによ
り、効果的な混合が達成できることが判明している。 なお、排ガス脱硝装置において還元剤としてアンモニア
ガスのごとき気体還元剤を排ガス中に混合する場合には
、この発明の流体混合装置を用いるのに加えて、第6図
に示した予混合用の送風機16を設置してもよく、種々
の混合促進手段を併設することができる。 以下に実験例を挙げてこの発明の流体混合装置の効果を
具体的に説明する。 実験例 1 第1図に示した流体混合装置を用いて、ダクト2内を流
れる空気の中に炭酸ガスを注入、混合し、流体混合試験
を行った。装置寸法、実験条件などは次の通りである。 ダク ト内径:    450 wm オリフィス内径 オリフィス板(1)  400 sm オリフィス板1)  300■■ 炭酸ガス注入口:直径 6v++X6個注入口とオリフ
ィス板との間隔:350am空  気  流  量 :
      89   Na3 /win炭酸ガス添加
量:  約1000 pp。 混合効果の判定は、オリフィス板22設置箇所より下流
側に1〜5m隔てた箇所でダクト2内空気流中の炭酸ガ
ス濃度を測定し、炭酸ガス濃度測定値が略一定を示した
箇所で完全混合が達成されたものとした。結果を第4図
A−Cに示す。図中、横軸はダクト内空気流中の炭酸ガ
ス濃度を測定した箇所を示し、オリフィス板設置箇所か
らの距離(混合距離)で表わしている。 縦軸はその測定箇所における空気流中の炭酸ガス濃度を
示す。 第4図Aはオリフィス板なしの場合であり、オリフィス
通過後4mの箇所で完全混合が達成されているが、3m
の箇所では炭酸ガス濃度の測定値にかなりの振れが認め
られ、均一な混合が達成されていないことを示している
。 第4図Bはオリフィス板(1)を用いた結果であり、オ
リフィスでの圧損は5−請^qを示した。 オリフィス通過後3mの箇所では炭酸ガス濃度測定値の
振れは、第4図Aに比べてかなり小さくなり、オリフィ
ス板の設置により混合効果が向上していることがわかる
。 第4図Cはオリフィス板(n)を用いた結果であり、オ
リフィスての圧損は30I−^qを示した。オリフィス
通過後2mの箇所で完全混合が成されていることがわか
る。なお、オリフィス板のオリフィス内径を3001■
より小さくしても、完全混合の距離は変化しなかった。 従ってこの実験では、オリフィス内径300 as、圧
損30v++^qで十分な完全混合が達成できることが
判明した。 実験例 2 500KWデイーゼルエンジン(■新潟鐵工所製、BL
lQCX型)に第6図の排ガス脱硝装置を取り付け、上
記実験例1で用いたオリフィス板(II)を具備した流
体混合装置を設置した場合と設置しない場合の還元剤と
排ガスとの混合状態を、脱硝率を測定することによって
調べた。 排ガス性状などは下表の通りである。 ディーゼル燃料   A重油 排   ガ   ス   量       3.500
  Na3 /H排ガス温度   350℃ No     濃   度       1.000 
 ppH還   元   剤    アンモニアガスダ
クト直径   350■ 脱硝触媒量   1− 脱硝反応器SV値    3,5001/11(排ガス
空塔速度) 実験は、目標脱硝率を50%と80%に変えてそれぞれ
行った。結果を第5図に示す。 第5図かられかるように、目標脱硝率5096.80%
のいずれも、オリフィス板を設置していない場合には脱
硝率が低く目標値に達していないのに対し、オリフィス
板を設置した場合には目標脱硝率を達成し、還元剤と排
ガスとは効果的に混合されていることがわかる。
The invention will be described below with reference to embodiments shown in the drawings. 1 to 3 show one embodiment of the fluid mixing device of the present invention, which is composed of an injection port 21 provided in an injection nozzle 20 inserted into a duct 2 and an orifice plate 22. ing. That is, in the duct 2 through which the first fluid (e.g. exhaust gas) is flowing in the direction of arrow A, the second fluid (e.g. reducing agent) is introduced.
An injection nozzle (injection pipe) 20 in which six injection ports 21 are arranged.
is inserted into the duct flange 31 on the downstream side of the injection nozzle 20, and an orifice plate 22 provided with an orifice 23 smaller than the diameter of the duct 2 is inserted and fixed. In the illustrated example, a fluid mixing device consisting of a duct portion 2a having an inlet forming portion and an orifice plate fixing portion is detachably attached to the duct body portion 2 via flanges 32, 33. The distance between the inlet 21 and the orifice plate 22 and the inner diameter of the orifice 23 vary depending on the dimensions of the duct 2 to which the fluid mixing device of the present invention is actually applied, the type of fluid, the flow rate, etc., so complete mixing can be achieved by simple experiments. What is necessary is to determine a suitable optimum value. If the inner diameter of the orifice 23 becomes smaller, the pressure drop of the fluid flowing in the duct 2 when it passes through the orifice 23 becomes larger, and the fluid mixing effect becomes worse. However, when a reducing agent is injected and mixed into the exhaust gas of an internal combustion engine, if the pressure drop at the orifice 23 becomes excessive, this is undesirable as it puts a load on the exhaust gas outlet of the internal combustion engine and even on the internal combustion engine itself. Therefore, the upper limit of the pressure drop at the orifice 23 is determined by the limit of the exhaust gas outlet pressure of each internal combustion engine. Generally, it has been found that effective mixing can be achieved by providing an orifice inner diameter such that the fluid pressure drop across orifice 23 is approximately 30.times.1^q or greater. Note that when a gaseous reducing agent such as ammonia gas is mixed into the exhaust gas as a reducing agent in the exhaust gas denitrification device, in addition to using the fluid mixing device of the present invention, the premixing blower shown in FIG. 16 may be installed, and various mixing promoting means may also be installed. The effects of the fluid mixing device of the present invention will be specifically explained below with reference to experimental examples. Experimental Example 1 Using the fluid mixing device shown in FIG. 1, carbon dioxide gas was injected and mixed into the air flowing in the duct 2, and a fluid mixing test was conducted. The device dimensions, experimental conditions, etc. are as follows. Duct inner diameter: 450 wm Orifice inner diameter Orifice plate (1) 400 sm Orifice plate 1) 300■■ Carbon dioxide gas inlet: Diameter 6V++X6 pieces Distance between inlet and orifice plate: 350am Air flow rate:
89 Na3/win Carbon dioxide gas addition amount: Approximately 1000 pp. The mixing effect is determined by measuring the carbon dioxide concentration in the air flow in the duct 2 at a location 1 to 5 meters downstream from the orifice plate 22 installation location, and determining that the carbon dioxide concentration is complete at a location where the measured value of the carbon dioxide concentration is approximately constant. Mixing was assumed to have been achieved. The results are shown in Figures 4A-C. In the figure, the horizontal axis indicates the location where the carbon dioxide concentration in the airflow in the duct was measured, and is expressed as a distance (mixing distance) from the orifice plate installation location. The vertical axis indicates the carbon dioxide concentration in the air flow at the measurement point. Figure 4A shows the case without an orifice plate, and complete mixing is achieved 4m after passing through the orifice, but 3m
Significant fluctuations were observed in the measured values of carbon dioxide concentration at locations indicated by , indicating that uniform mixing was not achieved. Figure 4B shows the results using the orifice plate (1), and the pressure loss at the orifice was 5-cm. At a point 3 m after passing through the orifice, the fluctuation of the measured value of carbon dioxide concentration is considerably smaller than that in FIG. 4A, indicating that the mixing effect is improved by the installation of the orifice plate. Figure 4C shows the results using the orifice plate (n), and the pressure loss at the orifice was 30I-^q. It can be seen that complete mixing is achieved 2 m after passing through the orifice. In addition, the orifice inner diameter of the orifice plate is 3001■
When made smaller, the distance for complete mixing did not change. Therefore, in this experiment, it was found that sufficient complete mixing could be achieved with an orifice inner diameter of 300 as and a pressure loss of 30 v++^q. Experimental example 2 500KW diesel engine (made by Niigata Iron Works, BL
The exhaust gas denitrification device shown in Figure 6 was installed on the 1QCX type), and the mixing state of the reducing agent and exhaust gas was measured with and without the fluid mixing device equipped with the orifice plate (II) used in Experimental Example 1 above. , was investigated by measuring the denitrification rate. The exhaust gas properties are shown in the table below. Diesel fuel A heavy oil Exhaust gas amount 3.500
Na3 /H exhaust gas temperature 350℃ No concentration 1.000
PPH reducing agent Ammonia gas duct diameter 350cm Denitrification catalyst amount 1-Denitrification reactor SV value 3,5001/11 (exhaust gas superficial velocity) Experiments were conducted with the target denitrification rate changed to 50% and 80%. The results are shown in Figure 5. As shown in Figure 5, the target denitrification rate is 5096.80%.
In both cases, when the orifice plate is not installed, the denitrification rate is low and does not reach the target value, whereas when the orifice plate is installed, the target denitrification rate is achieved, and the reducing agent and exhaust gas have no effect. It can be seen that they are mixed.

【発明の効果】【Effect of the invention】

以上説明したようにこの発明の流体混合装置は、注入口
の下流側のダクト内にダクト直径より小さいオリフィス
を有するオリフィス板を配設するという極めて簡単な構
成によって、ダクト内を流れる流体と注入された流体と
の完全な混合を効率よく達成することができる。 従って、内燃機関の排ガス中へ還元剤を注入するに際し
てこの発明の流体混合装置を用いる場合には、還元剤の
注入後に下流側の比較的短い距離内で還元剤と排ガスと
の完全混合か達成できることになり、その結果、還元剤
注入口と脱硝反応器との間の距離を短くでき、脱硝装置
全体のコンパクト化が図れることになる。
As explained above, the fluid mixing device of the present invention has an extremely simple configuration in which an orifice plate having an orifice smaller than the diameter of the duct is disposed in the duct on the downstream side of the injection port, so that the fluid flowing in the duct can be injected. Complete mixing with the mixed fluid can be efficiently achieved. Therefore, when the fluid mixing device of the present invention is used to inject a reducing agent into the exhaust gas of an internal combustion engine, complete mixing of the reducing agent and the exhaust gas can be achieved within a relatively short distance downstream after the reducing agent is injected. As a result, the distance between the reducing agent inlet and the denitrification reactor can be shortened, and the entire denitrification device can be made more compact.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の流体混合装置の実施例を示す説明図
、第2図は第1図の■−■線に沿う断面図、第3図は第
1図の■−■線に沿う断面図、第4図Aはこの発明の流
体混合装置を設置せずに空気流中に炭酸ガスを注入した
場合の混合効果を示すグラフ、第4図Bはこの発明の流
体混合装ft(オリフィス内径400層m)を設置した
場合の混合効果を示すグラフ、第45UCはこの発明の
流体混合装置(オリフィス内径300 as)を設置し
た場合の混合効果を示すグラフ、第5図は内燃機関の排
ガス脱硝装置にこの発明の流体混合装置を設置した場合
と設置しない場合の脱硝率の変化を示すグラフ、第6図
は従来の排ガス脱硝装置の代表例を示す説明図である。 2・・・ダクト、 21・・・注入口、 22・・・オリフィス板、 23・・・オリフィス。 代 理 人 尾 股 4丁 雄 距 離(m> 混合 距 離(m) ぜに口 距 離(m> 第 図 第2図 第 図 第 図
FIG. 1 is an explanatory diagram showing an embodiment of the fluid mixing device of the present invention, FIG. 2 is a cross-sectional view taken along the line ■-■ in FIG. 1, and FIG. 3 is a cross-sectional view taken along the line ■-■ in FIG. 4A is a graph showing the mixing effect when carbon dioxide gas is injected into the air flow without installing the fluid mixing device of this invention, and FIG. 4B is a graph showing the mixing effect of the fluid mixing device of this invention (orifice inner diameter 45 UC is a graph showing the mixing effect when the fluid mixing device of this invention (orifice inner diameter 300 as) is installed. Figure 5 is a graph showing the mixing effect when the fluid mixing device of the present invention (orifice inner diameter 300 as) is installed. FIG. 6 is a graph showing changes in the denitrification rate when the fluid mixing device of the present invention is installed in the device and when it is not installed, and FIG. 6 is an explanatory diagram showing a typical example of the conventional exhaust gas denitrification device. 2... Duct, 21... Inlet, 22... Orifice plate, 23... Orifice. Agent tail 4-male distance (m > Mixed distance (m) Zeni mouth distance (m > Figure 2 Figure 2

Claims (1)

【特許請求の範囲】 1、第1の流体が流れるダクトに設けられた第2の流体
を注入する注入口と、該注入口の下流側ダクト内に配設
された該ダクト直径より小さいオリフィスを有するオリ
フィス板とからなることを特徴とする流体混合装置。 2、前記第1の流体が内燃機関からの排ガスであり、前
記第2の流体が還元剤であることを特徴とする請求項1
記載の流体混合装置。
[Claims] 1. An injection port for injecting a second fluid provided in a duct through which the first fluid flows, and an orifice smaller than the diameter of the duct provided in the duct downstream of the injection port. 1. A fluid mixing device comprising: an orifice plate having an orifice plate; 2. Claim 1, wherein the first fluid is exhaust gas from an internal combustion engine, and the second fluid is a reducing agent.
The fluid mixing device described.
JP2120660A 1990-05-10 1990-05-10 Gas mixing device Expired - Lifetime JPH0775658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2120660A JPH0775658B2 (en) 1990-05-10 1990-05-10 Gas mixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2120660A JPH0775658B2 (en) 1990-05-10 1990-05-10 Gas mixing device

Publications (2)

Publication Number Publication Date
JPH0416221A true JPH0416221A (en) 1992-01-21
JPH0775658B2 JPH0775658B2 (en) 1995-08-16

Family

ID=14791743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2120660A Expired - Lifetime JPH0775658B2 (en) 1990-05-10 1990-05-10 Gas mixing device

Country Status (1)

Country Link
JP (1) JPH0775658B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000061283A1 (en) * 1999-04-09 2000-10-19 Mitsubishi Heavy Industries, Ltd. Device for decomposing organic halogen compound and fluid heating device
JP2003518433A (en) * 1999-12-23 2003-06-10 ビーエーエスエフ アクチェンゲゼルシャフト Method and apparatus for producing a homogeneous mixture of a vaporous aromatic hydrocarbon and an oxygen-containing gas
GR1007313B (en) * 2009-10-27 2011-06-14 Κ.Ε.Σ. Ευγενικος-Χ.Κουκουτος Ο.Ε. Comas Electronics, Device for the comlete mixing of liquids

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544870A (en) * 1977-06-15 1979-01-13 Babcock Hitachi Kk Injecting method for gaseous reducing agent
JPS60137425A (en) * 1983-12-26 1985-07-22 Hitachi Ltd Fluid mixing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544870A (en) * 1977-06-15 1979-01-13 Babcock Hitachi Kk Injecting method for gaseous reducing agent
JPS60137425A (en) * 1983-12-26 1985-07-22 Hitachi Ltd Fluid mixing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000061283A1 (en) * 1999-04-09 2000-10-19 Mitsubishi Heavy Industries, Ltd. Device for decomposing organic halogen compound and fluid heating device
JP2003518433A (en) * 1999-12-23 2003-06-10 ビーエーエスエフ アクチェンゲゼルシャフト Method and apparatus for producing a homogeneous mixture of a vaporous aromatic hydrocarbon and an oxygen-containing gas
JP4669184B2 (en) * 1999-12-23 2011-04-13 ビーエーエスエフ ソシエタス・ヨーロピア Method and apparatus for producing a homogeneous mixture of vaporous aromatic hydrocarbon and oxygen-containing gas
GR1007313B (en) * 2009-10-27 2011-06-14 Κ.Ε.Σ. Ευγενικος-Χ.Κουκουτος Ο.Ε. Comas Electronics, Device for the comlete mixing of liquids

Also Published As

Publication number Publication date
JPH0775658B2 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
EP1712753B1 (en) Module and method for introducing a urea solution into the exhaust gas of an engine
US9482132B2 (en) Gaseous reductant delivery devices and systems
EP1712756B1 (en) Mixing module for a fluid in a current of gas
US4131432A (en) Apparatus for the treatment of gas turbine exhaust gas
RU2578922C1 (en) Device for measurement of content of exhaust gases
EP1712751A2 (en) Static mixer
WO2012008570A1 (en) Exhaust gas purification device
CN101649765B (en) Exhaust gas system
MY127016A (en) Device for reducing a level of nitrogen oxides in an exhaust gas of an internal combustion engine.
CN215115382U (en) Exhaust system
CN104514598A (en) Exhaust gas treatment device
US20140366514A1 (en) Premixer conduit for exhaust aftertreatment system
JP2015075015A (en) Casing structure for exhaust emission control device
EP3978896A1 (en) Circular sampling device for an exhaust gas sensor
JP3296069B2 (en) Fluid mixing device
JPH0416221A (en) Fluid mixing device
JP3554997B2 (en) Exhaust gas denitration equipment
JPH0416216A (en) Addition of liquid reducing agent into exhaust gas
AU2011228545A1 (en) Exhaust emission control device
US20080163616A1 (en) Apparatus for Mixing a Liquid Medium Into a Gaseous Medium
CN211886257U (en) Rectangular flue gas mixer
CN209237721U (en) A kind of static mixer
JPH03175112A (en) Denitrating device for exhaust gas of internal combustion engine
CN220834988U (en) Ultralow specific gas-gas mixer for tail gas treatment
CN220323217U (en) Automobile-used urea solution denitration rack