JPH04135827A - Photosetting resin solid shaping device - Google Patents

Photosetting resin solid shaping device

Info

Publication number
JPH04135827A
JPH04135827A JP2260700A JP26070090A JPH04135827A JP H04135827 A JPH04135827 A JP H04135827A JP 2260700 A JP2260700 A JP 2260700A JP 26070090 A JP26070090 A JP 26070090A JP H04135827 A JPH04135827 A JP H04135827A
Authority
JP
Japan
Prior art keywords
tank
resin liquid
modeling
resin
resin fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2260700A
Other languages
Japanese (ja)
Other versions
JP2948893B2 (en
Inventor
Kanji Murakami
村上 莞爾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabtesco Corp
Original Assignee
Teijin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Seiki Co Ltd filed Critical Teijin Seiki Co Ltd
Priority to JP2260700A priority Critical patent/JP2948893B2/en
Publication of JPH04135827A publication Critical patent/JPH04135827A/en
Application granted granted Critical
Publication of JP2948893B2 publication Critical patent/JP2948893B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

PURPOSE:To cool securely a base plate section of a shaping tank by resin fluid itself while retaining constantly the height of fluid level of uncured resin fluid in the shaping tank by circulating uncured resin fluid in the shaping tank through an outlet while overflowing and cooling the fluid flowing into the shaping tank in the circulating line. CONSTITUTION:Resin fluid in a resin fluid tank 21 is fed by a pump 22 and flows into a shaping tank 11 through an inlet 16, and resin fluid l overflowed out of an outlet 15 is returned to the resin fluid tank 21. When a sectional layer q supported by a shaping shelf 12 is lifted up above the fluid level in the shaping tank 11 as the shaping work goes on, still the height of fluid level in the shaping tank 11 is kept constant by the resin fluid l replenished from the resin fluid tank 21, and also the feeding state of resin fluid l under a shaping shelf 12 is kept constant. The resin fluid l in the resin fluid tank 21 is cooled by a cooling coil 25 correspondingly to the sensed temperature of a temperature sensor 19, and the resin fluid l flows into the shaping tank 11 at all times. When a base plate section 13 is heated by the emission of UV beam and the heat from a UV beam source to the base plate section 13, the base section 13 is cooled securely by the resin fluid l cooled correspondingly to the amount of heating energy.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、光硬化樹脂の未硬化樹脂液から立体物を積層
造形する光硬化樹脂立体造形装置に関し、特にその造形
槽の底板部を介して槽内の樹脂液を露光する光硬化樹脂
立体造形装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a photocurable resin three-dimensional modeling device for layer-manufacturing a three-dimensional object from an uncured resin liquid of a photocurable resin, and in particular, to The present invention relates to a photocuring resin three-dimensional modeling device that exposes a resin liquid in a tank to light.

(従来の技術) 近時、製版技術の応用によって光硬化樹脂の立体物を造
形する立体造形装置が開発され、電子計算機を併用する
ことにより製品開発時の雛型や模型等の複雑な物体を造
形できる装置として注目されている。
(Conventional technology) Recently, a three-dimensional modeling device that forms three-dimensional objects made of photocurable resin has been developed by applying plate-making technology, and by using a computer in conjunction with it, it is possible to create complex objects such as templates and models during product development. It is attracting attention as a device that can be used for modeling.

この種の光硬化樹脂立体造形装置としては、例えば特開
昭62−35966号公報に記載されたものがあり、こ
の装置では、未硬化の光硬化樹脂液を収容した造形槽の
所定平面を作業面として、この作業面近傍の樹脂液に光
を照射し硬化させて造形物の一断面層を形成するととも
に、これを移動させながら隣接する断面層を順次接着し
つつ積層することにより3次元の物体を造形するように
なっている。この光硬化樹脂は例えば紫外線硬化型の樹
脂であり、造形物の形状やその要求精度に応じて可動ス
ポットビームによる描画やマスキングによる選択的な露
光法等を採用できる。また、前記作業面としては樹脂液
の液面を用いることができるが、外部からの振動により
作業面が波打ったり表面張力の影響を受けたりするため
、断面層の厚みが不安定になってしまい、更に造形物に
気泡やゴミ等が混入する虞もある。そこで、造形槽の底
板部を光透過性の材質から形成するとともに、この底板
部に接近・離間する昇陣式の造形槽を設け、前記作業面
を造形槽の底面側に設定して、底板部と造形槽の間の樹
脂液に造形槽の下方から光を照射するようにしたものが
提案されている。この場合、造形槽が造形槽の底面から
離間するよう一定量引き上げられると、樹脂液は造形槽
又は上方の断面層と底板部との間隙に入り込み(例えば
毛細管現象により入り込み)、薄い一定厚さの断面槽が
形成される。したがって、造形物の各断面層の厚みを均
一にすることができ、安定した造形作業ができるととも
に、造形槽に収容する未硬化樹脂液の量も少なくて済む
An example of this type of photocurable resin three-dimensional modeling apparatus is the one described in Japanese Patent Application Laid-Open No. 62-35966, in which a predetermined plane of a modeling tank containing an uncured photocurable resin liquid is worked. As a surface, the resin liquid near this work surface is irradiated with light and cured to form one cross-sectional layer of the modeled object, and while this is moved, adjacent cross-sectional layers are successively adhered and laminated to create a three-dimensional shape. It is designed to form objects. This photocurable resin is, for example, an ultraviolet curable resin, and depending on the shape of the object and its required accuracy, selective exposure methods such as drawing with a movable spot beam or masking can be employed. In addition, the surface of the resin liquid can be used as the working surface, but the working surface is undulated by external vibrations and is affected by surface tension, making the thickness of the cross-sectional layer unstable. Furthermore, there is a risk that air bubbles, dust, etc. may be mixed into the modeled object. Therefore, the bottom plate of the modeling tank is made of a light-transmitting material, and a rising-type printing tank that approaches and moves away from the bottom plate is provided, and the work surface is set on the bottom side of the modeling tank. A system has been proposed in which light is irradiated onto the resin liquid between the part and the modeling tank from below the modeling tank. In this case, when the modeling tank is lifted a certain amount away from the bottom of the modeling tank, the resin liquid enters the modeling tank or the gap between the upper cross-sectional layer and the bottom plate (e.g., by capillary action), and the resin liquid enters the gap between the modeling tank or the upper cross-sectional layer and the bottom plate part (for example, by capillary action), and the resin liquid flows into the tank to form a thin, constant thickness. A cross-sectional tank is formed. Therefore, the thickness of each cross-sectional layer of the object can be made uniform, stable modeling work can be performed, and the amount of uncured resin liquid stored in the modeling tank can be reduced.

[発明が解決しようとする課題] しかしながら、このような従来の光硬化樹脂立体造形装
置にあっては、所定量の未硬化樹脂液を造形槽に収容し
、その造形槽の底板部と造形槽の間の樹脂液に造形槽の
下方から光を照射する構成であったため、′次のような
問題があった。
[Problems to be Solved by the Invention] However, in such a conventional photocurable resin three-dimensional modeling apparatus, a predetermined amount of uncured resin liquid is stored in a modeling tank, and the bottom plate of the modeling tank and the modeling tank are Since the resin liquid in between was configured to be irradiated with light from below the modeling tank, there were the following problems.

(イ)造形作業が進んで硬化した断面層が液面上まで引
き上げられると、それに伴って液面高さが変化してしま
い、造形槽内の樹脂液量が少ないこともあって、造形棚
下への樹脂液の入り込み具合が変化していた。このため
、特に各断面層が薄い場合に不完全な造形になってしま
うことがあった。
(B) As the modeling process progresses and the hardened cross-sectional layer is pulled up above the liquid level, the liquid level changes accordingly, and the amount of resin in the modeling tank is small, causing The degree to which the resin liquid entered was changing. For this reason, the model may be incompletely formed, especially when each cross-sectional layer is thin.

(ロ)造形槽の底板部が露光により加熱され続けて高温
になり、既に硬化した隣接断面層の光硬化樹脂に熱応力
が生して造形物に変形が生していた。
(b) The bottom plate of the modeling tank was continuously heated by exposure and reached a high temperature, and thermal stress was generated in the photocured resin of the adjacent cross-sectional layer that had already been cured, causing deformation of the modeled object.

これに対し、例えば造形槽内に冷却コイル等の冷却手段
を設けることも考えられるが、部分的な冷却手段では樹
脂液の少ない造形槽内において均一で且つ安定した冷却
効果を発揮させることが構造上困難である。
On the other hand, it is conceivable to provide a cooling means such as a cooling coil in the modeling tank, but with a partial cooling means, it is important to have a uniform and stable cooling effect in the modeling tank where there is little resin liquid. It is difficult to do so.

そこで、本発明は、造形槽内の未硬化樹脂液の液面高さ
を一定に保ちつつ、樹脂液自体により造形槽の底板部を
確実に冷却することのできる光硬化樹脂立体造形装置を
提供することを目的とするものである。
Therefore, the present invention provides a photocurable resin three-dimensional modeling device that can reliably cool the bottom plate of the modeling tank with the resin liquid itself while keeping the liquid level of the uncured resin liquid in the modeling tank constant. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記目的達成のため、底板部から所定高さに
位置する流出口を造形槽に形成するとともに、該流出口
を通して造形槽内の未硬化樹脂液をオーバーフローさせ
ながら循環させる循環手段を設け、該循環手段の循環経
路に、造形槽に流入する樹脂液を冷却する冷却手段を設
けたことを特徴とするものであり、 好ましくは、循環手段が、循環経路中に所定容量の樹脂
液タンクと、該タンクからの未硬化樹脂液を造形槽に送
出するポンプとを有するもの、更には、樹脂液タンクが
、前記冷却手段の冷却器を構成するものである。
In order to achieve the above object, the present invention forms an outlet located at a predetermined height from the bottom plate part in the modeling tank, and also includes a circulation means for circulating the uncured resin liquid in the modeling tank through the outlet while causing it to overflow. and a cooling means for cooling the resin liquid flowing into the modeling tank is provided in the circulation path of the circulation means. Preferably, the circulation means cools a predetermined volume of the resin liquid in the circulation path. The cooling device includes a tank and a pump for delivering uncured resin liquid from the tank to the modeling tank, and the resin liquid tank constitutes a cooler of the cooling means.

〔作用] 本発明では、底板部から所定高さに位置する流出口を通
して、循環手段が造形槽内の未硬化樹脂液をオーバーフ
ローさせながら循環させ、その循環経路に設けられた冷
却手段が造形槽に流入する樹脂液を冷却する。したがっ
て、造形物が液面上に引き上げられても液面高さが変化
することはなく、造形槽内の樹脂液量が少くとも造形棚
上への樹脂液の入り込み具合は一定になるとともに、造
形槽の底板部が露光により加熱され続けても、造形槽に
流入する冷却樹脂液によって底板部が常時確実に冷却さ
れる。
[Function] In the present invention, the circulation means circulates the uncured resin liquid in the modeling tank while overflowing through the outlet located at a predetermined height from the bottom plate, and the cooling means provided in the circulation path The resin liquid flowing into the tank is cooled. Therefore, even if the object to be modeled is lifted above the liquid level, the liquid level does not change, and at least the amount of resin liquid in the modeling tank remains constant, and the amount of resin liquid entering onto the modeling shelf remains constant. Even if the bottom plate portion of the modeling tank continues to be heated by exposure, the bottom plate portion is always reliably cooled by the cooling resin liquid flowing into the modeling tank.

また、循環経路中に設けた所定容量の樹脂液り/りとポ
ンプとによって樹脂液を循環させると、造形物の引き上
げに伴って減少する樹脂液を樹脂液タンクから補充しな
がら循環させる簡素な循環手段となる。
In addition, by circulating the resin liquid using a resin liquid tank with a predetermined capacity and a pump installed in the circulation path, it is possible to easily circulate the resin liquid while replenishing it from the resin liquid tank as it decreases as the object is pulled up. It becomes a means of circulation.

さらに、この樹脂液タンクが、使用される光硬化樹脂全
体の冷却器として作用するので、造形槽内における冷却
が均−且つ安定して行われる。
Furthermore, since this resin liquid tank acts as a cooler for the entire photocurable resin used, cooling within the modeling tank is performed evenly and stably.

[実施例] 以下、本発明に係る光硬化樹脂立体造形装置の一実施例
を図面に基づいて具体的に説明する。
[Example] Hereinafter, an example of the photocurable resin three-dimensional modeling apparatus according to the present invention will be specifically described based on the drawings.

まず、構成を説明する。First, the configuration will be explained.

この実施例の装置は、造形槽11、造形槽12を備えて
おり、造形槽11には光硬化樹脂、例えば紫外線(以下
、UVともいう)硬化樹脂の未硬化樹脂液lが収容され
ている。造形槽11は所定の光であるUV光を透過する
平板状の底板部13を有しており、この底板部13に上
方から接近・離間するよう造形槽12が昇降手段14に
支持されている。昇降手段14は、詳細は図示しないが
例えばサーボモータとボールネジ機構を有し、造形槽1
2を底板部13に微小間隙を隔てて対向させ、必要に応
して所定量(後述する断面層qの厚さに対応する量)ず
つ上昇させることができる。また、底板部13の下方に
はUV光を出射する図示しないUV光源が設けられてお
り、この光源からのUV光は、可動スポントビームとし
て、或は、マスキングによる所定パターンの光として整
形され、底板部13を介して、造形槽12と底板部13
の間の樹脂液層を露光する。
The apparatus of this embodiment includes a modeling tank 11 and a modeling tank 12, and the modeling tank 11 stores an uncured resin liquid l of a photocurable resin, such as an ultraviolet (hereinafter also referred to as UV) cured resin. . The modeling tank 11 has a flat bottom plate part 13 that transmits UV light, which is a predetermined light, and the modeling tank 12 is supported by a lifting means 14 so as to approach and move away from the bottom plate part 13 from above. . Although details are not shown, the elevating means 14 includes, for example, a servo motor and a ball screw mechanism, and
2 is opposed to the bottom plate portion 13 with a small gap therebetween, and can be raised by a predetermined amount (an amount corresponding to the thickness of the cross-sectional layer q, which will be described later) as necessary. Further, a UV light source (not shown) that emits UV light is provided below the bottom plate part 13, and the UV light from this light source is shaped as a movable spot beam or as light in a predetermined pattern by masking, and The modeling tank 12 and the bottom plate part 13 are connected through the part 13.
The resin liquid layer between is exposed to light.

ここで、UV光の整形パターンは、造形物を複数の断面
層9からなる立体物Qとしたときの断面層qに対応する
パターンであり、このUV光により造形槽12と底板部
13の間の樹脂液!が所定形状の断面層9に硬化する。
Here, the shaping pattern of the UV light is a pattern corresponding to the cross-sectional layer q when the model is a three-dimensional object Q consisting of a plurality of cross-sectional layers 9. Resin liquid! is cured into a cross-sectional layer 9 having a predetermined shape.

なお、造形槽12が底板部13に最も接近した位置で前
記露光がなされるとき、最初の断面層9が形成されると
とに造形槽12に接着され、以後底板部13の移動に伴
って各断面層qが積層造形されながら造形槽12に支持
されていく。
Note that when the exposure is performed at the position where the modeling tank 12 is closest to the bottom plate part 13, the first cross-sectional layer 9 is bonded to the modeling tank 12 as soon as it is formed, and thereafter, as the bottom plate part 13 moves, Each cross-sectional layer q is supported in the modeling tank 12 while being layered.

また、底板部13の上面には断面層qの底板部13から
の剥離を容易にする剥離側がコーティングされている。
Further, the upper surface of the bottom plate portion 13 is coated with a peeling side that facilitates peeling of the cross-sectional layer q from the bottom plate portion 13.

一方、造形槽11には底板部13から所定高さに位置す
る流出口15及び流入口16が形成されている。
On the other hand, the modeling tank 11 is formed with an outflow port 15 and an inflow port 16 located at a predetermined height from the bottom plate portion 13 .

流出口15は、造形槽11に一定量以上の樹脂液eが供
給されたとき、樹脂液rをオーバーフローさせて造形槽
11内の液面を一定に保つものであり、造形槽11へは
循環手段20により流入口16を通して樹脂液lが供給
される。この循環手段20は、樹脂液Pを貯留する樹脂
液タンク21と、樹脂液タンク21からの樹脂液rを造
形槽11に送出するポンプ22と、樹脂液タンク21及
びポンプ22を造形槽11に接続する循環配管23と、
ポンプ22から造形槽11への樹脂流入量を調整可能な
調整バルブ24とからなり、ポンプ22から送出されて
造形槽ll内に流入した樹脂液iは流出口15からオー
バーフローして樹脂液タンク21に戻るようになってい
る。
The outflow port 15 is used to keep the liquid level in the modeling tank 11 constant by overflowing the resin liquid r when a certain amount or more of the resin liquid e is supplied to the modeling tank 11. The resin liquid l is supplied by the means 20 through the inlet 16 . The circulation means 20 includes a resin liquid tank 21 that stores the resin liquid P, a pump 22 that sends the resin liquid r from the resin liquid tank 21 to the modeling tank 11, and a pump 22 that transfers the resin liquid tank 21 and the pump 22 to the modeling tank 11. A circulation pipe 23 to be connected,
It consists of an adjustment valve 24 that can adjust the amount of resin flowing into the modeling tank 11 from the pump 22, and the resin liquid i sent out from the pump 22 and flowing into the modeling tank 11 overflows from the outlet 15 and flows into the resin liquid tank 21. It is now back to .

25は、樹脂液タンク21に取り付けられた冷却コイル
であり、この冷却コイル25は図示しない圧縮機、凝縮
器、膨張弁等と共に公知の冷凍サイクルを構成しており
、冷却コイル25内を流れる低温の冷媒(熱媒)によっ
て樹脂液タンク21内の樹脂液pが冷却される。すなわ
ち、樹脂液タンク21は冷却コイル25と共に樹脂液l
を冷却する冷却手段の冷却器となっている。また、冷却
コイル25内を流れる冷媒の流量は、造形槽11の底板
部13側で樹脂液温度を検知する温度センサ19の出力
信号に応じ、この温度センサ19の出力に応動する制御
バルブ26の開度変化により制御されるようになってい
る。
Reference numeral 25 denotes a cooling coil attached to the resin liquid tank 21. This cooling coil 25 constitutes a known refrigeration cycle together with a compressor, a condenser, an expansion valve, etc. (not shown), and the low temperature flowing through the cooling coil 25 The resin liquid p in the resin liquid tank 21 is cooled by the refrigerant (thermal medium). That is, the resin liquid tank 21 and the cooling coil 25 contain resin liquid l.
It is a cooler for cooling means. Further, the flow rate of the refrigerant flowing inside the cooling coil 25 is determined according to an output signal of a temperature sensor 19 that detects the temperature of the resin liquid on the bottom plate portion 13 side of the modeling tank 11, and a control valve 26 that responds to the output of this temperature sensor 19. It is controlled by changing the opening degree.

次に、その造形手順と共に作用を説明する。Next, the operation will be explained along with the modeling procedure.

まず、造形槽ll内に流出口15に達するまでU■硬化
樹脂の未硬化樹脂液fが収容されるとともに樹脂液タン
ク21にもこの樹脂液!が貯留される。
First, the uncured resin liquid f of the cured resin is stored in the modeling tank ll until it reaches the outlet 15, and this resin liquid is also stored in the resin liquid tank 21! is stored.

次いで、造形槽11内の樹脂液Pに浸るよう昇降手段1
4によって造形槽12が下降され、造形槽12と底板部
13が微小間隙を隔てた位置で造形槽12が停止する。
Next, the elevating means 1 is immersed in the resin liquid P in the modeling tank 11.
4, the modeling tank 12 is lowered and stops at a position where the modeling tank 12 and the bottom plate part 13 are separated by a small gap.

次いで、造形槽11の下方から上述の整形されたUV光
が底板部13を介して造形槽11内に照射され、造形槽
12と底板部13の間の樹脂液eが露光されて、造形槽
12に接着した状態で最初の断面層qが形成される。次
いで、昇降手段14により造形棚12が所定量移動(上
昇)されると、造形槽11内の樹脂液tが例えば毛細管
現象によって、造形槽12に支持された断面層qと底板
部13の間に入り込み、次の所定パターンのUv光によ
ってこの樹脂液iが露光されると、前の断面層qに積層
硬化した次の断面層qが形成される。以下、同様な底板
部13の移動と各断面層qに対応するパターン露光によ
って順次断面層qが形成され、複数の断面層qを積層し
た立体物Qが造形される。
Next, the above-mentioned shaped UV light is irradiated into the modeling tank 11 from below the modeling tank 11 through the bottom plate part 13, and the resin liquid e between the modeling tank 12 and the bottom plate part 13 is exposed. 12, a first cross-sectional layer q is formed. Next, when the modeling shelf 12 is moved (raised) by a predetermined amount by the lifting means 14, the resin liquid t in the modeling tank 11 is moved between the cross-sectional layer q supported by the modeling tank 12 and the bottom plate part 13 due to capillary action, for example. When the resin liquid i is exposed to the next predetermined pattern of UV light, the next cross-sectional layer q is formed by laminating and hardening the previous cross-sectional layer q. Thereafter, cross-sectional layers q are sequentially formed by similar movement of the bottom plate portion 13 and pattern exposure corresponding to each cross-sectional layer q, and a three-dimensional object Q in which a plurality of cross-sectional layers q are laminated is modeled.

一方、このような造形作業中において、樹脂液タンク2
1内の樹脂液がポンプ22により送出され、流入口16
を通して造形槽11に流入するとともに、流出口15か
らオーバーフローした樹脂液!が樹脂液タンク21に戻
る。したがって、造形作業が進み、造形l1112に支
持された断面層qが造形槽11内の液面より上に引き上
げられても、樹脂液タンク21から補充される樹脂液l
によって造形槽11内の液面高さは常に一定に保たれ、
造形槽12下への樹脂液lの入り込み具合も一定に保た
れる。この結果、断面層qが薄い場合であっても、各断
面層qを十分な形状に造形して、造形作業の信転性を高
めることができる。また、樹脂液タンク21内の樹脂液
lが温度センサ19の検知温度に応して冷却コイル25
により冷却され、この冷却された樹脂液lが常に造形槽
11に流入する。したがって、底板部13へのUv光の
照射及び前記LIV光源からの熱によって底板部13が
加熱されても、その加熱量に対応して冷却さ−れる樹脂
液2によって底板部13が確実に冷却される。この結果
、造形槽12に支持された断面層qの硬化樹脂が熱応力
により変形するようなことが防止され、更に、造形槽l
l内の樹脂液lの状態が安定したものとなって気泡の発
生等が防止される。
Meanwhile, during such modeling work, the resin liquid tank 2
The resin liquid in 1 is sent out by the pump 22, and the resin liquid in the inlet 16
The resin liquid flows into the modeling tank 11 through the outlet and overflows from the outlet 15! is returned to the resin liquid tank 21. Therefore, even if the modeling work progresses and the cross-sectional layer q supported by the modeling l1112 is pulled up above the liquid level in the modeling tank 11, the resin liquid l replenished from the resin liquid tank 21
The liquid level height in the modeling tank 11 is always kept constant,
The degree to which the resin liquid l enters the bottom of the modeling tank 12 is also kept constant. As a result, even if the cross-sectional layers q are thin, each cross-sectional layer q can be shaped into a sufficient shape, and the reliability of the shaping work can be improved. Further, the resin liquid l in the resin liquid tank 21 is cooled to the cooling coil 25 according to the temperature detected by the temperature sensor 19.
The cooled resin liquid l constantly flows into the modeling tank 11. Therefore, even if the bottom plate part 13 is heated by the irradiation of UV light onto the bottom plate part 13 and the heat from the LIV light source, the bottom plate part 13 is reliably cooled by the resin liquid 2 that is cooled in accordance with the amount of heating. be done. As a result, the cured resin of the cross-sectional layer q supported in the modeling tank 12 is prevented from being deformed due to thermal stress, and furthermore, the shaping tank l
The state of the resin liquid 1 in 1 becomes stable, and the generation of bubbles etc. is prevented.

〔効果し 本発明によれば、造形作業中における造形棚下への樹脂
液の入り込み具合を一定にして、造形物の断面層が薄い
場合であっても完全な造形を行うことができ、露光によ
り加熱される底板部に対し、造形槽に流入する冷却樹脂
液によって常時安定した冷却効果を発揮させることがで
きる。
[According to the present invention, the amount of resin liquid that enters under the modeling shelf during the modeling process can be kept constant, and even if the cross-sectional layer of the object to be modeled is thin, it can be completely modeled. The cooling resin liquid flowing into the modeling tank can always exert a stable cooling effect on the heated bottom plate part.

また、造形物の引き上げに伴って減少する樹脂液を循環
経路中に設けた所定容量の樹脂液タンクから補充すると
ともに、ポンプによって樹脂液を循環させることができ
、簡素で信軌性の高い循環手段を実現することができる
In addition, the resin liquid that decreases as the object is pulled up can be replenished from a resin liquid tank with a predetermined capacity installed in the circulation path, and the resin liquid can be circulated by a pump, resulting in a simple and highly reliable circulation system. means can be realized.

さらに、前記樹脂液タンクを使用される光硬化樹脂液全
体の冷却器として作用させるので、造形槽内における冷
却を均一で且つ安定したものにすることができる。
Furthermore, since the resin liquid tank acts as a cooler for the entire photocurable resin liquid used, cooling within the modeling tank can be made uniform and stable.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明に係る光硬化樹脂立体造形装置の一実施例を
示すその概略構成図である。 11・・・・・・造形槽、 12・・・・・・造形槽、 13・・・・・・底板部、 15・・・・・・流出口、 20・・・・・・循環手段、 21・・・・・・樹脂液タンク(冷却器)、22・・・
・・・ポンプ、 23・・・・・・循環配管(循環経路)、25・・・・
・・冷却コイル(冷却手段)、p・・・・・・未硬化樹
脂液、 Q・・・、・・・立体物、 q・・・・・・断面層。 代 理 人 弁理士 有我軍 部
The figure is a schematic configuration diagram showing an embodiment of a photocurable resin three-dimensional modeling apparatus according to the present invention. 11... Modeling tank, 12... Modeling tank, 13... Bottom plate section, 15... Outlet, 20... Circulation means, 21... Resin liquid tank (cooler), 22...
...Pump, 23...Circulation piping (circulation route), 25...
...cooling coil (cooling means), p...uncured resin liquid, Q..., three-dimensional object, q...cross-sectional layer. Agent: Patent Attorney Arigunbu

Claims (3)

【特許請求の範囲】[Claims] (1)光を透過する底板部を有し、該底板部上に光硬化
樹脂の未硬化樹脂液を収容する造形槽と、造形槽内の樹
脂液に浸されて底板部と接近および離間する造形棚と、
底板部の下方から造形槽内に所定の光を照射する光源と
、を備え、前記底板部と造形棚の間の樹脂液を光源から
の光により所定パターンで硬化させ、造形棚の移動に伴
って立体物を積層造形する光硬化樹脂立体造形装置にお
いて、 前記造形槽に底板部から所定高さに位置する流出口を形
成するとともに、該流出口を通して造形槽内の未硬化樹
脂液をオーバーフローさせながら循環させる循環手段を
設け、該循環手段の循環経路に、造形槽に流入する樹脂
液を冷却する冷却手段を設けたことを特徴とする光硬化
樹脂立体造形装置。
(1) A modeling tank that has a bottom plate that transmits light and stores an uncured resin liquid of a photocurable resin on the bottom plate, and is immersed in the resin liquid in the modeling tank to approach and separate from the bottom plate. A modeling shelf,
and a light source that irradiates a predetermined light into the modeling tank from below the bottom plate, the resin liquid between the bottom plate and the modeling shelf is cured in a predetermined pattern by the light from the light source, and as the modeling shelf moves. In a photo-curing resin three-dimensional modeling apparatus for additively manufacturing a three-dimensional object, the modeling tank is provided with an outlet located at a predetermined height from the bottom plate, and the uncured resin liquid in the modeling tank is allowed to overflow through the outlet. 1. A photocurable resin three-dimensional modeling apparatus, characterized in that a circulation means is provided for circulating the resin liquid while the resin liquid is being circulated, and a cooling means for cooling a resin liquid flowing into a modeling tank is provided in a circulation path of the circulation means.
(2)循環手段が、循環経路中に所定容量の樹脂液タン
クと、該タンクからの未硬化樹脂液を造形槽に送出する
ポンプとを有することを特徴とする請求項1記載の光硬
化樹脂立体造形装置。
(2) The photocurable resin according to claim 1, wherein the circulation means includes a resin liquid tank having a predetermined capacity in the circulation path, and a pump that sends the uncured resin liquid from the tank to the modeling tank. Three-dimensional modeling device.
(3)樹脂液タンクが、前記冷却手段の冷却器を構成す
ることを特徴とする請求項2記載の光硬化樹脂立体造形
装置。
(3) The photocurable resin three-dimensional modeling apparatus according to claim 2, wherein the resin liquid tank constitutes a cooler of the cooling means.
JP2260700A 1990-09-28 1990-09-28 Photocurable resin three-dimensional molding device Expired - Lifetime JP2948893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2260700A JP2948893B2 (en) 1990-09-28 1990-09-28 Photocurable resin three-dimensional molding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2260700A JP2948893B2 (en) 1990-09-28 1990-09-28 Photocurable resin three-dimensional molding device

Publications (2)

Publication Number Publication Date
JPH04135827A true JPH04135827A (en) 1992-05-11
JP2948893B2 JP2948893B2 (en) 1999-09-13

Family

ID=17351562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2260700A Expired - Lifetime JP2948893B2 (en) 1990-09-28 1990-09-28 Photocurable resin three-dimensional molding device

Country Status (1)

Country Link
JP (1) JP2948893B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH096010A (en) * 1995-06-21 1997-01-10 Noda Screen:Kk Exposure method for photosetting type resin and its exposure device
JPH09201875A (en) * 1996-01-29 1997-08-05 Teijin Seiki Co Ltd Optical forming apparatus
US6165544A (en) * 1998-01-09 2000-12-26 Noda Screen Co., Ltd. Method of exposure of photo-curing resin applied to printed circuit board
JP2005131938A (en) * 2003-10-30 2005-05-26 Jsr Corp Photofabrication method
CN105014974A (en) * 2015-08-10 2015-11-04 浙江大学 High-speed photocuring 3D printing device and printing method
JP2018515379A (en) * 2015-04-30 2018-06-14 フォアキャスト リサーチ アンド デベロップメント コーポレーションForcast Research and Development Corp. Improved stereolithography system
JP2020516480A (en) * 2016-12-16 2020-06-11 ディーダブリューエス エス.アール.エル. Stereolithography machine with tilting tank
WO2021005858A1 (en) * 2019-07-09 2021-01-14 本田技研工業株式会社 Optical shaping device
JP2021502913A (en) * 2017-11-14 2021-02-04 ディーダブリューエス エス.アール.エル. Cartridge for stereolithography machines
CN113573872A (en) * 2019-03-18 2021-10-29 耐克森三维有限公司 Additive manufacturing method and system
CN113727828A (en) * 2019-03-07 2021-11-30 西北大学 Fast, high-capacity, dead-layer-free 3D printing
JP2021534021A (en) * 2018-08-20 2021-12-09 ネクサ3ディー インコーポレイテッド Methods and systems for photocuring photosensitive materials for printing and other applications

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101601652B1 (en) * 2014-05-07 2016-03-09 주식회사 캐리마 3D printer having device for circulation of photocurable resin
WO2016019435A1 (en) * 2014-08-05 2016-02-11 Laing O'rourke Australia Pty Limited Apparatus for fabricating an object
AU2019377511B2 (en) * 2018-11-09 2024-02-01 NEXA3D Inc. Three-dimensional printing system
US10967573B2 (en) 2019-04-02 2021-04-06 NEXA3D Inc. Tank assembly and components thereof for a 3D printing system
IT201900021465A1 (en) * 2019-11-18 2021-05-18 Sisma Spa Method for managing a photosensitive resin

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH096010A (en) * 1995-06-21 1997-01-10 Noda Screen:Kk Exposure method for photosetting type resin and its exposure device
JPH09201875A (en) * 1996-01-29 1997-08-05 Teijin Seiki Co Ltd Optical forming apparatus
US6165544A (en) * 1998-01-09 2000-12-26 Noda Screen Co., Ltd. Method of exposure of photo-curing resin applied to printed circuit board
US6583849B1 (en) 1998-01-09 2003-06-24 Noda Screen Co., Ltd. Apparatus for exposure of photo-curing resin applied to printed circuit board
JP2005131938A (en) * 2003-10-30 2005-05-26 Jsr Corp Photofabrication method
JP2018515379A (en) * 2015-04-30 2018-06-14 フォアキャスト リサーチ アンド デベロップメント コーポレーションForcast Research and Development Corp. Improved stereolithography system
CN105014974A (en) * 2015-08-10 2015-11-04 浙江大学 High-speed photocuring 3D printing device and printing method
JP2020516480A (en) * 2016-12-16 2020-06-11 ディーダブリューエス エス.アール.エル. Stereolithography machine with tilting tank
JP2021502913A (en) * 2017-11-14 2021-02-04 ディーダブリューエス エス.アール.エル. Cartridge for stereolithography machines
JP2021534021A (en) * 2018-08-20 2021-12-09 ネクサ3ディー インコーポレイテッド Methods and systems for photocuring photosensitive materials for printing and other applications
US11865768B2 (en) 2018-08-20 2024-01-09 NEXA3D Inc. Methods for photo-curing photo-sensitive material for printing and other applications
CN113727828A (en) * 2019-03-07 2021-11-30 西北大学 Fast, high-capacity, dead-layer-free 3D printing
CN113573872A (en) * 2019-03-18 2021-10-29 耐克森三维有限公司 Additive manufacturing method and system
WO2021005858A1 (en) * 2019-07-09 2021-01-14 本田技研工業株式会社 Optical shaping device
JPWO2021005858A1 (en) * 2019-07-09 2021-01-14

Also Published As

Publication number Publication date
JP2948893B2 (en) 1999-09-13

Similar Documents

Publication Publication Date Title
JPH04135827A (en) Photosetting resin solid shaping device
US5738165A (en) Substrate holding apparatus
CN106426915B (en) A kind of continuous photocuring 3D printing device of high speed and its working method
JP5551667B2 (en) Lithographic apparatus and device manufacturing method
TWI421644B (en) Lithographic apparatus and method
TW201020697A (en) Lithographic apparatus and device manufacturing method
US8638416B2 (en) Device manufacturing apparatus, including coolant temperature control, and method of manufacturing device
CN106273516A (en) A kind of molding window printed for high-speed and continuous photocuring 3D
TWI497230B (en) Lithographic apparatus and method of cooling a component in a lithographic apparatus
CN107696479A (en) The equipment for manufacturing 3 D workpiece of protective gas with controlled temperature
PL234153B1 (en) Printer for spatial printing
JP5552100B2 (en) Powder sintering modeling method
US20210260819A1 (en) Systems, apparatuses, and methods for manufacturing three dimensional objects via continuously curing photopolymers, utilising a vessel containing an interface fluid
JP4040177B2 (en) 3D modeling apparatus, 3D modeling method, and medium on which 3D modeling control program is recorded
JP4689308B2 (en) Exposure apparatus and device manufacturing method
JPS62208918A (en) Device for adjusting mold temperature
JP2617532B2 (en) Method and apparatus for forming a three-dimensional shape
CN214294472U (en) 3D printer with cold gas heat dissipation function
JP2001244179A (en) Aligner equipped with temperature controller, and method of manufacturing device
JP2901320B2 (en) 3D shape forming method
US20110059621A1 (en) Device manufacturing apparatus and device manufacturing method
JP3140741B2 (en) 3D shape forming method
JP6402769B2 (en) Imprint apparatus and imprint transfer body manufacturing method
JPS6281296A (en) Hot press
CN215849650U (en) Cooling system of photocuring 3D printer