JPH04136778A - Superconductive magnetometer - Google Patents

Superconductive magnetometer

Info

Publication number
JPH04136778A
JPH04136778A JP2259414A JP25941490A JPH04136778A JP H04136778 A JPH04136778 A JP H04136778A JP 2259414 A JP2259414 A JP 2259414A JP 25941490 A JP25941490 A JP 25941490A JP H04136778 A JPH04136778 A JP H04136778A
Authority
JP
Japan
Prior art keywords
superconducting
magnetic flux
signal processing
superconductive
quantum interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2259414A
Other languages
Japanese (ja)
Other versions
JP3001621B2 (en
Inventor
Tatsunori Hashimoto
龍典 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2259414A priority Critical patent/JP3001621B2/en
Publication of JPH04136778A publication Critical patent/JPH04136778A/en
Application granted granted Critical
Publication of JP3001621B2 publication Critical patent/JP3001621B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain a miniaturized superconductive magnetometer excellent in magnetic flux dissolving power and response speed and easy to measure, for example, space distribution by constituting a signal processing part of a superconductive analogue circuit. CONSTITUTION:For example, a signal processing part 40 is mainly constituted of a superconductive amplifying circuit 50 and a superconductive phase sensitiveness detector 60 and, for example, the output signal of the voltage or current value of a superconductive quantum interference element part 30 changing corresponding to applied magnetic flux is linearized by the feedback circuit of the signal processing part 40 to be outputted as the intensity of magnetic flux. The superconductive quantum interference element part 30 and the signal processing part 40 are integrated on a chip 2. This is realized by constituting the signal processing part 40 of a superconductive analogue circuit. By this method, the min, detection sensitivity and response speed can be largely enhanced.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、超電導量子干渉素子(SQUID。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a superconducting quantum interference device (SQUID).

Super−conducting Quantum 
Interference Device)を利用した
超電導磁力計に関する。
Super-conducting Quantum
The present invention relates to a superconducting magnetometer using a superconducting interference device.

(従来の技術) 超電導量子干渉素子は、量子限界におよぶ感度を有する
磁界センサであり、最高感度を必要とする様々な磁界計
測に応用する研究がなされている。近年では、特に医療
応用に向けた生体磁気計測のための研究が活発になって
きている。
(Prior Art) A superconducting quantum interference device is a magnetic field sensor that has a sensitivity that reaches the quantum limit, and research is being conducted to apply it to various magnetic field measurements that require the highest sensitivity. In recent years, research into biomagnetic measurements, particularly for medical applications, has become active.

この超電導量子干渉素子を利用した磁力計は、素子単体
の入出力の変換特性が非線形性をもつため、これを線形
化するために信号処理系として磁束ロック回路(F L
 L ; Flux Locked Loop)といわ
れる一種の帰還回路を利用することにより実現されてい
る。
Magnetometers using this superconducting quantum interference element have nonlinear input/output conversion characteristics of the element alone, so in order to linearize this, a magnetic flux lock circuit (FL) is used as a signal processing system.
This is realized by using a type of feedback circuit called Flux Locked Loop (L; Flux Locked Loop).

これまでの超電導量子干渉素子を・用いたアナログ信号
処理部をもつ磁力計では、磁束検出部、磁束伝達部、そ
して超電導量子干渉素子本体は超電導回路で構成され、
信号処理部には常温の半導体を用いた電子機器が使用さ
れてきた。
In conventional magnetometers with analog signal processing units using superconducting quantum interference devices, the magnetic flux detection unit, magnetic flux transmission unit, and the superconducting quantum interference device body are composed of superconducting circuits.
Electronic devices using room temperature semiconductors have been used for signal processing sections.

ところが、半導体回路と超電導アナログ回路とは、入出
力インピーダンスや動作レベルの点で整合性が悪いため
に、従来の、超電導磁力計では、磁力計のシステムとし
ての磁束分解能、応答速度の面で、超電導量子干渉素子
単体の本質的な性能を十分に生かすことができず、生体
磁気計測の分野へ応用しようとした場合にも、測定対象
かかなり限られてしまうといった問題を有していた。
However, because semiconductor circuits and superconducting analog circuits have poor compatibility in terms of input/output impedance and operation level, conventional superconducting magnetometers have poor magnetic flux resolution and response speed as a magnetometer system. The essential performance of a single superconducting quantum interference element cannot be fully utilized, and even when trying to apply it to the field of biomagnetic measurement, there is a problem that the measurement target is quite limited.

一方、生体磁気計測等の分野では、超微小磁界の空間分
布を測定できる装置の実現が求められている。しかし、
従来の超電導磁力計ては、信号処理部以外の超電導回路
部分は極低温でのみ動作するために極低温容器内に設置
され、また信号処理部は常温に置かれるため、1個の磁
力計か大がかりなものとなり、多くの超電導磁力計を並
べて、磁界の空間分布等を測定することは、かなり困難
を伴うという問題があった。
On the other hand, in fields such as biomagnetic measurement, there is a demand for a device that can measure the spatial distribution of ultra-micro magnetic fields. but,
In conventional superconducting magnetometers, the superconducting circuit parts other than the signal processing section operate only at extremely low temperatures, so they are installed in a cryogenic container, and the signal processing section is placed at room temperature, so one magnetometer The problem was that it was quite large-scale, and it was quite difficult to line up many superconducting magnetometers and measure the spatial distribution of the magnetic field.

(発明が解決しようとする課題) 上述したように、従来の超電導磁力計ては、磁束分解能
、応答速度の点で超電導量子干渉素子が本来有する性能
が十分に生かされておらず、また装置自体が大型化して
しまうといった問題を有していた。
(Problems to be Solved by the Invention) As mentioned above, conventional superconducting magnetometers do not take full advantage of the inherent performance of superconducting quantum interference elements in terms of magnetic flux resolution and response speed, and the device itself The problem was that it became large.

そこで、高磁束分解能を実現した上で応答速度を改善し
、かつ小型化された超電導磁力計の実現が強く望まれて
いる。
Therefore, it is strongly desired to realize a superconducting magnetometer that achieves high magnetic flux resolution, improves response speed, and is miniaturized.

本発明は、このような課題に対処するためになされたも
ので、磁束分解能および応答速度に優れ、かつ例えば空
間分布の測定か容易な小型化された超電導磁力計を提供
することを目的としている。
The present invention has been made to address such problems, and aims to provide a miniaturized superconducting magnetometer that has excellent magnetic flux resolution and response speed, and can easily measure, for example, spatial distribution. .

[発明の構成] (課題を解決するための手段) すなわち本発明の超電導磁力計は、磁束検出部と、この
磁束検出部で検出された磁束か磁束伝達部を介して印加
され、印加磁束に応じた信号を出力する超電導量子干渉
素子部と、この超電導量子干渉素子部への帰還回路を含
み、該超電導量子干渉素子部からの信号を処理し磁束強
度として出力する信号処理部とを具備する超電導磁力計
において、前記信号処理部を超電導アナログ回路により
構成したことを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) In other words, the superconducting magnetometer of the present invention includes a magnetic flux detection unit, and a magnetic flux detected by the magnetic flux detection unit is applied via a magnetic flux transmission unit, and the applied magnetic flux is a superconducting quantum interference element section that outputs a corresponding signal, and a signal processing section that includes a feedback circuit to the superconducting quantum interference element section and processes the signal from the superconducting quantum interference element section and outputs it as magnetic flux intensity. The superconducting magnetometer is characterized in that the signal processing section is configured by a superconducting analog circuit.

(作 用) 本発明の超電導磁力計においては、信号処理部として、
超電導量子干渉素子と入出力インピーダンスや動作レベ
ル等の点で整合性に優れる超電導アナログ回路を使用し
ているため、磁束分解能や応答速度の点で超電導量子干
渉素子が本来有する性能を十分に生かすことか可能とな
り、磁束分解能および応答速度の向上が図れる。また、
全体を超電導アナログ回路により構成することによって
集積化が可能となり、よって装置自体の大幅な小型化が
可能となる。
(Function) In the superconducting magnetometer of the present invention, as a signal processing section,
Since it uses a superconducting analog circuit that has excellent compatibility with superconducting quantum interference devices in terms of input/output impedance and operation level, it is possible to fully utilize the inherent performance of superconducting quantum interference devices in terms of magnetic flux resolution and response speed. This makes it possible to improve magnetic flux resolution and response speed. Also,
By configuring the entire device using superconducting analog circuits, it becomes possible to integrate the device, thereby making it possible to significantly downsize the device itself.

(実施例) 以下、本発明の実施例について図面を参照して説明する
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は、本発明の超電導磁力計の一実施例の構成を示
すブロック図である。同図に示す超電導磁力計1は、磁
束検出部10で検出された磁束が、磁束伝達部20を介
して超電導量子干渉素子部30へと送られるよう構成さ
れている。
FIG. 1 is a block diagram showing the configuration of an embodiment of a superconducting magnetometer of the present invention. The superconducting magnetometer 1 shown in the figure is configured such that the magnetic flux detected by the magnetic flux detection section 10 is sent to the superconducting quantum interference element section 30 via the magnetic flux transmission section 20.

上記超電導量子干渉素子部30は、この超電導量子干渉
素子部への帰還回路を含み、かつ超電導アナログ回路に
よって構成された信号処理部40と接続されている。こ
の信号処理部40は、例えば超電導増幅回路50と超電
導位相敏感検出器60とから主として構成されており、
印加磁束に応じて変化する超電導量子干渉素子部3oの
例えば電圧値や電流値等の出力信号が、この信号処理部
40によって上記帰還回路によって線形化されて、磁束
強度として出力される。
The superconducting quantum interference device section 30 includes a feedback circuit to the superconducting quantum interference device section, and is connected to a signal processing section 40 configured by a superconducting analog circuit. This signal processing section 40 is mainly composed of, for example, a superconducting amplifier circuit 50 and a superconducting phase sensitive detector 60,
An output signal such as a voltage value or a current value from the superconducting quantum interference element section 3o, which changes depending on the applied magnetic flux, is linearized by the feedback circuit in the signal processing section 40 and output as a magnetic flux intensity.

上記信号処理部40における超電導増幅回路50として
は、例えば低雑音かつ飽和レベルの大きな磁束フロー型
ジョセフソン増幅器等が用いられ、また超電導位相敏感
検出器6oとしては、高速動作が可能な超電導アナログ
回路で構成した位相敏感検出器等が用いられる。
As the superconducting amplifier circuit 50 in the signal processing section 40, for example, a magnetic flux flow type Josephson amplifier with low noise and a high saturation level is used, and as the superconducting phase sensitive detector 6o, a superconducting analog circuit capable of high-speed operation is used. A phase-sensitive detector configured with the following is used.

また、上記超電導量子干渉素子部3oおよび信号処理部
40は、チップ2上に集積されている。
Further, the superconducting quantum interference element section 3o and the signal processing section 40 are integrated on the chip 2.

これは、信号処理部40を超電導アナログ回路によって
構成したことにより実現されたものである。
This is achieved by configuring the signal processing section 40 using a superconducting analog circuit.

なお、磁束検出部10や磁束伝達部2oも含めてチップ
2上に集積化することも可能である。
Note that it is also possible to integrate the magnetic flux detection section 10 and the magnetic flux transmission section 2o on the chip 2.

次に、第2図ないし第5図を参照して、この実施例の超
電導磁力計1の具体的な構成例について説明する。
Next, a specific example of the configuration of the superconducting magnetometer 1 of this embodiment will be described with reference to FIGS. 2 to 5.

第2図は、上記超電導アナログ回路で構成した超電導磁
力計1の回路図である。また、第3図はその磁束検出部
10、磁束伝達部20および超電導量子干渉素子部30
の一構成例を、第4図は信号処理部40中の超電導増幅
回路50の一構成例を、第5図は信号処理部40中の超
電導位相敏感検出器60の一構成例をそれぞれ示す図で
ある。
FIG. 2 is a circuit diagram of a superconducting magnetometer 1 constructed from the above-mentioned superconducting analog circuit. Further, FIG. 3 shows the magnetic flux detection section 10, magnetic flux transmission section 20, and superconducting quantum interference element section 30.
4 shows an example of the structure of the superconducting amplifier circuit 50 in the signal processing section 40, and FIG. 5 shows an example of the structure of the superconducting phase sensitive detector 60 in the signal processing section 40. It is.

超電導量子干渉素子部30は、第3図に示すように、2
個のジョセフソン接合31か設けられた超電導ループ3
2を有している。また、磁束検出部10は、例えば磁束
検出コイル11により構成されており、磁束伝達部20
を介して上記磁束検出コイル11と接続された磁束入力
コイル33が、超電導ループ32に近接して設置されて
いる。
As shown in FIG. 3, the superconducting quantum interference element section 30 includes two
A superconducting loop 3 provided with Josephson junctions 31
It has 2. Further, the magnetic flux detection section 10 includes, for example, a magnetic flux detection coil 11, and a magnetic flux transmission section 20.
A magnetic flux input coil 33 connected to the magnetic flux detection coil 11 through the superconducting loop 32 is installed close to the superconducting loop 32.

また、上記超電導ループ32には、端子34から直流の
バイアス電流が印加される。そして、磁束入力コイル3
3による印加磁束に応じて、超電導ループ32に発生す
る電圧等が出力信号として、信号処理部40へと送られ
る。また、上記超電導ループの近傍には、後に詳述する
信号処理部40からの変調およびフィードバック用の帰
還コイル41が設置されている。
Further, a DC bias current is applied to the superconducting loop 32 from a terminal 34 . And magnetic flux input coil 3
The voltage generated in the superconducting loop 32 in response to the applied magnetic flux by the superconducting loop 32 is sent as an output signal to the signal processing section 40. Further, a feedback coil 41 for modulation and feedback from a signal processing section 40, which will be described in detail later, is installed near the superconducting loop.

信号処理部40中の超電導増幅回路50は、第4図に示
すように、例えばジョセフソン線路51を有する磁束フ
ロー型ジョセフソン増幅器52により構成されている。
As shown in FIG. 4, the superconducting amplifier circuit 50 in the signal processing section 40 is composed of, for example, a magnetic flux flow type Josephson amplifier 52 having a Josephson line 51.

この磁束フロー型ジョセフソン増幅器52は、変調周波
数(loOMHzで設計)成分のみを増幅するために、
その入力回路部分にインダクタ53およびキャパシタ5
4て構成されたバンドパスフィルタ55が設けられてお
り、また超電導量子干渉素子部30の直流バイアスはイ
ンダクタ53に流れ込まないように、キャパシタ56で
直流分のみが阻止される。磁束フロー型ジョセフソン増
幅器52の出力は、超電導トランス57を通して超電導
位相敏感検出器(phase 5en−sitive 
detector:P S D ) 60 ヘと送られ
る。
This magnetic flux flow type Josephson amplifier 52 amplifies only the modulation frequency (designed at loOMHz) component.
An inductor 53 and a capacitor 5 are connected to the input circuit part.
A bandpass filter 55 having a configuration of 4 is provided, and a capacitor 56 blocks only the DC bias so that the DC bias of the superconducting quantum interference element section 30 does not flow into the inductor 53. The output of the flux flow type Josephson amplifier 52 is passed through a superconducting transformer 57 to a superconducting phase sensitive detector (phase 5en-sitive detector).
detector:PSD) 60.

また、信号処理部40中の超電導位相敏感検出器60と
しては、第5図に示すように、例えば4個のジョセフソ
ン素子61を用いて構成した反転形位相敏感検出器か用
いられている。
Further, as the superconducting phase-sensitive detector 60 in the signal processing section 40, an inverted phase-sensitive detector constructed using, for example, four Josephson elements 61 is used, as shown in FIG.

端子63に直流バイアス電流を印加し、端子64より変
調周波数の方形波を入力することによって、4個のジョ
セフソン素子61が方形波の極性にしたかって、 2個
ずつスイッチングする。ローパスフィルタ65には、入
力信号が方形波の極性が正の場合(JJIおよびJJ3
が短絡、かつJJ2およびJJ4が開放)には同波形が
、極性が負の場合(月1およびJJ3が開放、かつ月2
およびJJ4か短絡)には極性を反転させた波形か出力
され、これがローパスフィルタ65により平均化されて
磁束強度として出力される。また、この出力は、抵抗6
6を介して、端子64に印加した方形波を重畳した形で
、帰還コイル41から超電導量子干渉素子部30へと印
加される。
By applying a DC bias current to the terminal 63 and inputting a square wave of modulation frequency from the terminal 64, the four Josephson elements 61 are switched two by two to have the polarity of the square wave. When the input signal is a square wave with positive polarity (JJI and JJ3
is shorted, and JJ2 and JJ4 are open), the same waveform is generated, and when the polarity is negative (month 1 and JJ3 are open, and month 2 is open), the same waveform is generated.
and JJ4 (short circuit), a waveform with inverted polarity is output, which is averaged by the low-pass filter 65 and output as magnetic flux intensity. Also, this output is
6, the square wave applied to the terminal 64 is applied from the feedback coil 41 to the superconducting quantum interference element section 30 in a superimposed form.

以上、本発明の一実施例の超電導磁力計1を構成および
動作等に基づいて説明をしたが、以降では上記超電導磁
力計1を材料および製造方法の点から説明する。上記超
電導磁力計1の作製は、例えばSt基板(2)上に集積
化技術を用いて行う。
The superconducting magnetometer 1 according to an embodiment of the present invention has been described above based on the configuration, operation, etc., and hereinafter, the superconducting magnetometer 1 will be explained from the viewpoint of materials and manufacturing method. The above-mentioned superconducting magnetometer 1 is manufactured using an integration technique, for example, on an St substrate (2).

超電導量子干渉素子部30および超電導位相敏感検出器
60に用いるジョセフソン素子31.61には、Nb/
A IφAI20 s /Nb接合を、磁束フロー型ジ
ョセフソン増幅器52に用いるジョセフソン線路51に
は、NbN/Nbz O、/ Pb合金接合を使用する
。また、各抵抗35.59.66.68.69にはMO
を、インダクタ53にはカイネテイツクインダクタンス
の大きなNbN薄膜を、キャパシタ54.56.58.
67の誘電体にはNb薄膜表面を陽極酸化して形成した
Nb2Osを用いる。
The Josephson elements 31 and 61 used in the superconducting quantum interference element section 30 and the superconducting phase sensitive detector 60 include Nb/
A NbN/NbzO,/Pb alloy junction is used for the Josephson line 51 in which the A IφAI20 s /Nb junction is used in the flux flow type Josephson amplifier 52. Also, each resistor 35.59.66.68.69 has MO
, an NbN thin film with large kinetic inductance is used for the inductor 53, and a capacitor 54, 56, 58 .
As the dielectric material 67, Nb2Os formed by anodizing the surface of the Nb thin film is used.

接地電極、超電導トランス57用の薄膜トランス、超電
導量子干渉素子部30の超電導ループ32および磁束入
力コイル33は例えばNbで形成し、異種超電導体間の
接続が必要な部分には超電導コンタクトを形成する。層
間絶縁または保護層としてはSiOまたは5in2を用
いる。
The ground electrode, the thin film transformer for the superconducting transformer 57, the superconducting loop 32 of the superconducting quantum interference element section 30, and the magnetic flux input coil 33 are made of Nb, for example, and superconducting contacts are formed in parts where connections between different types of superconductors are required. . SiO or 5in2 is used as the interlayer insulation or protective layer.

また、各部の加工は、エツチング法やりフトオフ法によ
り行う。なお、超電導磁力計チップの仕上がり寸法は、
例えば1cmX1cm程度とすることができる。
Further, each part is processed by an etching method or a lift-off method. The finished dimensions of the superconducting magnetometer chip are:
For example, it can be about 1 cm x 1 cm.

上記したような材料および製造方法で作製した超電導磁
力計の応答特性を測定した結果、直流から1MHz程度
の信号に応答し、磁束分解能も0 、 l rT/H2
1,’2以下が得られた。
As a result of measuring the response characteristics of a superconducting magnetometer made using the materials and manufacturing method described above, it was found that it responded to signals ranging from DC to about 1 MHz, and the magnetic flux resolution was 0, l rT/H2.
1,'2 or less was obtained.

上述したように、この実施例の超電導磁力計1では、信
号処理部40を超電導アナログ回路で構成しているため
、入出力インピーダンス、動作レベル等の点で超電導量
子干渉素子部30との整合性に優れ、よって磁力計とし
ての磁束分解能、応答速度の面で、超電導量子干渉素子
が本来有する性能を十分に生かすことが可能となる。
As described above, in the superconducting magnetometer 1 of this embodiment, since the signal processing section 40 is configured with a superconducting analog circuit, it is not compatible with the superconducting quantum interference element section 30 in terms of input/output impedance, operation level, etc. Therefore, it is possible to fully utilize the inherent performance of the superconducting quantum interference device in terms of magnetic flux resolution and response speed as a magnetometer.

また、超電導量子干渉素子部30および信号処理部40
をチップ2上に集積化することにより、応答性がより向
上し、これまでよりも高い周波数の信号まで測定するこ
とが可能になる。
In addition, a superconducting quantum interference device section 30 and a signal processing section 40
By integrating this on the chip 2, the response is further improved and it becomes possible to measure signals of higher frequencies than ever before.

ところで、先にも述べたように超電導量子干渉素子を利
用した超電導磁力計は、他に類を見ないその高い磁界検
出感度のために、脳磁界の測定等の生体磁気計測の分野
で大きな期待が寄せられている。この分野では、磁界の
空間分布の測定が必要であり、超電導磁力計の並列設置
による多チャンネル化が重要な課題になっている。
By the way, as mentioned earlier, superconducting magnetometers that use superconducting quantum interference devices have great expectations in the field of biomagnetic measurements such as brain magnetic field measurements due to their unparalleled high magnetic field detection sensitivity. has been received. In this field, it is necessary to measure the spatial distribution of magnetic fields, and increasing the number of channels by installing superconducting magnetometers in parallel is an important issue.

そして、この実施例の超電導磁力計1では、上記集積化
により磁力計自体の大幅な小型化を達成しているため、
多数の磁力計を並べて、磁界の空間分布の測定を高い空
間分解能で行うことが可能となる。また、最小検出感度
か向上することにより、磁界検出部10である検出コイ
ル11の大きさを小さく、または形状を簡単にすること
かできるため、磁界測定の空間分解能を高めることかで
きる。また、応答速度の向上により、これまでの超電導
磁力計ては測定できなかった信号の測定が可能になる。
In the superconducting magnetometer 1 of this embodiment, the magnetometer itself has been significantly miniaturized through the above-mentioned integration.
By arranging a large number of magnetometers, it becomes possible to measure the spatial distribution of the magnetic field with high spatial resolution. Furthermore, by improving the minimum detection sensitivity, the size or shape of the detection coil 11, which is the magnetic field detection section 10, can be reduced or the shape can be simplified, so that the spatial resolution of magnetic field measurement can be improved. Furthermore, the improved response speed makes it possible to measure signals that could not be measured with conventional superconducting magnetometers.

このように、従来の超電導磁力計に比べて、大きさ、磁
束分解能、応答速度等の面で、大幅に優れる超電導磁力
計を提供することが可能となる。
In this way, it is possible to provide a superconducting magnetometer that is significantly superior to conventional superconducting magnetometers in terms of size, magnetic flux resolution, response speed, etc.

なお、本発明の超電導磁力計は、上記実施例に限定され
るものではなく、例えば超電導材料としてNb、  N
bN、 Pb合金に代えて、酸化物超電導体等を用いる
ことも可能であり、またフィルム状の基板等を用いるこ
ともてきる。また、チップ上に超電導薄膜によって磁束
検出部および磁束伝達部を構成することもできる。
Note that the superconducting magnetometer of the present invention is not limited to the above-mentioned embodiments, and for example, the superconducting material may include Nb, N
Instead of bN or Pb alloy, it is also possible to use an oxide superconductor or the like, and a film-like substrate or the like can also be used. Furthermore, the magnetic flux detection section and the magnetic flux transmission section can also be configured using a superconducting thin film on the chip.

また、上記実施例においては、超電導量子干渉素子とし
て、2個のジョセフソン接合を有する超電導ループを用
いた、いわゆるda−3QUIDを使用した例について
説明したが、rr−S Q U I Dを用いた超電導
磁力計にも当然ながら適用可能である。
Furthermore, in the above embodiment, an example was explained in which a so-called da-3QUID, which uses a superconducting loop having two Josephson junctions, was used as a superconducting quantum interference element. Of course, it can also be applied to superconducting magnetometers.

[発明の効果] 以上説明したように、本発明の超電導磁力計によれば、
最小検出感度、応答速度を大きく向上させることが可能
となると共に、従来の常温系の電子機器を用いた場合に
比べ、装置全体の小型化が達成される。
[Effects of the Invention] As explained above, according to the superconducting magnetometer of the present invention,
It is possible to significantly improve the minimum detection sensitivity and response speed, and the entire device can be made more compact than when conventional room temperature electronic equipment is used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の超電導磁力計の一実施例の概略構成を
示すブロック図、第2図は超電導アナログ回路で構成し
た超電導磁力計の回路図、第3図は磁束検出部、磁束伝
達部および超電導量子干渉素子部の具体例を示す図、第
4図は信号処理部内の超電導増幅回路の具体例を示す図
、第5図は信号処理部内の超電導位相敏感検出器の具体
例を示す図である。 1・・・・・・超電導磁力計、2・・・・・・Stチッ
プ、10・・・・・磁束検出部、20・・・・・・磁束
伝達部、30・・・・・・超電導量子干渉素子部、31
.61・・・・・・ジョセフソン接合、32・・・・・
・超電導ループ、33・・・・・・磁束入力コイル、4
0・・・・・・信号処理部、41・・・・・・帰還コイ
ル、50・・・・・・超電導増幅回路、51・・・・・
・ジョセフソン線路、52・・・・・・磁束フロー型ジ
ョセフソン増幅器、60・・・・・・超電導位相敏感検
出器。 出願人      株式会社 東芝
Fig. 1 is a block diagram showing a schematic configuration of an embodiment of a superconducting magnetometer of the present invention, Fig. 2 is a circuit diagram of a superconducting magnetometer configured with a superconducting analog circuit, and Fig. 3 is a magnetic flux detection section and a magnetic flux transmission section. FIG. 4 is a diagram showing a specific example of a superconducting amplifier circuit in the signal processing section; FIG. 5 is a diagram showing a specific example of a superconducting phase sensitive detector in the signal processing section. It is. 1... Superconducting magnetometer, 2... St chip, 10... Magnetic flux detection section, 20... Magnetic flux transmission section, 30... Superconducting Quantum interference element section, 31
.. 61...Josephson junction, 32...
・Superconducting loop, 33...Magnetic flux input coil, 4
0... Signal processing unit, 41... Feedback coil, 50... Superconducting amplifier circuit, 51...
・Josephson line, 52...Magnetic flux flow type Josephson amplifier, 60...Superconducting phase sensitive detector. Applicant: Toshiba Corporation

Claims (1)

【特許請求の範囲】  磁束検出部と、この磁束検出部で検出された磁束が磁
束伝達部を介して印加され、印加磁束に応じた信号を出
力する超電導量子干渉素子部と、この超電導量子干渉素
子部への帰還回路を含み、該超電導量子干渉素子部から
の信号を処理し磁束強度として出力する信号処理部とを
具備する超電導磁力計において、 前記信号処理部を超電導アナログ回路により構成したこ
とを特徴とする超電導磁力計。
[Claims] A magnetic flux detection section, a superconducting quantum interference element section to which the magnetic flux detected by the magnetic flux detection section is applied via a magnetic flux transmission section and outputs a signal according to the applied magnetic flux, and this superconducting quantum interference device. A superconducting magnetometer comprising a feedback circuit to an element section and a signal processing section that processes a signal from the superconducting quantum interference element section and outputs it as magnetic flux intensity, wherein the signal processing section is configured by a superconducting analog circuit. A superconducting magnetometer featuring:
JP2259414A 1990-09-28 1990-09-28 Superconducting magnetometer Expired - Fee Related JP3001621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2259414A JP3001621B2 (en) 1990-09-28 1990-09-28 Superconducting magnetometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2259414A JP3001621B2 (en) 1990-09-28 1990-09-28 Superconducting magnetometer

Publications (2)

Publication Number Publication Date
JPH04136778A true JPH04136778A (en) 1992-05-11
JP3001621B2 JP3001621B2 (en) 2000-01-24

Family

ID=17333780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2259414A Expired - Fee Related JP3001621B2 (en) 1990-09-28 1990-09-28 Superconducting magnetometer

Country Status (1)

Country Link
JP (1) JP3001621B2 (en)

Also Published As

Publication number Publication date
JP3001621B2 (en) 2000-01-24

Similar Documents

Publication Publication Date Title
WO2016008352A1 (en) Superconducting quantum interference device using single operational amplifier magnetic sensor
US5656937A (en) Low-noise symmetric dc SQUID system having two pairs of washer coils and a pair of Josephson junctions connected in series
US5319307A (en) Geometrically and electrically balanaced dc SQUID system having a pair of intersecting slits
Stolz et al. LTS SQUID sensor with a new configuration
Faley et al. A new generation of the HTS multilayer DC-SQUID magnetometers and gradiometers
US6154026A (en) Asymmetric planar gradiometer for rejection of uniform ambient magnetic noise
US5955400A (en) SQUID integrated with pickup coils
Grundler et al. Highly sensitive YBa2Cu3O7 dc SQUID magnetometer with thin‐film flux transformer
JPH11507436A (en) Composite superconducting quantum interference device and circuit
JPH083520B2 (en) Superconducting magnetic detector
Faley et al. DC-SQUID magnetometers and gradiometers on the basis of quasiplanar ramp-type Josephson junctions
Granata et al. Improved superconducting quantum interference device magnetometer for low cross talk operation
Schmelz et al. Superconducting quantum interference device (SQUID) magnetometers
Faley et al. Noise analysis of DC SQUIDs with damped superconducting flux transformers
Podt et al. Two-stage amplifier based on a double relaxation oscillation superconducting quantum interference device
JPH04136778A (en) Superconductive magnetometer
Zhou et al. Electronic feedback system for superconducting quantum interference devices
AU2019240774B2 (en) Superconducting quantum interference apparatus
JP2587002B2 (en) SQUID magnetometer
Cao et al. Fabrication and Characterization of SQUIDs With Nb/Nb x Si 1-x/Nb Junctions
Cantor et al. Integrated DC SQUID magnetometer with simplified read-out
Shimizu et al. Performance of DC SQUIDs fabricated on 4-inch silicon wafer
Carr et al. First-order high-T/sub c/single-layer gradiometers: Parasitic effective area compensation and system balance
Thomasson et al. High slew rate large bandwidth integrated dc SQUID magnetometer for NMR applications
US10761152B2 (en) Magnetic sensor with combined high pass flux concentrator and flux biasing circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees