JPH04140712A - Optical transmission equipment - Google Patents

Optical transmission equipment

Info

Publication number
JPH04140712A
JPH04140712A JP2263104A JP26310490A JPH04140712A JP H04140712 A JPH04140712 A JP H04140712A JP 2263104 A JP2263104 A JP 2263104A JP 26310490 A JP26310490 A JP 26310490A JP H04140712 A JPH04140712 A JP H04140712A
Authority
JP
Japan
Prior art keywords
optical
circuit
signal
operating point
low frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2263104A
Other languages
Japanese (ja)
Other versions
JP2848942B2 (en
Inventor
Hiroshi Nishimoto
央 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2263104A priority Critical patent/JP2848942B2/en
Priority to US07/662,412 priority patent/US5170274A/en
Priority to DE69127840T priority patent/DE69127840T2/en
Priority to EP91103050A priority patent/EP0444688B1/en
Priority to CA002037351A priority patent/CA2037351C/en
Publication of JPH04140712A publication Critical patent/JPH04140712A/en
Priority to US08/904,454 priority patent/USRE36088E/en
Application granted granted Critical
Publication of JP2848942B2 publication Critical patent/JP2848942B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • G02F1/0123Circuits for the control or stabilisation of the bias voltage, e.g. automatic bias control [ABC] feedback loops

Abstract

PURPOSE:To preclude wavelength deterioration due to wavelength dispersion by shifting an operation point by a half cycle on an operation characteristic curve with the use of an operation point switching signal. CONSTITUTION:The waveform of the input signal of an MZ optical modulator 6A includes a superposed low frequency signal. The modulator 6 is driven with the signal to obtain an amplitude-modulated output light signal. When a driving voltage is set to the upper half cycle of the input/output characteristic of the modulator 6A while there is no operation point drift, the low frequency signal component of the input signal is modulated in mutually opposite-phase relation. No frequency component is therefore detected in the output of a photoelectric converting circuit 18. If an operation drift is generated, the low frequency component of the input signal is modulated in in-phase relation and the output light signal is 180 deg. different. A DC signal with a level corresponding to the operation point drift is obtained in the output of a phase detecting circuit 20. A bias control circuit 22 controls the bias of the modulator 6A so that the output light signal contains no frequency component, and corrects the operation point drift to hold the operation point.

Description

【発明の詳細な説明】 目    次 概   要 産業上の利用分野 従来の技術 発明が解決しようとする課題 課題を解決するための手段 作   用 実  施  例 発明の効果 概要 光送信装置に関し、 波長分散の符号が正の場合にも負の場合にも波長分散に
起因する波形劣化を防止得る光送信装置の提供を目的と
し、 光源と、入力信号に応じた駆動電圧を発生する駆動回路
と、上記駆動電圧に応じて上記光源の出射光を変調し、
上記入力信号を光信号に変換する光変調器と、該光変調
器の動作特性曲線のドリフトを検出して、動作点が上記
動作特性曲線に対して一定の位置になるように上記光変
調器を制御する動作点安定化回路とを備えた光送信装置
において、動作点切換信号に基づいて、上記動作点を上
記動作特性曲線上で半周期シフトさせる動作点シフト回
路を備えて構成する。
[Detailed Description of the Invention] Table of Contents Overview Field of Industrial Application Conventional Technology Problems to be Solved by the Invention Means for Solving the Problems Implementation Example Summary of Effects of the Invention Concerning an optical transmitter, it is possible to solve the problem of wavelength dispersion. The purpose of the present invention is to provide an optical transmitter that can prevent waveform deterioration caused by wavelength dispersion both when the sign is positive and when the sign is negative. Modulating the light emitted from the light source according to the voltage,
an optical modulator that converts the input signal into an optical signal; and an optical modulator that detects the drift of the operating characteristic curve of the optical modulator so that the operating point is at a constant position with respect to the operating characteristic curve. The optical transmitter is equipped with an operating point stabilizing circuit that controls the operating point, and includes an operating point shift circuit that shifts the operating point by half a period on the operating characteristic curve based on an operating point switching signal.

産業上の利用分野 本発明は光送信装置に関する。Industrial applications The present invention relates to an optical transmitter.

近年、光通信の高速化に伴い、光伝送路として使用され
る光ファイバの波長分散の影響を受けにくい光変調方式
として、光変調器を用いた外部変調方式の開発が進とら
れている。L I Nb 03 を用いたマツハツエン
ダ型光変調器は優れた変調特性と耐波長分散特性を持つ
光変調器として注目されている。しかし、マツハツエン
ダ型光変調器においても、波長変動が生じ、光ファイバ
の波長分散を介して波形変化が生じることが確認された
(T、Okiyama et at、、  ”1OGb
/s Transmission inしarge−D
isp巳rsion  Fiber  Using  
a  Ti  :  LiNb0:+Mach−Xen
der Modulator  、 l0DC’39 
 vol、3゜PP、 2011209 )。この波長
変動は、光ファイバの波長分散の符号によって、波形の
改善や劣化を弓き起こすので、波長分散の符号によらず
波形劣化が生じにくい光送信装置の実現が要望されてい
る。
In recent years, as optical communications have become faster, development of external modulation methods using optical modulators has been progressing as an optical modulation method that is less susceptible to the chromatic dispersion of optical fibers used as optical transmission lines. A Matsuhatsu Enda type optical modulator using L I Nb 03 is attracting attention as an optical modulator with excellent modulation characteristics and wavelength dispersion resistance. However, it has been confirmed that wavelength fluctuations occur even in the Matsuhatsu Enda type optical modulator, and waveform changes occur through the wavelength dispersion of the optical fiber (T, Okiyama et at, "1OGb
/s Transmission inshilarge-D
ISPMirsion Fiber Using
aTi: LiNb0:+Mach-Xen
der Modulator, l0DC'39
vol, 3°PP, 2011209). This wavelength fluctuation causes improvement or deterioration of the waveform depending on the sign of the chromatic dispersion of the optical fiber, so there is a demand for an optical transmitter that is less susceptible to waveform deterioration regardless of the sign of the chromatic dispersion.

従来の技術 従来、第13図に示すように、光源2と、入力信号に応
じた駆動電圧を発生する駆動回路4と、駆動電圧に応じ
て光R2の出射光を変調し、入力信号を光信号に変換す
る光変調器6と、光変調器6の動作特性曲線のドリフト
を検出して、動作点が動作特性曲線に対して一定の位置
になるように光変調器6を制御する動作点安定化回路8
とを備えた光送信装置が公知である(桑田他、「マツハ
ツエンダ型光変調器用自動バイアス制御回路の検討J、
1990年電子情報通信学会春季全国大会、B−976
>。このような外部変調方式による場合、半導体レーザ
の注入電流をデータ信号により変調する直接変調方式に
よる場合と比較して、光信号の波長変動(チャーピング
)は改善されるが、特に高速伝送を行う場合には、外部
変調方式におけるチャーピングの影響を無視することが
できない。
2. Description of the Related Art Conventionally, as shown in FIG. 13, a light source 2, a drive circuit 4 that generates a drive voltage according to an input signal, and a drive circuit 4 that modulates the emitted light R2 according to the drive voltage and converts the input signal into light. An optical modulator 6 that converts into a signal, and an operating point that detects the drift of the operating characteristic curve of the optical modulator 6 and controls the optical modulator 6 so that the operating point is at a constant position with respect to the operating characteristic curve. Stabilization circuit 8
(Kuwata et al., "Study of automatic bias control circuit for Matsuhatsu Enda type optical modulator J,"
1990 IEICE Spring National Conference, B-976
>. When using such an external modulation method, the wavelength fluctuation (chirping) of the optical signal is improved compared to the case using a direct modulation method where the injection current of the semiconductor laser is modulated by the data signal, but it is especially important for high-speed transmission. In some cases, the effect of chirping in the external modulation method cannot be ignored.

第14図は、マツハツエンダ型光変調器において波長変
動が生じた場合の光フアイバ伝送による波形劣化を計算
機ンミュレーンヨンした例を示す図である。同図(a)
、ら)、(C)はそれぞれ波長分散がOps/nm 、
  600ps/nm 、 −600ps/nmのとき
のアイパターンのシミュレーション結果を示している。
FIG. 14 is a diagram showing an example of computer simulation of waveform deterioration due to optical fiber transmission when wavelength fluctuation occurs in a Matsuhatsu Enda type optical modulator. Figure (a)
, et al.), and (C) have wavelength dispersion of Ops/nm, respectively.
The simulation results of the eye pattern at 600 ps/nm and -600 ps/nm are shown.

この例では、正符号の波長分散に対しては波形が改善さ
れるが、負符号の波長分散に対しては波形劣化が生じて
いることが分かる。
In this example, it can be seen that the waveform is improved for chromatic dispersion with a positive sign, but the waveform is degraded for chromatic dispersion with a negative sign.

発明が解決しようとする課題 波長が1.3μm帯の光源に対して零分散波長く波長分
散が0になる波長)が1.3μm帯の光ファイバを使用
する場合、あるいは波長が1.5μm帯の光源に対して
零分散波長が1.5μm帯の光ファイバを使用する場合
等のように、零分散の波長帯で光ファイバを使用する場
合には、光ファイバの零分散波長のばらつき及び光源の
波長のばらつきにより、波長分散の符号は正にも負にも
なり得る。また、長距離に渡って敷設された光ファイバ
を用いる場合には、例え零分散に近し)波長を用いても
総合の波長分散は大きくなる。特に、光増幅器を使用す
るシステムでは、光ファイバの損失を光増幅器の利得で
補償することにより、極めて長距離な伝送が可能になる
ので、零分散の波長帯で光ファイバを使用する場合の波
長分散の影響を無視することができない。このように、
従来技術によると、波長分散の符号が正にも負にもなり
得る場合には、いずれか一方の分散で波形劣化が生じ易
くなるという問題がある。
Problems to be Solved by the Invention When using an optical fiber with a wavelength of 1.3 μm (zero dispersion wavelength (long wavelength at which wavelength dispersion becomes 0)) for a light source with a wavelength of 1.3 μm, or when using an optical fiber with a wavelength of 1.5 μm When using an optical fiber in the zero-dispersion wavelength band, such as when using an optical fiber with a zero-dispersion wavelength of 1.5 μm for a light source, variations in the zero-dispersion wavelength of the optical fiber and the light source The sign of chromatic dispersion can be positive or negative depending on the variation in wavelength. Further, when using an optical fiber installed over a long distance, the total chromatic dispersion becomes large even if a wavelength (nearly zero dispersion) is used. In particular, in systems using optical amplifiers, extremely long distance transmission is possible by compensating the loss of the optical fiber with the gain of the optical amplifier. The influence of dispersion cannot be ignored. in this way,
According to the prior art, when the sign of chromatic dispersion can be positive or negative, there is a problem that waveform deterioration is more likely to occur due to one of the dispersions.

本発明はこのような技術的課題に鑑みて創作されたもの
で、波長分散の符号が正の場合にも負の場合にも波長分
散に起因する波形劣化を防止し得る光送信装置を提供す
ることを目的としている。
The present invention was created in view of such technical problems, and provides an optical transmitter that can prevent waveform deterioration caused by chromatic dispersion, whether the sign of chromatic dispersion is positive or negative. The purpose is to

課題を解決するための手段 第1図は本発明の構成を示す図である。Means to solve problems FIG. 1 is a diagram showing the configuration of the present invention.

本発明の光送信装置は、光源2と、入力信号に応じた駆
動電圧を発生する駆動回路4と、上記駆動電圧に応じて
上記光源2の出射光を変調し、上記入力信号を光信号に
変換する光変調器6と、該光変調器6の動作特性曲線の
ドリフトを検出して、動作点が上記動作特性曲線に対し
て一定の位置になるように上記光変調器6を制御する動
作点安定化回路8とを備えた光送信装置において、動作
点切換信号に基づいて、上記動作点を上記動作特性曲線
上で半周期ソフトさせる動作点シフト回路10を備えて
構成される。
The optical transmitter of the present invention includes a light source 2, a drive circuit 4 that generates a drive voltage according to an input signal, and a drive circuit 4 that modulates the light emitted from the light source 2 according to the drive voltage to convert the input signal into an optical signal. An operation of detecting the optical modulator 6 to be converted and the drift of the operating characteristic curve of the optical modulator 6, and controlling the optical modulator 6 so that the operating point is at a constant position with respect to the operating characteristic curve. The optical transmitting apparatus includes an operating point shift circuit 10 that softens the operating point by half a cycle on the operating characteristic curve based on an operating point switching signal.

望ましくは、上記光変調器は、2経路に分岐した光導波
路における位相変調効率が異なるマツハツエンダ型光変
調器である。
Preferably, the optical modulator is a Matsuhatsu Enda type optical modulator with different phase modulation efficiencies in the optical waveguide branched into two paths.

望ましくは、動作点ソフト回路による動作点のシフトに
対応して入力信号の極性を反転させる極性反転回路が備
えられている。
Preferably, a polarity inversion circuit is provided that inverts the polarity of the input signal in response to the shift of the operating point by the operating point software circuit.

作   用 2経路に分岐した先導波路における位相変調効率が異な
るマツハツエンダ型光変調器において、動作点を動作特
性曲線上で半周期シフトさせると、2経路に分岐した光
導波路における初期位相差が変化するので、光パルスの
立ち上がり時に光の位相を進ませ或いは遅らせることが
できるようになる。位相が進むと波長は瞬間的に短くな
り、位相が遅れると波長は瞬間的に長くなるので、波長
分散に起因する波形劣化を有効に防止し得るようになる
Effect In a Matsuhatsu Enda optical modulator with different phase modulation efficiencies in the leading waveguide that branches into two paths, if the operating point is shifted by half a period on the operating characteristic curve, the initial phase difference in the optical waveguide that branches into two paths changes. Therefore, the phase of the light can be advanced or delayed at the rise of the optical pulse. When the phase advances, the wavelength becomes instantaneously shorter, and when the phase lags, the wavelength instantaneously becomes longer, so that waveform deterioration caused by chromatic dispersion can be effectively prevented.

2経路に分岐した光導波路における位相変調効率が異な
るマツハツエンダ型光変調器以外の光変調器が用いられ
ている場合には、動作点を動作特性曲線上で半周期シフ
トさせることによって、入力信号の−1−及び1“0=
・に対応した出力光信号の1−オン−及び−万フーを切
り換えることができるようになる。
If an optical modulator other than the Matsuhatsu Enda optical modulator with different phase modulation efficiencies in the optical waveguide branched into two paths is used, the input signal can be adjusted by shifting the operating point by half a cycle on the operating characteristic curve. −1− and 1“0=
It becomes possible to switch the output optical signal corresponding to 1-on- and -10,000-fu.

実  施  例 以下本発明の詳細な説明する。Example The present invention will be explained in detail below.

第2図は本発明の第1実施例を示す光送信装置のブロッ
ク図である。光源2としては、定常電流で駆動される半
導体レーザを用し)ることができる。
FIG. 2 is a block diagram of an optical transmitter showing a first embodiment of the present invention. As the light source 2, a semiconductor laser driven by a steady current can be used.

光変調器としては、この実施例ではマツハツエンダ型光
変調器(以下r M l光変調器二ということがある。
In this embodiment, the optical modulator is a Matsuhatsu Enda type optical modulator (hereinafter sometimes referred to as rMl optical modulator 2).

)6Aが用いろれる。、MZ光変調器6への構成及び動
作については後に詳述する。MZ光変誦器6Aは、駆動
回路4により駆動電圧が与えられ、また、動作点安定化
回路8の機能によって、駆動回路4を介してバイアス電
圧が制御される。
) 6A can be used. , the configuration and operation of the MZ optical modulator 6 will be detailed later. A drive voltage is applied to the MZ optical converter 6A by the drive circuit 4, and a bias voltage is controlled via the drive circuit 4 by the function of the operating point stabilization circuit 8.

24は動作点シフト回路による動作点のシフトに対応し
て入力信号の極性を反転させる第1の極性反転回路であ
る。
24 is a first polarity inversion circuit that inverts the polarity of the input signal in response to the shift of the operating point by the operating point shift circuit.

動作点安定化回路8は、所定周波数(−f。)の低周波
信号を出力する低周波発振器12と、この低周波信号で
入力信号に振幅変調をかけて駆動回路4に送出する低周
波重畳回路14と、M Z光変調器6Aから出力される
光信号を分岐する光分岐回路16と、光分岐回路16に
より分岐された光信号のうちの一方を電気信号に変換す
る光−電気変換回路18と、この電気信号に含まれる上
記低周波信号の周波数成分を検出し、この周波数成分の
位相を低周波信号の位相と比較して、当該位相差に応じ
た極性で且つ動作点ドリフトに応じたレベルのDC信号
を出力する位相検出回路20と、このDC信号がDにな
るようにMZ光変調器6Aのバイアスをフィードバック
制御するバイアス制御回路22とを備えて構成されてい
る。
The operating point stabilization circuit 8 includes a low frequency oscillator 12 that outputs a low frequency signal of a predetermined frequency (-f.), and a low frequency superimposition circuit that applies amplitude modulation to an input signal using this low frequency signal and sends it to the drive circuit 4. A circuit 14, an optical branching circuit 16 that branches the optical signal output from the MZ optical modulator 6A, and an optical-electrical conversion circuit that converts one of the optical signals branched by the optical branching circuit 16 into an electrical signal. 18, the frequency component of the low frequency signal contained in this electrical signal is detected, the phase of this frequency component is compared with the phase of the low frequency signal, and the polarity is determined according to the phase difference and according to the operating point drift. A phase detection circuit 20 that outputs a DC signal at a level D, and a bias control circuit 22 that feedback controls the bias of the MZ optical modulator 6A so that the DC signal becomes D.

第3図は光変調器の出力光信号の波形を示す図、第4図
は正方向の動作点ドリフト (動作特性曲線(出力光電
力と駆動電圧との関係を示す曲線)のドリフト)が発生
しているときの出力光信号の波形を示す図、第5図は負
方向の動作点ドリフトが発生しているときの出力光信号
の波形を示す図である。
Figure 3 shows the waveform of the output optical signal of the optical modulator, and Figure 4 shows the occurrence of positive operating point drift (drift of the operating characteristic curve (curve showing the relationship between output optical power and drive voltage)). FIG. 5 is a diagram showing the waveform of the output optical signal when a negative operating point drift occurs.

以下、第2図〜第5図を参照して、〜4Z光変調器6Δ
の動作点ドリフトに応じた動作点の制御動作につし1て
説肋する。
Hereinafter, with reference to FIGS. 2 to 5, ~4Z optical modulator 6Δ
The control operation of the operating point according to the operating point drift will be explained.

M Z光変調器6Aで光信号に変換される入力信号の波
形は、第3図に(a)で示されるように、入力信号に低
周波信号が重畳されたものである。二のような入力信号
で第3図に(b)で示す入出力特性(動作特性曲線)を
有するMZ光変調器6Aを駆動すると、第3図に(c)
で示すように周波数2f。
The waveform of the input signal converted into an optical signal by the MZ optical modulator 6A is a low frequency signal superimposed on the input signal, as shown in FIG. 3(a). When the MZ optical modulator 6A having the input/output characteristics (operating characteristic curve) shown in FIG. 3(b) is driven with an input signal as shown in FIG. 3(c),
The frequency is 2f as shown.

の信号で振幅変調された出力光信号が得ちれる。An output optical signal whose amplitude is modulated by the signal is obtained.

動作点ドリフトがない状態では、入力信号の各論理レベ
ルに対応した駆動電圧V。、vl がMZ光変調器6.
への入出力特性上でそれぞれ上下の尖頭値間(半周期)
に設定されているので、入力信号に重畳された低周波信
号は、入力信号の−(ルベル及び「1−・レベルで互い
に逆相で変調される。従って、光−電気変換回路18の
出力には、fo の周波数成分は検出されない。
In a state where there is no operating point drift, the drive voltage V corresponds to each logic level of the input signal. , vl are MZ optical modulators 6.
Between the upper and lower peak values (half cycle) on the input and output characteristics of
Therefore, the low frequency signal superimposed on the input signal is modulated in opposite phases to each other at the -(Level and 1-) levels of the input signal. Therefore, the low frequency signal superimposed on the input signal is , the frequency component of fo is not detected.

しかし、動作点ドリフトが生じると、第4図及び第5図
に示すように、入力信号に重畳された低周波信号が入力
信号のrO」レベル及び「1」において同相で変調され
る。出力される光信号の平均電力は、このような同相変
調に伴って周波数f。で変動し、その周波数成分子0 
の位相はMZ光変調器6Aの動作点ドリフトの方向に応
じて、180°異なった値となる。従って、位相検出回
路20の出力には、その周波数成分子。と低周波発振器
12が出力する低周波信号との位相差に応じた極性で且
つ動作点ドリフトの程度に応じたレベルのDC信号が得
られることになる。
However, when an operating point drift occurs, as shown in FIGS. 4 and 5, the low frequency signal superimposed on the input signal is modulated in phase at the rO" level and "1" of the input signal. The average power of the output optical signal increases with frequency f due to such in-phase modulation. and its frequency component element 0
The phase differs by 180° depending on the direction of the operating point drift of the MZ optical modulator 6A. Therefore, the output of the phase detection circuit 20 contains the frequency components. A DC signal with a polarity that corresponds to the phase difference between the low-frequency signal output from the low-frequency oscillator 12 and a level that corresponds to the degree of the operating point drift is obtained.

バイアス制御回路22は、このような動作点ドリフトに
応じた信号により、出力光信号に周波数成分子。が含ま
れないようにMZ光変調器6Aのバイアスを制御し、動
作点ドリフトを補正した最適の動作点を保持する。
The bias control circuit 22 adds a frequency component to the output optical signal using a signal corresponding to such an operating point drift. The bias of the MZ optical modulator 6A is controlled so as not to include, and the optimum operating point with the operating point drift corrected is maintained.

尚、位相検出回路20は、光−電気変換回路18の出力
信号と低周波発振器12からの低周波信号とが入力され
る同期検波回路と、この同期検波回路の出力信号の直流
成分を通過させる低域通過フィルタとにより構成するこ
とができる。また、バイアス制御回路22は、入力端子
の一方に位相検出回路20の出力信号が入力され入力端
子の他方は接地されている演算増幅器を用いて構成する
ことができる。
The phase detection circuit 20 includes a synchronous detection circuit to which the output signal of the optical-electrical conversion circuit 18 and the low frequency signal from the low frequency oscillator 12 are input, and a DC component of the output signal of this synchronous detection circuit. It can be configured with a low-pass filter. Further, the bias control circuit 22 can be configured using an operational amplifier having one input terminal into which the output signal of the phase detection circuit 20 is input, and the other input terminal being grounded.

この実施例では、動作点シフト回路としては、動作点切
換信号に基づいて、位相検出回路20に入力する低周波
信号の極性を反転させる(低周波信号の位相を180°
変化させる)第2の極性反転回路10Aが用いられてい
る。
In this embodiment, the operating point shift circuit inverts the polarity of the low frequency signal input to the phase detection circuit 20 based on the operating point switching signal (changes the phase of the low frequency signal by 180 degrees).
A second polarity inverting circuit 10A (changing the polarity) is used.

第6図はMZ光変調器10Δの構成を示す図である。こ
のMZ光変調器10Aは、LiNbo3のZカット面を
用い、この面にT1を熱拡散させる等によって先導波路
を形成し、この光導波路に電極を装架して構成されてい
る。30は導波路基板、32は入力端光導波路、3.、
.2 A、  32 Bは入力端光導波路32から2つ
の経路に分岐する光導波路、33は光導波路32A、3
2Bが合流する出力側光導波路、34は主として光導波
路32Aに装架された進行波電極、36は光導波路32
Bに装架されたアース電極である。アース電極36は接
地されており、アース電極36及び進行波電極34の出
力側光導波路33に近い方の端部には#端抵抗38が接
続されている。駆動電圧はアース電極36及び進行波電
極34の終端抵抗38が設けられていない側に供給され
る。また、バイアス電圧は進行波電極34に与えられる
。二〇M Z光変調器10Aにあっては、進行波電極3
4とアース電極36の形状が非対称であるので、光導波
路32A、32Bに印加される電界の強さが異なり、8
力光信号パルスの立ち上がり部分と立ち下がり部分とで
その波長に差が生じることになる。
FIG. 6 is a diagram showing the configuration of the MZ optical modulator 10Δ. This MZ optical modulator 10A is constructed by using a Z-cut surface of LiNbo3, forming a leading waveguide by thermally diffusing T1 on this surface, and mounting electrodes on this optical waveguide. 30 is a waveguide substrate; 32 is an input end optical waveguide; 3. ,
.. 2A and 32B are optical waveguides that branch into two paths from the input end optical waveguide 32, and 33 are optical waveguides 32A and 3.
2B is the output side optical waveguide where they merge, 34 is a traveling wave electrode mainly mounted on the optical waveguide 32A, and 36 is the optical waveguide 32.
This is the ground electrode mounted on B. The earth electrode 36 is grounded, and a #-end resistor 38 is connected to the ends of the earth electrode 36 and the traveling wave electrode 34 that are closer to the output optical waveguide 33. The driving voltage is supplied to the ground electrode 36 and the side of the traveling wave electrode 34 where the terminating resistor 38 is not provided. Further, a bias voltage is applied to the traveling wave electrode 34. In the 20M Z optical modulator 10A, the traveling wave electrode 3
Since the shapes of 4 and the ground electrode 36 are asymmetrical, the strength of the electric field applied to the optical waveguides 32A and 32B is different.
There will be a difference in wavelength between the rising and falling portions of the optical signal pulse.

第7図はMZ光変調器の動作点と波長変動の関係を説明
するための図である。
FIG. 7 is a diagram for explaining the relationship between the operating point and wavelength fluctuation of the MZ optical modulator.

以下の説明において、Eo は入力光電界の振幅、ω0
 は入力光電界の角周波数、tは時間、φ、。
In the following explanation, Eo is the amplitude of the input optical electric field, ω0
is the angular frequency of the input optical electric field, t is the time, φ,.

φB はそれぞれ、駆動電圧波形VD (t)  によ
り光導波路32A、32Bにおいて変調された位相を表
す。φ、。、φB0はそれぞれV(1(t)  がOの
ときに光導波路32A、32Bで生じる光電界の位相変
化である。VB +  ”B   はバイアス電圧であ
る。
φB represents the phase modulated in the optical waveguides 32A and 32B by the drive voltage waveform VD (t), respectively. φ,. , φB0 are the phase changes of the optical electric fields that occur in the optical waveguides 32A and 32B when V(1(t)) is O, respectively.VB+''B is the bias voltage.

光変調器で生じる損失を無視すると、各部の光電界は以
下のように表される。
Ignoring the loss caused by the optical modulator, the optical electric field at each part is expressed as follows.

入力光電界; E、、(t) = EoCOS (ωat)     
 −11)光導波路32A出力部の光電界; L   (t)=E。C03(ω。1  + φA  
 (VD   (t))−φA、)/、l’2・・・(
2) 光導波路32B出力部の光電界; εB (t)−EOCDS(ωOt−φn (vn (
t))+φno)/y=2・・・(3) 出力光電界臼。ul (1) ・(巳A  (t)・ El  (t))/  、/−
2=Eo/2 ・(X2+Y2) ”” ・C03(ω
。t−tan−’ (Y/X))・・・(4) ここで、X−口O5(φA (v。(t))+ φえ。
Input optical electric field; E,, (t) = EoCOS (ωat)
-11) Optical electric field at the output part of the optical waveguide 32A; L (t)=E. C03(ω.1 + φA
(VD (t))-φA,)/, l'2...(
2) Optical electric field at the output part of the optical waveguide 32B; εB (t)-EOCDS(ωOt-φn (vn (
t))+φno)/y=2...(3) Output light electric field mill. ul (1) ・(A (t)・El (t))/ , /-
2=Eo/2 ・(X2+Y2) ”” ・C03(ω
. t-tan-' (Y/X))...(4) Here, X-port O5(φA (v.(t))+φe.

)+C03(φB  (VD  (t))+ φB0)
Y=SIN(φA   (Vn   (t))−φ工。
)+C03(φB (VD (t))+φB0)
Y=SIN(φA(Vn(t))−φwork.

)+SIN  (φB  (VD  (t))+  φ
mo)である。
)+SIN (φB (VD (t))+φ
mo).

波長変動は(4)式の位相変調項jan −’(Y/X
)を用いて以下のように表される。
The wavelength fluctuation is the phase modulation term jan −'(Y/X
) is expressed as follows.

(4)式の光電界の位相成分ω。t−tanへ(Y/X
)をΦ(1)  と置くと、 出力光の角周波数ω(t) = d(Φ(t))/dt
波長λ(1)・2 πC/ω(1>  より、λ(t)
=2  π(、/ω(1) =2yrc/(ω。−d(tan −’(Y/X))/
dt)  −(7)となる。
Phase component ω of the optical electric field in equation (4). To t-tan (Y/X
) as Φ(1), the angular frequency of output light ω(t) = d(Φ(t))/dt
From the wavelength λ(1)・2 πC/ω(1>, λ(t)
=2 π(, /ω(1) =2yrc/(ω.-d(tan-'(Y/X))/
dt) - (7).

一方、出力光強度P。ul (1) (Eo/2)’  ・(X2=Y”)   −= (8
)となる。
On the other hand, the output light intensity P. ul (1) (Eo/2)' ・(X2=Y”) −= (8
).

いま、進行波電極311に印加する電圧を増加させると
、光導波路32Aを伝搬する光の位相は進み、先導波路
32Bを伝搬する光の位相は遅れる。
Now, when the voltage applied to the traveling wave electrode 311 is increased, the phase of the light propagating through the optical waveguide 32A advances, and the phase of the light propagating through the leading waveguide 32B is delayed.

即ち、装架電極の非対称性によって、光導波路32Aに
印加される電界の方が光導波路32Bに印加される電界
よりも強いので、光導波路32Aにおける位相変調の方
が大きく、進行波電極34に印加する電圧を増加させた
ときに、この変調器の出力光の位相は必ず進む。一方、
進行波電極に印加する電圧を増加させたときの光強度の
変化は、光導波路32A、32Bを伝搬する光の初期位
相差に応じて、増加にもなり得るし、減少にもなり得る
。動作点を変えるということは、バイアス電圧により光
導波路32Δ、32Bを伝搬する光の初期位相差を変え
ることに相当する。従って、動作点の設定条件を変える
ことにより、出力光パルスの立ち上がり時に光の位相を
進ませ或いは遅ろせることができることになる。位相が
進むと波長は一時的に短くなり、位相が遅れると波長は
一時的に長くなる。このように、動作点の設定により出
力光パルス内の波長変動を短波長から長波長へ或いは長
波長から短波長へと変えることができる。
That is, due to the asymmetry of the mounted electrodes, the electric field applied to the optical waveguide 32A is stronger than the electric field applied to the optical waveguide 32B, so the phase modulation in the optical waveguide 32A is larger, and the electric field applied to the traveling wave electrode 34 is stronger. When the applied voltage is increased, the phase of the output light from this modulator always advances. on the other hand,
The change in light intensity when the voltage applied to the traveling wave electrode is increased can either increase or decrease depending on the initial phase difference of the light propagating through the optical waveguides 32A, 32B. Changing the operating point corresponds to changing the initial phase difference of the light propagating through the optical waveguides 32Δ and 32B using a bias voltage. Therefore, by changing the setting conditions of the operating point, it is possible to advance or delay the phase of the light at the rise of the output optical pulse. When the phase advances, the wavelength becomes temporarily shorter, and when the phase lags, the wavelength becomes temporarily longer. In this way, by setting the operating point, it is possible to change the wavelength fluctuation within the output optical pulse from a short wavelength to a long wavelength or from a long wavelength to a short wavelength.

本実施例では、動作点のソフトに対応して入力信号の特
性を反転させる第1の極性反転回路24が設けられてい
るので、動作点を動作特性曲線上で半周期ソフトさせて
光パルス内の波長変動を前述のように変えたときに、第
7図に示すように、入力信号の極性と出力光波形の曲線
との対応関係は変化しない。尚、第7図において、動作
点Aは駆動電圧を上昇させると出力光強度が減少する領
域に設定されており、動作点Bは駆動電圧を上昇させる
と出力光強度が増大する領域に設定されている。
In this embodiment, since the first polarity inverting circuit 24 is provided to invert the characteristics of the input signal in accordance with the softness of the operating point, the operating point is softened by half a cycle on the operating characteristic curve, and the optical pulse is When the wavelength fluctuation is changed as described above, the correspondence between the polarity of the input signal and the curve of the output light waveform does not change, as shown in FIG. In FIG. 7, operating point A is set in a region where the output light intensity decreases as the drive voltage increases, and operating point B is set in a region where the output light intensity increases as the drive voltage increases. ing.

動作点Aにて光変調器を駆動すると、出力光パルスの前
半部分が長波長となり後半部分が短波長となる。また、
動作点Bにて光変調器を駆動すると、出力光波形の前半
部分が短波長となり後半部分が長波長となる。
When the optical modulator is driven at operating point A, the first half of the output optical pulse has a long wavelength and the second half has a short wavelength. Also,
When the optical modulator is driven at operating point B, the first half of the output optical waveform has a short wavelength and the second half has a long wavelength.

動作点A及び動作点Bにて光変調器を駆動し、そのとき
の光出力を波長分散が+600ps/nm及び−600
ps/nm の光ファイバにより伝送したときのアイパ
ターンの変化のシミニレ−ジョン結果を第8図に示す。
The optical modulator is driven at operating point A and operating point B, and the optical output at that time is determined to have wavelength dispersion of +600 ps/nm and -600 ps/nm.
FIG. 8 shows the results of the smearing of changes in the eye pattern when transmitted through a ps/nm optical fiber.

このときの入力信号のビットレートは10Gb/sであ
る。正の波長分散である場合には、動作点Aで駆動した
ときにアイパターンが改善されており、一方、負の波長
分散である場合こは、動作点Bで駆動したときにアイパ
ターンが改善されている。このように、波長分散の符号
が正の場合にも負の場合にも波長分散に起因する波形劣
化を防止し得る。
The bit rate of the input signal at this time is 10 Gb/s. If the wavelength dispersion is positive, the eye pattern is improved when driven at operating point A, while if it is negative, the eye pattern is improved when driven at operating point B. has been done. In this way, waveform deterioration due to chromatic dispersion can be prevented whether the sign of chromatic dispersion is positive or negative.

この実施例では、動作点シフト回路10として、動作点
切換信号に基づいて、位相検出回路20に入力する低周
波信号の極性を反転させる第2の曲線反転回路10Aが
用いられている。第9図はMZ光変調器6Aのバイアス
電圧と位相検出回路出力との関係を示すグラフである。
In this embodiment, a second curve inversion circuit 10A is used as the operating point shift circuit 10, which inverts the polarity of the low frequency signal input to the phase detection circuit 20 based on the operating point switching signal. FIG. 9 is a graph showing the relationship between the bias voltage of the MZ optical modulator 6A and the phase detection circuit output.

破線は低周波信号の極性を反転しない場合を示しており
、実線は低周波信号の極性を反転した場合を示す。バイ
アス制御回路22によるフィードバンク制御により、極
性を反転しない場合にはバイアス電圧はV B lに安
定化され、極性を反転した場合にはバイアス電圧はV 
B 2に安定化される。このように、位相検出回路20
に入力する低周波信号の極性を反転させることにより、
動作点をシフトさせて波長分散の影響を最小限に抑える
ことができる。
The broken line shows the case where the polarity of the low frequency signal is not inverted, and the solid line shows the case where the polarity of the low frequency signal is inverted. Due to the feedbank control by the bias control circuit 22, the bias voltage is stabilized at VBl when the polarity is not reversed, and the bias voltage is stabilized at VBl when the polarity is reversed.
Stabilized to B2. In this way, the phase detection circuit 20
By reversing the polarity of the low frequency signal input to the
The influence of chromatic dispersion can be minimized by shifting the operating point.

第10図は本発明の第2実施例を示す光送信装置のブロ
ック図である。この実施例では、動作点シフト回路とし
て、第1実施例における第2の極性反転回路10Aに替
えて、動作点切換信号に基づいて低周波重畳回路14に
入力する低周波信号の極性を反転させる第3の極性反転
回路10Bが設けられている。つまり、位相検出回路2
0に入力する低周波信号の極性を反転させるのではなく
、低周波重畳回路14に入力する低周波信号の極性を反
転させることによって、MZ光変調器6Aの動作点をシ
フトさせるものである。
FIG. 10 is a block diagram of an optical transmitter showing a second embodiment of the present invention. In this embodiment, the operating point shift circuit inverts the polarity of the low frequency signal input to the low frequency superimposition circuit 14 based on the operating point switching signal, instead of the second polarity inversion circuit 10A in the first embodiment. A third polarity inversion circuit 10B is provided. In other words, the phase detection circuit 2
The operating point of the MZ optical modulator 6A is shifted by inverting the polarity of the low frequency signal input to the low frequency superimposing circuit 14 instead of inverting the polarity of the low frequency signal input to the low frequency superimposing circuit 14.

また、第11図は、本発明の第3実施例を示す光送信装
置のブロック図である。この実施例では、動作点シフト
回路10として、動作点切換信号に基づいて、光−電気
変換回路18、位相検出回路20又はバイアス制御回路
22におけるフィードバックループの極性を反転させる
第4の極性反転回路10Cが用いられている。
Further, FIG. 11 is a block diagram of an optical transmitter showing a third embodiment of the present invention. In this embodiment, the operating point shift circuit 10 is a fourth polarity inversion circuit that inverts the polarity of the feedback loop in the optical-to-electrical conversion circuit 18, the phase detection circuit 20, or the bias control circuit 22 based on the operating point switching signal. 10C is used.

第2又は第3実施例によっても、第1実施例による場合
と同様に、光伝送路として使用される光ファイバの波長
分散特性に応じて、MZ光変調器6Aの動作点を動作特
性曲線上で半周期シフトさせることによって、波長分散
による影響を最小限に抑えることができる。
In the second or third embodiment, as in the case of the first embodiment, the operating point of the MZ optical modulator 6A is set on the operating characteristic curve according to the wavelength dispersion characteristics of the optical fiber used as the optical transmission line. By shifting the wavelength by half a period, the influence of chromatic dispersion can be minimized.

第12図は本発明実施例の効果の説明図であって、波長
分散とパワーペナルティとの関係を示すグラフである。
FIG. 12 is an explanatory diagram of the effect of the embodiment of the present invention, and is a graph showing the relationship between chromatic dispersion and power penalty.

破線は従来方式に相当し、実線は本発明実施例において
波長分散の符号に応じて最適な動作点を設定した場合に
相当し、−点鎖線は光源の波長変動が全くない場合に相
当している。
The broken line corresponds to the conventional method, the solid line corresponds to the case where the optimal operating point is set according to the sign of the wavelength dispersion in the embodiment of the present invention, and the dashed line corresponds to the case where there is no wavelength fluctuation of the light source. There is.

ここで、パワーペナルティは、次の式で定義され(パワ
ーペナルティ) −10iog+。 (波長分散がある
ときの最小受光電力/波長分散が0のときの最小受光電
力>  (dB) 第12図から、本発明により波長分散に対する耐力が従
来に比べて大幅に改善されていることが分かる。また、
本発明により、中心波長の変動が全く生じない場合(位
相変調効率が1:1の場合)と比較しても、波長分散に
対する耐力が改善されていることが分かる。
Here, the power penalty is defined by the following formula (power penalty) -10iog+. (Minimum received light power when there is chromatic dispersion/Minimum received light power when chromatic dispersion is 0> (dB)) From Figure 12, it can be seen that the tolerance against chromatic dispersion is significantly improved by the present invention compared to the conventional method. I understand. Also,
It can be seen that the present invention improves the tolerance to chromatic dispersion compared to the case where no change in the center wavelength occurs (the case where the phase modulation efficiency is 1:1).

このように、本発明によると、光ファイバの波長分散が
正の場合でも負の場合でも、良好な伝送特性を得ること
ができ、光ファイバの零分散波長領域で使用するシステ
ムの許容分散を拡大し、より長距離の伝送が可能となる
As described above, according to the present invention, good transmission characteristics can be obtained regardless of whether the wavelength dispersion of the optical fiber is positive or negative, and the allowable dispersion of the system used in the zero-dispersion wavelength region of the optical fiber can be expanded. This enables longer distance transmission.

尚、第1の極性反転回路により入力信号の極性を反転さ
せずに、光変調器の動作点を特性曲線上で半周期切り換
えるだけでも、入力信号の極性を反転させた場合と同様
に伝送特性が改善される。
Note that even if the operating point of the optical modulator is simply switched by half a cycle on the characteristic curve without inverting the polarity of the input signal using the first polarity inversion circuit, the transmission characteristics will change in the same way as when the polarity of the input signal is inverted. is improved.

この場合、信号の極性が反転するので、受信端等に別途
信号の極性を合わせる機能を持たせておく。
In this case, since the polarity of the signal is reversed, the receiving end or the like is provided with a separate function to adjust the polarity of the signal.

また、本発明によると、光変調器の動作点を特性曲線上
で半周期シフトさせることにより光信号の極性を反転さ
せることができるので、光変調器の動作点を特性曲線上
で半周期シフトさせる方法は、単に光信号極性反転の方
法としても有用である。
Furthermore, according to the present invention, the polarity of the optical signal can be reversed by shifting the operating point of the optical modulator by half a cycle on the characteristic curve. This method is also useful simply as a method for reversing the polarity of an optical signal.

発明の詳細 な説明したように、本発明によると、波長分散の符号が
正の場合にも負の場合にも波長分散に起因する波長劣化
を防止し得る光送信装置の提供が可能になるという効果
を奏する。
As described in detail, according to the present invention, it is possible to provide an optical transmitter that can prevent wavelength deterioration caused by chromatic dispersion both when the sign of chromatic dispersion is positive and when the sign of chromatic dispersion is negative. be effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示す図、 第2図は本発明の第1実施例を示す光送信装置のブロッ
ク図、 第3図は光変調器の出力光信号の波形を示す図、第4図
は正方向の動作点ドリフト発生時における出力光信号の
波形を示す図、 第5図は負方向の動作点ドリフト発生時における出力光
信号の波形を示す図、 第6図はMZ光変調器の構成を示す図、第7図は動作点
と波長変動の関係を説すするたtの図、 第8図は波長分散の符号に合わせた動作点の選択を説明
するための図、 第9図はバイアス電圧の安定点の説明図、第10図は本
発明の第2実施例を示す光送信装置のブロック図、 第11図は本発明の第3実施例を示す光送信装置のブロ
ック図、 第12図は本発明実施例の効果を説明するだめの図、 第13図は従来技術の説明図、 第14図は光ファイバの伝送によるアイパターンの変化
の例を示す図である。 2・・・光源、 4・・・駆動回路、 6・・・光変調器、 8・・・動作点安定化回路、 10・・・動作点ンフト回路。
FIG. 1 is a diagram showing the configuration of the present invention, FIG. 2 is a block diagram of an optical transmitter showing a first embodiment of the invention, FIG. 3 is a diagram showing the waveform of the output optical signal of the optical modulator, and FIG. Figure 4 shows the waveform of the output optical signal when operating point drift occurs in the positive direction. Figure 5 shows the waveform of the output optical signal when operating point drift occurs in the negative direction. Figure 6 shows MZ optical modulation. 7 is a diagram showing the relationship between the operating point and wavelength fluctuation. FIG. 8 is a diagram illustrating the selection of the operating point according to the sign of wavelength dispersion. FIG. 9 is an explanatory diagram of the stable point of the bias voltage, FIG. 10 is a block diagram of an optical transmitter showing a second embodiment of the present invention, and FIG. 11 is a block diagram of an optical transmitter showing a third embodiment of the present invention. 12 is a diagram for explaining the effects of the embodiment of the present invention, FIG. 13 is an explanatory diagram of the prior art, and FIG. 14 is a diagram showing an example of a change in an eye pattern due to optical fiber transmission. 2... Light source, 4... Drive circuit, 6... Optical modulator, 8... Operating point stabilization circuit, 10... Operating point stabilizer circuit.

Claims (1)

【特許請求の範囲】 1、光源(2)と、 入力信号に応じた駆動電圧を発生する駆動回路(4)と
、 上記駆動電圧に応じて上記光源(2)の出射光を変調し
、上記入力信号を光信号に変換する光変調器(6)と、 該光変調器(6)の動作特性曲線のドリフトを検出して
、動作点が上記動作特性曲線に対して一定の位置になる
ように上記光変調器(6)を制御する動作点安定化回路
(8)とを備えた光送信装置において、 動作点切換信号に基づいて、上記動作点を上記動作特性
曲線上で半周期シフトさせる動作点シフト回路(10)
を備えたことを特徴とする光送信装置。 2、上記光変調器(6)は、2経路に分岐した光導波路
(32A、32B)における位相変調効率が異なるマッ
ハツェンダ型光変調器(6A)であることを特徴とする
請求項1に記載の光送信装置。 3、上記動作点シフト回路(10)による動作点のシフ
トに対応して上記入力信号の極性を反転させる第1の極
性反転回路(24)を備えたことを特徴とする請求項2
に記載の光送信装置。 4、上記動作点安定化回路(8)は、 所定の低周波信号を出力する低周波発振器(12)と、 該低周波信号で上記入力信号に振幅変調をかけて上記駆
動回路(4)に送出する低周波重畳回路(14)と、 上記マッハツェンダ型光変調器(6A)から出力される
光信号を分岐する光分岐回路(16)と、該光分岐回路
(16)により分岐された光信号のうちの一方を電気信
号に変換する光−電気変換回路(18)と、 該電気信号に含まれる上記低周波信号の周波数成分を検
出し、該周波数成分の位相を上記低周波信号の位相と比
較して、当該位相差に応じた極性で且つ上記ドリフトに
応じたレベルのDC信号を出力する位相検出回路(20
)と、 該DC信号が零になるように上記マッハツェンダ型光変
調器(6A)のバイアスをフィードバック制御するバイ
アス制御回路(22)とを含んでいることを特徴とする
請求項3に記載の光送信装置。 5、上記動作点シフト回路(10)は、動作点切換信号
に基づいて、上記位相検出回路(20)に入力する上記
低周波信号の極性を反転させる第2の極性反転回路(1
0A)であることを特徴とする請求項4に記載の光送信
装置。 6、上記動作点シフト回路(10)は、動作点切換信号
に基づいて、上記低周波重畳回路(14)に入力する上
記低周波信号の極性を反転させる第3の極性反転回路(
10B)であることを特徴とする請求項4に記載の光送
信装置。 7、上記動作点シフト回路(10)は、動作点切換信号
に基づいて、上記光−電気変換回路(18)、位相検出
回路(20)又はバイアス制御回路(22)におけるフ
ィードバックループの極性を反転させる第4の極性反転
回路(10C)であることを特徴とする請求項4に記載
の光送信装置。
[Claims] 1. A light source (2); a drive circuit (4) that generates a drive voltage according to an input signal; An optical modulator (6) that converts an input signal into an optical signal, and detects the drift of the operating characteristic curve of the optical modulator (6) so that the operating point is at a constant position with respect to the operating characteristic curve. and an operating point stabilizing circuit (8) that controls the optical modulator (6), the operating point is shifted by half a period on the operating characteristic curve based on an operating point switching signal. Operating point shift circuit (10)
An optical transmitter comprising: 2. The optical modulator (6) according to claim 1, wherein the optical modulator (6) is a Mach-Zehnder optical modulator (6A) with different phase modulation efficiencies in the optical waveguide (32A, 32B) branched into two paths. Optical transmitter. 3. Claim 2, further comprising a first polarity inversion circuit (24) that inverts the polarity of the input signal in response to the shift of the operating point by the operating point shift circuit (10).
The optical transmitter described in . 4. The operating point stabilization circuit (8) includes a low frequency oscillator (12) that outputs a predetermined low frequency signal, and the low frequency signal applies amplitude modulation to the input signal to the drive circuit (4). A low frequency superimposition circuit (14) for sending out, an optical branching circuit (16) for branching the optical signal output from the Mach-Zehnder optical modulator (6A), and an optical signal branched by the optical branching circuit (16). an optical-to-electrical conversion circuit (18) that converts one of the signals into an electrical signal; A phase detection circuit (20
); and a bias control circuit (22) for feedback controlling the bias of the Mach-Zehnder optical modulator (6A) so that the DC signal becomes zero. Transmitting device. 5. The operating point shift circuit (10) includes a second polarity inversion circuit (1) that inverts the polarity of the low frequency signal input to the phase detection circuit (20) based on the operating point switching signal.
5. The optical transmitter according to claim 4, wherein the optical transmitter is 0A). 6. The operating point shift circuit (10) includes a third polarity inversion circuit (10) that inverts the polarity of the low frequency signal input to the low frequency superimposition circuit (14) based on the operating point switching signal.
10B). The optical transmitter according to claim 4. 7. The operating point shift circuit (10) inverts the polarity of the feedback loop in the opto-electric conversion circuit (18), phase detection circuit (20), or bias control circuit (22) based on the operating point switching signal. 5. The optical transmitter according to claim 4, wherein the optical transmitter is a fourth polarity reversing circuit (10C).
JP2263104A 1990-03-01 1990-10-02 Optical transmitter Expired - Lifetime JP2848942B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2263104A JP2848942B2 (en) 1990-10-02 1990-10-02 Optical transmitter
US07/662,412 US5170274A (en) 1990-03-01 1991-02-28 Optical transmitter
DE69127840T DE69127840T2 (en) 1990-03-01 1991-02-28 Optical transmitter
EP91103050A EP0444688B1 (en) 1990-03-01 1991-02-28 Optical transmitter
CA002037351A CA2037351C (en) 1990-03-01 1991-02-28 Optical transmitter
US08/904,454 USRE36088E (en) 1990-03-01 1997-08-01 Optical transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2263104A JP2848942B2 (en) 1990-10-02 1990-10-02 Optical transmitter

Publications (2)

Publication Number Publication Date
JPH04140712A true JPH04140712A (en) 1992-05-14
JP2848942B2 JP2848942B2 (en) 1999-01-20

Family

ID=17384883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2263104A Expired - Lifetime JP2848942B2 (en) 1990-03-01 1990-10-02 Optical transmitter

Country Status (1)

Country Link
JP (1) JP2848942B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05323245A (en) * 1992-05-18 1993-12-07 Nec Corp Control system for optical modulation
EP0700178A2 (en) 1994-08-02 1996-03-06 Fujitsu Limited Optical transmission system with optimisation of transmission conditions
JPH08307349A (en) * 1995-05-09 1996-11-22 Toshiba Corp Optical transmitter
JPH0980363A (en) * 1995-09-11 1997-03-28 Fujitsu Ltd Controller for optical modulator
JPH09152564A (en) * 1995-11-30 1997-06-10 Oki Electric Ind Co Ltd Optical transmission device
EP0802642A2 (en) 1996-04-19 1997-10-22 Fujitsu Limited Optical transmission system using dispersion compensation
JPH1079705A (en) * 1996-09-03 1998-03-24 Fujitsu Ltd Optical modulation device and method
JPH10246874A (en) * 1997-03-04 1998-09-14 Nippon Telegr & Teleph Corp <Ntt> Optical modulator control circuit
JPH10253933A (en) * 1997-01-10 1998-09-25 Gpt Ltd Optical modulator operating method
JPH11266200A (en) * 1998-03-18 1999-09-28 Fujitsu Ltd Optical fiber communication method and device thereof and system used for execution of the communication method
US6118564A (en) * 1996-12-19 2000-09-12 Fujitsu Limited Optical time division demultiplexing apparatus and demultiplexed signal switching method as well as optical time division multiplex transmission system
JP2000341218A (en) * 1999-05-27 2000-12-08 Nec Corp Optical transmission and reception system, optical reception device, and optical transmitting and receiving method
JP2005127783A (en) * 2003-10-22 2005-05-19 Yokogawa Electric Corp Electric signal observation device and electric signal sampling device and method for the same
JP2006521583A (en) * 2003-03-19 2006-09-21 オプティマー・フォトニックス・インコーポレーテッド Photoelectric modulator and waveguide device incorporating the same
JP2006271009A (en) * 1994-08-02 2006-10-05 Fujitsu Ltd Optical transmission system, optical multiplexing transmission system, and its peripheral technique
JP2008242283A (en) * 2007-03-28 2008-10-09 Nippon Telegr & Teleph Corp <Ntt> Optical modulating device and optical transmitting device
US8761548B2 (en) 2010-11-19 2014-06-24 Fujitsu Optical Components Limited Optical modulator and optical modulation control method
US8903239B2 (en) 2010-12-16 2014-12-02 Fujistu Optical Component Limited Optical modulator and optical modulation control method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05323245A (en) * 1992-05-18 1993-12-07 Nec Corp Control system for optical modulation
JP2006271009A (en) * 1994-08-02 2006-10-05 Fujitsu Ltd Optical transmission system, optical multiplexing transmission system, and its peripheral technique
EP0700178A2 (en) 1994-08-02 1996-03-06 Fujitsu Limited Optical transmission system with optimisation of transmission conditions
JPH08307349A (en) * 1995-05-09 1996-11-22 Toshiba Corp Optical transmitter
JPH0980363A (en) * 1995-09-11 1997-03-28 Fujitsu Ltd Controller for optical modulator
JPH09152564A (en) * 1995-11-30 1997-06-10 Oki Electric Ind Co Ltd Optical transmission device
EP0802642A2 (en) 1996-04-19 1997-10-22 Fujitsu Limited Optical transmission system using dispersion compensation
JPH09284218A (en) * 1996-04-19 1997-10-31 Fujitsu Ltd Optical transmission system
JPH1079705A (en) * 1996-09-03 1998-03-24 Fujitsu Ltd Optical modulation device and method
US6118564A (en) * 1996-12-19 2000-09-12 Fujitsu Limited Optical time division demultiplexing apparatus and demultiplexed signal switching method as well as optical time division multiplex transmission system
JPH10253933A (en) * 1997-01-10 1998-09-25 Gpt Ltd Optical modulator operating method
JPH10246874A (en) * 1997-03-04 1998-09-14 Nippon Telegr & Teleph Corp <Ntt> Optical modulator control circuit
JPH11266200A (en) * 1998-03-18 1999-09-28 Fujitsu Ltd Optical fiber communication method and device thereof and system used for execution of the communication method
JP2000341218A (en) * 1999-05-27 2000-12-08 Nec Corp Optical transmission and reception system, optical reception device, and optical transmitting and receiving method
JP2006521583A (en) * 2003-03-19 2006-09-21 オプティマー・フォトニックス・インコーポレーテッド Photoelectric modulator and waveguide device incorporating the same
JP2005127783A (en) * 2003-10-22 2005-05-19 Yokogawa Electric Corp Electric signal observation device and electric signal sampling device and method for the same
JP2008242283A (en) * 2007-03-28 2008-10-09 Nippon Telegr & Teleph Corp <Ntt> Optical modulating device and optical transmitting device
US8761548B2 (en) 2010-11-19 2014-06-24 Fujitsu Optical Components Limited Optical modulator and optical modulation control method
US8903239B2 (en) 2010-12-16 2014-12-02 Fujistu Optical Component Limited Optical modulator and optical modulation control method
US9069224B2 (en) 2010-12-16 2015-06-30 Fujitsu Optical Components Limited Optical modulator and optical modulation control method
US9244328B2 (en) 2010-12-16 2016-01-26 Fujitsu Optical Components Limited Optical modulator and optical modulation control method

Also Published As

Publication number Publication date
JP2848942B2 (en) 1999-01-20

Similar Documents

Publication Publication Date Title
JP3723358B2 (en) Optical modulation device and optical modulator control method
US5170274A (en) Optical transmitter
EP0547394B1 (en) Optical transmitter having optical modulator
US6970655B2 (en) Method and circuit for generating single-sideband optical signal
JP2848942B2 (en) Optical transmitter
US6671079B2 (en) Method and apparatus for transmitting a modulated optical signal
US7272271B2 (en) Electro-optical integrated transmitter chip for arbitrary quadrature modulation of optical signals
EP1776608B1 (en) Bias-control for optical mach-zehnder modulators with voltage-induced optical absorption
US10901153B2 (en) Null bias mach-zehnder interferometer with ring resonators
US7155071B2 (en) Device for Mach-Zehnder modulator bias control for duobinary optical transmission and associated system and method
US20060159466A1 (en) Offset quadrature phase-shift-keying method and optical transmitter using the same
JP4164179B2 (en) Optical modulator, bias control circuit thereof, and optical transmitter including the optical modulator
EP1518142A2 (en) Electro-optical integrated transmitter chip for arbitrary quadrature modulation of optical signals
JP2003177361A (en) Optical modulating device
JP3167383B2 (en) Optical transmitter
US20030002118A1 (en) Methods and apparatus for locking the phase between clock and data in return-to-zero modulation format
JPH04294318A (en) Automatic control circuit for optical modulator bias
US6535316B1 (en) Generation of high-speed digital optical signals
JP4397358B2 (en) Optical modulation device and optical modulator control method
USRE36088E (en) Optical transmitter
JP2630536B2 (en) Optical transmitter
JP2664749B2 (en) Light modulator
JPH09211400A (en) Controller for external modulator
JPS62258528A (en) Optical transmission equipment
JPH09152564A (en) Optical transmission device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081106

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081106

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091106

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101106

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101106

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101106

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term