JPH0413455A - Method for continuously casting steel - Google Patents

Method for continuously casting steel

Info

Publication number
JPH0413455A
JPH0413455A JP11807490A JP11807490A JPH0413455A JP H0413455 A JPH0413455 A JP H0413455A JP 11807490 A JP11807490 A JP 11807490A JP 11807490 A JP11807490 A JP 11807490A JP H0413455 A JPH0413455 A JP H0413455A
Authority
JP
Japan
Prior art keywords
solidified shell
thermometer
slab
mold
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11807490A
Other languages
Japanese (ja)
Inventor
Yoshio Okuda
奥田 美夫
Akihiro Yamanaka
章裕 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11807490A priority Critical patent/JPH0413455A/en
Publication of JPH0413455A publication Critical patent/JPH0413455A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent breakout, to uniformize thickness of solidified shell in a cast slab and to improve surface quality by detecting developing abnormality of the solidified shell with a third thermometer group set at a third position and executing control for decelerating casting velocity of forcing mold cooling, etc. CONSTITUTION:Based on detected signal from a first thermometer group 41, 42, starting point of solidification in molten steel in the mold 52 is obtd. with a computer 7 and further, based on detected signal from a second thermometer group 43, the thickness of solidified shell 12 in the cast slab 1 at the time of passing through a second position P2 is obtd. Based on the calculated values obtd. in such way, the thickness of solidified shell in the cast slab passed through a fourth position P4, is predicted with the computer 7. Based on this predicted thickness of solidified shell, cooling intense in a cooling unit 6 is controlled. Based on the detected signal from the third thermometer group 4, the developing abnormality of solidified shell in the cast slab is detected and a control signal is transferred to a casting velocity control unit 8 from the computer 7 to control the casting velocity.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、鋳片の凝固シェル厚予測法を用いた鋼の連続
鋳造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for continuous casting of steel using a method for predicting the solidified shell thickness of slabs.

(ロ)従来技術 連続鋳造用鋳型は通常600〜120On+nの長さを
有するもので鋳型内壁は高い熱伝導率を有する材料、す
なわち銅または銅合金等により構成されている。
(b) Prior Art Continuous casting molds usually have a length of 600 to 120 On+n, and the inner wall of the mold is made of a material with high thermal conductivity, such as copper or copper alloy.

このような鋳型を用いて鋳造を行う場合、溶鋼は鋳型壁
内部に供給される冷却媒体(例えば水)により間接的に
冷却作用を受け、鋳型壁に接する部分から漸次凝固が進
行し、凝固シェルの厚さが内部溶鋼の流体静力学的圧力
に耐え得る程度まで成長するのに伴い、凝固シェルは収
縮し、鋳型壁凝固シェルの間に空隙を生じることになる
When casting is performed using such a mold, the molten steel is indirectly cooled by a cooling medium (e.g. water) supplied inside the mold wall, and solidification progresses gradually from the part in contact with the mold wall, forming a solidified shell. As the thickness of the solidified steel grows to the extent that it can withstand the hydrostatic pressure of the internal molten steel, the solidified shell will contract, creating voids between the mold wall solidified shells.

特に矩形断面を有する鋳型においては、鋳型の広面壁中
央部と接する鋳片凝固シェルは内部の温調圧力により外
側に膨出し易く、鋳型壁面と比較的よく接触し易いか、
鋳型広面側端部および狭面側の下部においては、空隙か
顕著に現れ易い傾向がある。
In particular, in a mold with a rectangular cross section, the solidified slab shell in contact with the center of the broad wall of the mold tends to bulge outward due to the internal temperature control pressure, and is likely to come into relatively good contact with the mold wall surface.
At the end of the wide side of the mold and at the bottom of the narrow side of the mold, voids tend to be noticeable.

この空隙発生は鋳片から鋳型壁への熱伝導効率を著しく
低下させ、鋳片の凝固シェル成長を大きく阻害し、凝固
シェル厚さの不均一による表面編割れ等品質欠陥の誘因
となり、さらには凝固シェル破損によるブレークアウト
の大きな要因となる場合が多い。これは現状連続鋳造設
備の大きな基本的問題点となっており、特に高速鋳造化
指向への最大の障害になっている。
This generation of voids significantly reduces the heat conduction efficiency from the slab to the mold wall, greatly inhibits the growth of the solidified shell of the slab, and causes quality defects such as surface cracking due to uneven thickness of the solidified shell. This is often a major cause of breakout due to damage to the solidified shell. This is a major fundamental problem with the current continuous casting equipment, and is the biggest obstacle to achieving high-speed casting.

そこで、本出願人は上記問題点を改善し、鋳型に間接・
直接冷却機能をもなせて、凝固シェル生成異常時に間接
冷却のみにして、安定した連続鋳造を得るなめに、鋳片
に対向する鋳型銅板内に鋳片を間接に冷却する第1の水
路を設け、該第1の水路とは別個に該銅板内に鋳片を直
接に冷却する第2の水路を設け、該第2の水路に給水遮
断弁を設け、鋳片の表面温度を検出する温度計を前記銅
板内の所定位置に配設し、前記銅板の鋳片側表面に水蒸
気逃し用の縦溝を複数条形成したことを特徴とした鋼の
連続鋳造用鋳型、およびその鋳型を用いて、前記温度計
によって、鋳片凝固シェルの生成異常を検出すること、
生成異常検出時に前記第2の水路の給水を遮断するとと
もに@遣速度を所定の速度まで低下させることからなる
鋼の連続鋳造方法を提案した(特願平2−25722号
)。
Therefore, the applicant has improved the above problem and added indirect and
In order to have a direct cooling function and only use indirect cooling in the event of abnormal solidified shell formation to achieve stable continuous casting, a first water channel is provided in the mold copper plate facing the slab to indirectly cool the slab. , a second waterway for directly cooling the slab is provided in the copper plate separately from the first waterway, a water supply cutoff valve is provided in the second waterway, and a thermometer detects the surface temperature of the slab. is arranged at a predetermined position in the copper plate, and a plurality of vertical grooves for steam release are formed on the surface of the casting side of the copper plate, and using the mold, the above-mentioned detecting abnormalities in the formation of solidified slab shells with a thermometer;
We have proposed a method for continuous casting of steel, which comprises cutting off the water supply to the second waterway and lowering the casting speed to a predetermined speed when a production abnormality is detected (Japanese Patent Application No. 25722/1999).

この連続鋳造方法では、鋳片凝固シェルの生成異常を検
出するために、第10図に示す温度計4を用い、これに
より、ブレークアウト、水蒸気爆発等の防止を図ってい
る。しかしながら、この温度測定は、操業上のトラブル
防止には有効であるが、表面品質の向上すなわち、初期
凝固シェルが不均一生成している場合のシェル生長の均
一化のための冷却を制御する情報としては不十分であつ
た。
In this continuous casting method, a thermometer 4 shown in FIG. 10 is used to detect abnormal formation of the solidified slab shell, thereby preventing breakouts, steam explosions, etc. However, while this temperature measurement is effective for preventing operational troubles, it is also useful for controlling cooling to improve surface quality, i.e. to uniformize shell growth when initially solidified shells are formed unevenly. It was insufficient.

(ハ)発明が解決しようとした課題 本発明か解決しようとした課題は、鋼の連続鋳造におい
て、ブレークアウトの防止および水蒸気爆発等の防止を
図ることばかりではなく、鋳型内温鋼のメニスカスから
鋳造方向下向き側の基準位置間における凝固シェルの形
成状況を予測し、この予測値にもとづいて基準位置によ
り下方における鋳片の冷却を制御し、表面品質の健全な
鋳片を得ることにある。
(c) Problems to be solved by the invention The problem to be solved by the present invention is not only to prevent breakouts and steam explosions in continuous casting of steel, but also to prevent the meniscus of the steel at a temperature inside the mold. The purpose of this method is to predict the formation status of a solidified shell between reference positions on the downward side in the casting direction, and to control cooling of the slab below from the reference position based on this predicted value, thereby obtaining a slab with a sound surface quality.

(ニ)課題を解決するための手段 本発明の鋼の連続鋳造方法は、鋼の連続鋳造用鋳型にお
いて溶鋼メニスカス変動領域外上下近傍の第1位置およ
び該第1位置より鋳片進行方向下流側の第2位置とに鋳
型的銅板温度を検出する第1および第2温度計群をそれ
ぞれ設け、前記両位置以外の所定箇所の第3位置に第3
の温度計群を設け、前記第3位置よりもさらに下流側の
第4位置に鋳片凝固厚制御用の冷却ユニットを設は前記
第1および第2温度計群からの検出信号にもとづいて前
記第2位置通過時における鋳片の凝固シェル厚を求め、
前記第3温度計群からの検出信号にもとづいて鋳片の凝
固シェル生成異常を検出し、前記第1および第2温度計
群によって求めた計算値にもとづいて前記第4位置を通
過する鋳片の凝固シェル厚を予測し、該予測凝固シェル
厚にもとづいて前記冷却ユニットの冷却強度を制御し、
前記第3温度計群から検出した凝固シェル生成異常にも
とづいて鋳造速度を制御することからなる手段によって
、上記課題を解決している6前記第1および第2温度計
群を鋳型内熱流方向に検出端をずらせた1対の温度計か
らそれぞれ構成することが好ましい。
(d) Means for Solving the Problems The continuous steel casting method of the present invention provides a first position in the vicinity of the top and bottom outside the molten steel meniscus fluctuation area in a mold for continuous steel casting, and a downstream side of the first position in the direction of slab movement. A first and second thermometer group for detecting the mold-like copper plate temperature is provided at a second position, respectively, and a third thermometer group is provided at a third position at a predetermined location other than the above-mentioned two positions.
Thermometer groups are provided, and a cooling unit for controlling the solidified slab thickness is provided at a fourth position further downstream than the third position. Determine the solidified shell thickness of the slab when passing the second position,
A slab that passes through the fourth position based on the detection signal from the third thermometer group to detect an abnormality in solidified shell formation in the slab, and based on calculated values obtained by the first and second thermometer groups. predicting the solidified shell thickness of the cooling unit, and controlling the cooling intensity of the cooling unit based on the predicted solidified shell thickness;
The above-mentioned problem is solved by controlling the casting speed based on the solidified shell formation abnormality detected from the third thermometer group.6 The first and second thermometer groups are arranged in the direction of heat flow in the mold. It is preferable that the thermometers each include a pair of thermometers whose detection ends are shifted from each other.

(ホ)作用 本発明の鋼の連続鋳造方法においては、鋳片の凝固シェ
ル厚を予測するために鋳型内の鋳込中の湯面変動時の最
高値よりも上方の位置と最低値よりも下方の位置に第1
位置を取り、そこに第1の温度計群を設ける。さらに、
これより下方に設けた第2位置に第2の温度計群を、そ
れぞれ水冷銅板内の熱流方向に所定の間隔たけすらせて
2個ずつ配役する。
(E) Function In the continuous steel casting method of the present invention, in order to predict the solidified shell thickness of a slab, the position above the highest value and the lowest value during the fluctuation of the melt level during pouring in the mold are used to predict the solidified shell thickness of the slab. 1st in the lower position
A position is taken and a first group of thermometers is installed there. moreover,
Two second thermometer groups are placed at a second position below this, each extending at a predetermined distance in the heat flow direction within the water-cooled copper plate.

第1の温度計配設位置間にメニスカス位置を保持するこ
とにより、湯面レベル値をかいして、メニスカス部から
下方の温度計配設位1間で形成される凝固シェル厚を算
出できる0次に、第1から第2の温度計配設位1間で形
成される凝固シェル厚も同様に算出できる。ここで、第
1の温度計配設位置をメニスカス部外の上、下位置とし
たことにより、メニスカス部の熱流束を精度よく予測す
ることが可能となる。さらに、各々熱流方向にずらせて
2個ずつ温度計を配設することにより直接的にこの位置
での熱流束か求められる。凝固シェル厚算出に要する演
算時間を大幅に短縮できるので、汎用のパーソナルコン
ピュータによる制御を可能にしている。
By maintaining the meniscus position between the first thermometer positions, the thickness of the solidified shell formed between the first thermometer position below the meniscus can be calculated using the hot water level value. Next, the thickness of the solidified shell formed between the first and second thermometer placement positions 1 can be calculated in the same manner. Here, by arranging the first thermometer at the upper and lower positions outside the meniscus, it becomes possible to accurately predict the heat flux of the meniscus. Furthermore, by arranging two thermometers shifted in the heat flow direction, the heat flux at this position can be directly determined. Since the calculation time required to calculate the solidified shell thickness can be significantly reduced, control using a general-purpose personal computer is possible.

第2の基準位置に設けた温度計群は、第1から第2温度
計配設位1間での凝固シェル厚を算出するために不可欠
である。第1から第2測温位1間か長い場合や、この区
間内に浸漬ノズルからの給湯流線か存在する場合には、
この区間内での凝固シェル厚算出精度を向上させるため
に、測温位置を増設することが有効である。
The thermometer group provided at the second reference position is essential for calculating the solidified shell thickness between the first and second thermometer positions 1. If the interval between the first and second temperature measurement positions is longer than 1, or if there is a hot water supply flow line from the immersion nozzle within this section,
In order to improve the accuracy of calculating the solidified shell thickness within this section, it is effective to add more temperature measurement positions.

基準点位置(第2位置)決定にさいしては、使用鋳型の
伝熱特性や、鋳造速度、凝固シェル厚演算速度、冷却制
御応答速度等の条件を考慮する必要があり、各鋳造機ご
とに基準位置が設けられている。
When determining the reference point position (second position), it is necessary to consider conditions such as the heat transfer characteristics of the mold used, casting speed, solidified shell thickness calculation speed, and cooling control response speed. A reference position is provided.

本発明では、上記凝固シェル厚情報にもとづいて、基準
位置より下方の第4位置において、その冷却条件を任意
に制御可能な連続鋳造法において効力を発揮する。前述
した連続鋳造用鋳型ばかりではなく、通常の連続鋳造法
において、鋳型出口直近での二次冷却帯において同様の
制御可能な場合にも有効である。鋳片の任意の部位を強
冷、弱冷等制御可能であればよい。また、冷却条件制御
部位数は鋳造条件、鋼種等によって効果か得られるよう
に任意に設定できる。第3位置に設けた第3の温度計群
によって、凝固シェル生成異常を検出し、鋳造速度の減
速または鋳型冷却の強化等の制御を行う。
The present invention is effective in a continuous casting method in which the cooling conditions can be arbitrarily controlled at the fourth position below the reference position based on the solidified shell thickness information. It is effective not only for the above-mentioned continuous casting mold, but also for ordinary continuous casting methods where similar control is possible in the secondary cooling zone near the mold outlet. It is sufficient if any part of the slab can be controlled to be strongly cooled, weakly cooled, etc. Further, the number of cooling condition control parts can be arbitrarily set so as to obtain an effect depending on casting conditions, steel type, etc. A third thermometer group provided at the third position detects an abnormality in solidified shell formation, and performs controls such as slowing down the casting speed or strengthening mold cooling.

(へ)実施例 本発明の鋼の連続鋳造方法を説明する前に、本発明が基
礎を置く、本出願人に係る前述した特許出願に開示され
ている連続鋳造方法について説明する。
(f) Example Before explaining the continuous casting method of steel of the present invention, the continuous casting method disclosed in the above-mentioned patent application filed by the present applicant, on which the present invention is based, will be explained.

第10図に示すように、連続鋳造用鋳型は、鋳片1に対
向する鋳型銅板2内に鋳片1を間接に冷却する第1の水
#121を設け、第1の水1121とは別個に銅板2内
に鋳片1を直接に冷却する第2の水路22を設ける。第
2の水路22に給水遮断弁3を設ける。鋳片1の表面温
度を検出する温度計4を銅板2内の所定位置に配設する
。銅板2の鋳片側表面23に水蒸気逃し用の緬湧24を
複数条形成する。
As shown in FIG. 10, the continuous casting mold is provided with a first water #121 that indirectly cools the slab 1 in the mold copper plate 2 facing the slab 1, and is separate from the first water 1121. A second water channel 22 is provided in the copper plate 2 to directly cool the slab 1. A water supply cutoff valve 3 is provided in the second waterway 22. A thermometer 4 for detecting the surface temperature of the slab 1 is placed at a predetermined position within the copper plate 2. A plurality of strips 24 for releasing water vapor are formed on the casting side surface 23 of the copper plate 2.

銅板2はバックプレート5にボルトによって固定されて
いる。慣用の熱電対からなる温度計4の出力は計算W&
7に入力される。給水遮断弁3は慣用の流体圧シリンダ
31によって作動される。計算機7からの制御信号は、
鋳造速度制御装置8とおよびシリンダ31とに送られる
The copper plate 2 is fixed to the back plate 5 with bolts. The output of thermometer 4, which consists of a conventional thermocouple, is calculated by W&
7 is input. The water supply cut-off valve 3 is actuated by a conventional hydraulic cylinder 31. The control signal from computer 7 is
It is sent to the casting speed control device 8 and the cylinder 31.

温度計4からの検出信号は計算817に送って、鋳片1
の凝固シェル12の生成異常を判定する。
The detection signal from thermometer 4 is sent to calculation 817, and slab 1
The production abnormality of the solidified shell 12 is determined.

凝固シェル生成異常時には、流体圧シリンダ31に制御
信号を送って給水遮断弁3を閉じる。それと同時に、計
算617から鋳造速度制御装置8に速度制御信号を送っ
て、鋳造の停止または減速を行つ。
When the solidified shell generation is abnormal, a control signal is sent to the fluid pressure cylinder 31 to close the water supply cutoff valve 3. At the same time, the calculation 617 sends a speed control signal to the casting speed controller 8 to stop or slow down the casting.

次に、第1図から第9図までを参照して、本発明の鋼の
連続鋳造方法の実施例について説明する。
Next, an embodiment of the continuous steel casting method of the present invention will be described with reference to FIGS. 1 to 9.

第1図に最もよく示すように、本発明の鋼の連続鋳造方
法は、鋼の連続鋳造用鋳型52において、溶鋼メニスカ
ス11の変動領域外上下近傍の第1位置P1およびその
第1位置P1より鋳片1の進行方向下流側の第2位置P
2とに銅板2の温度を検出する第1温度計群41,42
および第2温度計群43をそれぞれ設ける。
As best shown in FIG. 1, the continuous steel casting method of the present invention includes a first position P1 in the vicinity of the top and bottom outside the fluctuation range of the molten steel meniscus 11 in the continuous steel casting mold 52, and Second position P on the downstream side in the traveling direction of the slab 1
2 and a first thermometer group 41, 42 that detects the temperature of the copper plate 2.
and a second thermometer group 43 are provided.

第1位置P1および第2位ffP2以外の所定箇所の第
3位置P3に第3の温度計群4を設ける。
A third thermometer group 4 is provided at a third position P3 at a predetermined location other than the first position P1 and the second position ffP2.

その第3位置P3よりもさらに下?L側の第4位置P4
に鋳片凝固層制御用の冷却ユニット6を設ける。
Even lower than that third position P3? Fourth position P4 on the L side
A cooling unit 6 for controlling the solidified slab layer is installed in the cooling unit 6.

第1温度計群41.42および第2温度計群43は、例
えば温度計群41について言えは、第2図に示すように
、鏡型52の熱流方向521に検出端411を間隔eだ
けずらせて設ける。温度計群42.43についても同様
である。平面的には第3図(A)に示すように鋳型52
の銅板2にそって所定間隔に配置する0例えば、第4図
に示すように、鋳型52の側壁周囲にそって、複数箇所
設置する。
The first thermometer group 41, 42 and the second thermometer group 43, for example, with respect to the thermometer group 41, as shown in FIG. Provided. The same applies to the thermometer groups 42 and 43. In plan view, as shown in FIG. 3(A), the mold 52
For example, as shown in FIG. 4, they are placed at a plurality of locations along the side wall of the mold 52 at predetermined intervals along the copper plate 2 .

第3温度計群4は、第3図(B)に示すように、単独に
所定間隔で設ける。鋳型の側壁周囲についても、第4図
に示すように配設する。
The third thermometer group 4 is provided individually at predetermined intervals, as shown in FIG. 3(B). The surroundings of the side walls of the mold are also arranged as shown in FIG.

冷却ニット6は、第6図に示すように、水冷鋳型銅板と
直接冷却との組合せ(A)、水冷鋳型銅板のみ(B)、
直接冷却水噴射のみ<C)のいずれでもよい。
As shown in FIG. 6, the cooling knit 6 includes a combination of a water-cooled molded copper plate and direct cooling (A), a water-cooled molded copper plate only (B),
Direct cooling water injection only<C) may be used.

直接冷却水噴射の場合には、第7図に示すように、冷却
水噴射ノズル61を設けて鋳片1のまわりに配設するこ
とか好ましい。この場合、ノズル61はいずれも単独に
水量調節可能であり、流量制御指令に応答して、水量を
増減制御できる。この単独流量制御可能なスプレィ帯は
、鋳造方向に5段配設しており、これより下方のスプレ
ィ帯は、短辺のノズルは無く、長辺も各面ごとに一定量
の水量で制御できるようにしである。
In the case of direct cooling water injection, it is preferable to provide a cooling water injection nozzle 61 and arrange it around the slab 1, as shown in FIG. In this case, each of the nozzles 61 can independently adjust the amount of water, and can increase or decrease the amount of water in response to a flow rate control command. These spray bands, which can be individually controlled in flow rate, are arranged in five stages in the casting direction, and the spray bands below this have no nozzles on the short sides, and the long sides can also be controlled with a fixed amount of water for each side. That's how it is.

本発明の方法においては、第1温度計群41゜42から
の検出信号にもとづいて、計算機7によって鋳型52内
の溶鋼の凝固開始点を求め、また、第2温度計群43か
らの検出信号にもとづいて前記第2位置P2の通過時に
おける鋳片1の凝固シェル12の厚みを求める。このよ
うにして求めた計算値にもとづいて第4位置P4を通過
する鋳片の凝固シェル厚を計算87によって予測するに
の予測凝固シェル厚にもとづいて、冷却ユニット6の冷
却強度を制御する。
In the method of the present invention, the solidification start point of molten steel in the mold 52 is determined by the computer 7 based on the detection signals from the first thermometer group 41 and 42, and the solidification start point of the molten steel in the mold 52 is determined based on the detection signals from the second thermometer group 43. Based on this, the thickness of the solidified shell 12 of the slab 1 when passing through the second position P2 is determined. The cooling intensity of the cooling unit 6 is controlled based on the predicted solidified shell thickness in which the solidified shell thickness of the slab passing through the fourth position P4 is predicted by calculation 87 based on the calculated value thus obtained.

例えば、第8図に示すように、予測凝固シェル12の厚
みに不均一か生じたときに、冷却強度を調節しくA)、
はぼ均一の凝固シェル12を得る(B)。
For example, as shown in FIG. 8, when the thickness of the predicted solidified shell 12 is uneven, the cooling intensity is adjusted.
A substantially uniform solidified shell 12 is obtained (B).

第3温度計群からの検出信号にもとづいて鋳片の凝固シ
ェル生成異常を検出し、計算機7から鋳造速度制御装置
8に制御信号を送って、鋳造速度を制御する。
Based on the detection signals from the third thermometer group, an abnormality in solidified shell formation of the slab is detected, and a control signal is sent from the computer 7 to the casting speed control device 8 to control the casting speed.

次に、本発明の方法の具体的実施例について説明する。Next, specific examples of the method of the present invention will be described.

本発明にもとすく凝固シェル厚予測用温度計配役位置を
第2図に示す。凝固シェル厚予測用の温度計群41.4
2.43の一方は水冷銅板2の鋳片側表面から56入っ
た位置に、また他方は、15關入った位置に取り付ける
。したがって、検出端のずれ間隔eを10圓にする6 鋳片1の鋳造方向の配設位置は第5図に示すように、第
1の上方位置P1を鋳型上端から100mmとし第1の
上方位fP1を150關、第2の位置P2を500間に
する。
FIG. 2 shows the position of the thermometer for predicting the solidified shell thickness according to the present invention. Thermometer group 41.4 for predicting solidified shell thickness
2.43 is attached at a position 56 degrees in from the surface of the casting side of the water-cooled copper plate 2, and the other is attached at a position 15 degrees in from the surface of the cast side of the water-cooled copper plate 2. Therefore, the displacement interval e of the detection ends is set to 10 degrees.6 The arrangement position of the slab 1 in the casting direction is as shown in Fig. 5, with the first upper position P1 being 100 mm from the upper end of the mold. Set fP1 to 150 degrees and set the second position P2 to 500 degrees.

鋳型周方向には、第4図に示すように、長、短辺の幅中
央と、長辺の短辺側から401+ltl中央よりの位置
に取り付ける。なお図中の温度計4は、凝固シェル生成
異常検出用のものでありいずれも表面より5關入った位
置に取り付けである。
In the circumferential direction of the mold, as shown in FIG. 4, it is attached at the center of the width of the long and short sides, and at a position 401+ltl from the short side of the long side. Note that the thermometer 4 in the figure is for detecting an abnormality in the formation of a solidified shell, and is mounted at a position 5 degrees below the surface.

温度計4.41.42.43の信号はすべて計算a7内
に取り込まれる。計算機7内では、主に2つの副脚指令
を発生させる61つには、凝固シェル生成異常検出時に
おける鋳造速度低減指令であり、もう1つは、本発明に
かかる凝固シェル厚予測値に応じた水冷ユニット6の水
量の増減指令である。
All the signals of thermometers 4.41.42.43 are taken into calculation a7. The computer 7 mainly generates two secondary leg commands, one of which is a casting speed reduction command when an abnormality in solidified shell production is detected, and the other is a command to reduce the casting speed when an abnormality in solidified shell production is detected, and the other is a command to reduce the casting speed according to the predicted solidified shell thickness according to the present invention. This is a command to increase or decrease the amount of water in the water cooling unit 6.

本実施例においては、水冷ユニット6として、前述した
先行技術の給水遮断弁3を含む給水系を利用する。
In this embodiment, the water supply system including the water supply cutoff valve 3 of the prior art described above is used as the water cooling unit 6.

垂直型試験連鋳機を用い、鋳片サイズ80 rn+ X
400rmのミニスラブを、鋳造速度2.5n/分で、
低粘度パウダを使用して鋳造しな。第1表に供試鋼成分
を示す。試験結果を第9[]に示す。鋳込は、目標鋳造
速度到達直後に故意に湯面を変動させて、凝固シェルを
不均一に生成させた後、操業方式を下記のように変えて
実施しな。第9図において、信号(A>は、凝固シェル
生成異常検出用の温度情報にもとづいて、異常の無い状
況下でスプレィ水流量を制御せずに鋳造したものであり
、また、信号(B)は凝固シェル厚予測値にもとづいて
スプレィ水流量を制御して鋳造したものである。
Using a vertical test continuous casting machine, slab size 80 rn+
A 400 rm mini-slab was cast at a casting speed of 2.5 n/min.
Do not cast using low viscosity powder. Table 1 shows the composition of the sample steel. The test results are shown in No. 9 []. Immediately after reaching the target casting speed, pouring is performed by intentionally varying the level of the molten metal to generate a solidified shell non-uniformly, and then changing the operating method as described below. In FIG. 9, the signal (A> is the result of casting without controlling the spray water flow rate under normal conditions, based on temperature information for detecting solidified shell generation abnormalities, and the signal (B) was cast by controlling the spray water flow rate based on the predicted solidified shell thickness.

第 1 表  溶鋼成分 上記操業方式(A)の場合には、第9図の(A)に示す
ように、操業の安定性確保の上では、良好な結果であっ
たが、表面品質にバラツキが発生しており、高品位の鋳
片を得ることができなかった。
Table 1 Molten Steel Composition In the case of the above operation method (A), as shown in Fig. 9 (A), although good results were obtained in terms of ensuring operational stability, there were variations in surface quality. This made it impossible to obtain high-quality slabs.

CB>の場合には、本発明に示す鋳型向凝固シェル厚予
測法の適用により、鋳型内で不均一であったシェル厚か
スプレィ水量の制御効果により均一化し、健全な高品位
の鋳片が得へり、た6(ト)効 果 本発明の方法によれば、従来からの操業上のトラブルで
あるブレークアウトを防止できるばかりではなく、@片
の凝固シェルの厚みを均一にし、表面品質の向上を図る
ことかできる。
CB>, by applying the mold shell thickness prediction method shown in the present invention, the shell thickness, which was uneven within the mold, can be made uniform by controlling the amount of spray water, and a healthy, high-quality slab can be produced. Benefits: (g) Effects According to the method of the present invention, it is possible not only to prevent breakout, which has been a conventional operational trouble, but also to make the thickness of the solidified shell of the piece uniform and to improve the surface quality. You can try to improve.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の鋼の連続鋳造方法の概略説明図。第2
図は本発明の方法に用いる温度計の一例を示す側面図。 第3図は温度計の配置例の平面図。 第4図は鋳型周囲の温度計設置例の説明図。第5図は本
発明の方法の実施例の説明図。第6図は本発明の方法に
用いる鋳片の冷却ユニットを示す平面図。第7図は第6
図(C)の側面図、第8図は冷却態様の説明図。第9図
は本発明の効果を示すグラフ、第10図は先行技術の連
続鋳造方法の説明図。 1:@片   2;銅板 3:給水遮断弁     4:温度計 5:バックプレート   6:水冷ユニット11:メニ
スカス    12:凝固シェル21:第1の水路  
  22:第2力水路31:流体圧シリンダ 41.42.43:温度計 第1 図 第3図 第2図 第4図 第5図
FIG. 1 is a schematic explanatory diagram of the continuous steel casting method of the present invention. Second
The figure is a side view showing an example of a thermometer used in the method of the present invention. FIG. 3 is a plan view of an example of the arrangement of thermometers. FIG. 4 is an explanatory diagram of an example of thermometer installation around the mold. FIG. 5 is an explanatory diagram of an embodiment of the method of the present invention. FIG. 6 is a plan view showing a cooling unit for slabs used in the method of the present invention. Figure 7 is the 6th
The side view of figure (C) and FIG. 8 are explanatory views of the cooling mode. FIG. 9 is a graph showing the effects of the present invention, and FIG. 10 is an explanatory diagram of the prior art continuous casting method. 1: @ Piece 2; Copper plate 3: Water supply cutoff valve 4: Thermometer 5: Back plate 6: Water cooling unit 11: Meniscus 12: Solidified shell 21: First water channel
22: Second power waterway 31: Fluid pressure cylinder 41. 42. 43: Thermometer 1 Figure 3 Figure 2 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1、鋼の連続鋳造用鋳型において溶鋼メニスカス変動領
域外上下近傍の第1位置および該第1位置より鋳片進行
方向下流側の第2位置とに鋳片表面温度を検出する第1
および第2温度計群をそれぞれ設け、前記両位置以外の
所定箇所の第3位置に第3の温度計群を設け、前記第3
位置よりもさらに下流側の第4位置に鋳片凝固厚制御用
の冷却ユニットを設け、前記第1および第2温度計群か
らの検出信号にもとづいて前記第2位置通過時における
鋳片の凝固シェル厚を求め、前記第3温度計群からの検
出信号にもとづいて鋳片の凝固シェル生成異常を検出し
、前記第1および第2温度計群によって求めた計算値に
もとづいて前記第4位置を通過する鋳片の凝固シェル厚
を予測し、該予測凝固シェル厚にもとづいて前記冷却ユ
ニットの冷却強度を制御し、前記第3温度計群から検出
した凝固シェル生成異常にもとづいて鋳造速度を制御す
ることを特徴とした鋼の連続鋳造方法。 2、前記第1およ第2温度計群を鋳型内熱流方向に検出
端をずらせた1対の温度計からそれぞれ構成することを
特徴とした請求項1記載の方法。
[Claims] 1. In a mold for continuous casting of steel, the surface temperature of a slab is detected at a first position near the top and bottom outside the molten steel meniscus fluctuation area and at a second position downstream from the first position in the direction of slab movement. First thing to do
and a second thermometer group, and a third thermometer group is provided at a third position at a predetermined location other than the two positions, and the third thermometer group
A cooling unit for controlling the solidification thickness of the slab is provided at a fourth position further downstream from the position, and the cooling unit controls the solidification of the slab when it passes through the second position based on the detection signals from the first and second thermometer groups. The shell thickness is determined, an abnormal solidified shell formation of the slab is detected based on the detection signal from the third thermometer group, and the fourth position is determined based on the calculated value obtained by the first and second thermometer groups. predicting the solidified shell thickness of the slab passing through, controlling the cooling intensity of the cooling unit based on the predicted solidified shell thickness, and controlling the casting speed based on the solidified shell formation abnormality detected from the third thermometer group. A continuous steel casting method characterized by control. 2. The method according to claim 1, wherein the first and second thermometer groups each include a pair of thermometers whose detection ends are shifted in the direction of heat flow within the mold.
JP11807490A 1990-05-08 1990-05-08 Method for continuously casting steel Pending JPH0413455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11807490A JPH0413455A (en) 1990-05-08 1990-05-08 Method for continuously casting steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11807490A JPH0413455A (en) 1990-05-08 1990-05-08 Method for continuously casting steel

Publications (1)

Publication Number Publication Date
JPH0413455A true JPH0413455A (en) 1992-01-17

Family

ID=14727360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11807490A Pending JPH0413455A (en) 1990-05-08 1990-05-08 Method for continuously casting steel

Country Status (1)

Country Link
JP (1) JPH0413455A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111451466A (en) * 2020-04-16 2020-07-28 山东莱钢永锋钢铁有限公司 Automatic casting method and system for continuous casting and casting in steel mill

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111451466A (en) * 2020-04-16 2020-07-28 山东莱钢永锋钢铁有限公司 Automatic casting method and system for continuous casting and casting in steel mill

Similar Documents

Publication Publication Date Title
US7669638B2 (en) Control system, computer program product, device and method
KR101224955B1 (en) Device for controlling cooling of strand and method therefor
US6776217B1 (en) Method for continuous casting of slab, in particular, thin slab, and a device for performing the method
KR100663916B1 (en) Method for continuous casting
KR20120032917A (en) Device for controlling cooling of strand and method therefor
KR20140003314A (en) Method for preventing breakout in continuous casting
JPH0413455A (en) Method for continuously casting steel
KR101400044B1 (en) Method for controlling casting speed in continuous casting
KR101224961B1 (en) Crack diagnosis device of solidified shell in mold and method thereof
KR101224960B1 (en) Crack diagnosis device of solidified shell in mold and method thereof
KR101368351B1 (en) Predicting method for thickness of solidified shell on continuous casting process
JPH0747199B2 (en) Continuous casting method and its mold
KR100544658B1 (en) Control method for mold taper of short side plate in continuous casting of slab
KR20210037118A (en) Constrained breakout prediction method in continuous casting process
JP5226548B2 (en) Continuous casting method of medium carbon steel with changing casting speed and level
KR100399233B1 (en) Casting Monitoring Method of Billet Continuous Casting Machine
JP4232491B2 (en) Continuous casting mold
KR101159604B1 (en) Apparatus for distinguishing non-symmetric flow in mold and method for controlling non-symmetric folw
JPH03297541A (en) Mold for continuous casting equipment
JP3216476B2 (en) Continuous casting method
KR101797312B1 (en) Processing apparatus for Cast-Finishing and Processing Method thereof
JPH0557067B2 (en)
KR20110109108A (en) Apparatus for distinguishing solidification of molten steel in shroud nozzle and method for controlling flow of molten steel thereof
KR20140017182A (en) Cooling method of mold for continuous casting
JPH03193253A (en) Method for controlling surface temperature of continuous cast slab