JPH04133472A - Compound semiconductor device and manufacture thereof - Google Patents

Compound semiconductor device and manufacture thereof

Info

Publication number
JPH04133472A
JPH04133472A JP25431090A JP25431090A JPH04133472A JP H04133472 A JPH04133472 A JP H04133472A JP 25431090 A JP25431090 A JP 25431090A JP 25431090 A JP25431090 A JP 25431090A JP H04133472 A JPH04133472 A JP H04133472A
Authority
JP
Japan
Prior art keywords
electrode
source
etching
compound semiconductor
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25431090A
Other languages
Japanese (ja)
Inventor
Hiroshi Ishimura
石村 浩
Fumio Sasaki
文雄 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25431090A priority Critical patent/JPH04133472A/en
Publication of JPH04133472A publication Critical patent/JPH04133472A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a viahole excellent in shape to be provided to a substrate from the rear side by a method wherein an etching-resistant thin film is provided between a source (or drain) pad electrode and a compound semiconductor layer when an InP substrate is etched. CONSTITUTION:A buffer layer 11 and an N-type operating layer 12 are successively formed on the primary surface of a semi-insulating InP substrate 10, a source electrode 13S and a drain electrode 13D formed separate from each other by AuGe on the N-type operating layer 12, a gate insulating film 13I is provided onto a region sandwiched between the electrodes 13S and 13D, and a gate electrode 13G is formed on the gate insulating film 13I. A source pad electrode 14 electrically connected to the source electrode 13S is formed as led out from the electrode 13S. The pad electrode 14 is made to extend over a thin film 15 which is resistant to an etchant used for etching the InP substrate 10 to a viahole 15 and electrically connected to a back metal layer 17 through the viahole 16.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は化合物半導体装置及びその製造方法に関し、
特にInPを用いた電界効果トランジスタ及びその製造
方法に適用される。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a compound semiconductor device and a manufacturing method thereof;
It is particularly applicable to field effect transistors using InP and methods of manufacturing the same.

(従来の技術) InPは、現在マイクロ波半導体素子の主流を占めてい
るGaAsに比べて電子飽和速度が大きく、また熱伝導
率が大きいことから、GaAsを上回る高周波・高出力
動作が得られる電力マイクロ波半導体素子用材料として
注目を集めている。
(Conventional technology) InP has a higher electron saturation velocity and higher thermal conductivity than GaAs, which currently dominates microwave semiconductor devices, so it has a higher power consumption than GaAs, allowing it to operate at higher frequencies and higher outputs. It is attracting attention as a material for microwave semiconductor devices.

電力用電界効果トランジスタ(FET)の高出力化、高
周波化を図る上で重要な技術の一つに、バイアホール形
成技術がある。ここでバイアホールとは、ソース電極、
ドレイン電極及びゲート電極を備えるFETが、例えば
InP基板上に1個或いは複数個形成されている場合に
、この基板裏面より、基板表面上に設けられたソース(
或いはドレイン)電極、或いはソース電極(又はドレイ
ン電極)より延長して設けられ、このソース(或いはド
イレン)電極と電気的に接続されたソース(或いはドレ
イン)パッド電極部に達する貫通孔を設け、各ソース(
トレイン)電極を前記貫通孔を介して基板裏面に設けら
れた裏面金属層と電気的に接続するものを指す。ソース
電極(或いはソースパッド電極)をバイアホールを介し
て裏面金属層と接続することにより、各ソースパッド電
極にボンディングを行うことなく、各ソース電極同士を
電気的に接続しかつ接地でき、ボンディング線による接
地寄生インダクタンスを低減させることができるため、
高周波動作が可能となる。
One of the important technologies for increasing the output power and frequency of power field effect transistors (FETs) is via hole formation technology. Here, the via hole is the source electrode,
For example, when one or more FETs each having a drain electrode and a gate electrode are formed on an InP substrate, the source (
A through hole is provided to extend from the source (or drain) electrode and reach the source (or drain) pad electrode portion that is electrically connected to the source (or drain) electrode. sauce(
(train) electrode is electrically connected to the back metal layer provided on the back surface of the substrate via the through hole. By connecting the source electrode (or source pad electrode) to the back metal layer via a via hole, each source electrode can be electrically connected and grounded without bonding to each source pad electrode, and the bonding line Because it can reduce the ground parasitic inductance caused by
High frequency operation becomes possible.

このバイアホール形成技術は、InP  FETの高出
力化、高周波化を図る上で必要不可欠であるがまだIn
P  FETて形成に成功した例は報告されていない。
This via hole formation technology is essential for increasing the output power and frequency of InP FETs, but it is still
No example of successful formation of a P FET has been reported.

これはInP基板にバイアホール貫通孔を形成する際に
以下のような問題があるためである。第3図は従来のバ
イアホール及びその形成方法を説明するための断面図で
ある。第3図において1はInP半導体基板、2はフォ
トレジスト等のエツチングマスク、3はこのマスクに設
けられた開口部、4Sはソース電極(又はソースパッド
電極)4Dはドレイン電極、4Gはゲトi極、5は貫通
孔である。
This is because the following problems occur when forming via holes in InP substrates. FIG. 3 is a cross-sectional view for explaining a conventional via hole and a method of forming the same. In FIG. 3, 1 is an InP semiconductor substrate, 2 is an etching mask such as a photoresist, 3 is an opening provided in this mask, 4S is a source electrode (or source pad electrode), 4D is a drain electrode, and 4G is a gate i-pole. , 5 are through holes.

第3図に示す貫通孔5を形成するには、反応性イオンエ
ツチング等のいわゆるドライエツチング法、或いは溶液
によるウェットエツチング法を用いる。しかしながら、
一般にInPをドライエツチング法でエツチングする場
合には、InPに対するエツチング速度が1μm/+i
n以下と小さく、加えてエツチングに対して十分なマス
ク作用がある適当な物質がない。これに対し、ウェット
エツチング法ではInPのエツチング速度が大きいエツ
チング溶液として、)ICI/)I 、’PO□混液、
K。
To form the through holes 5 shown in FIG. 3, a so-called dry etching method such as reactive ion etching, or a wet etching method using a solution is used. however,
Generally, when etching InP using a dry etching method, the etching speed for InP is 1 μm/+i
There is no suitable material that is as small as n or less and has a sufficient masking effect against etching. On the other hand, in the wet etching method, as an etching solution with a high etching rate of InP, )ICI/)I, 'PO□ mixed solution,
K.

Cr20 t /HBr/CHs Cool混液、Br
t /HBr/H,O混液等が知られている。しかし、
HCI/H3PO,混液では、通常マスクとして用いら
れるポジ系のフォトレジストが耐性を示さないため、金
属マスク等を用いなければならず工程が煩雑になる。そ
の上、エツチング形状に関しては垂直性が悪い(第3図
に示されるθが20〜30’ )という問題がある。
Cr20t /HBr/CHs Cool mixture, Br
t/HBr/H, O mixed liquid, etc. are known. but,
With the HCI/H3PO mixed solution, the positive photoresist normally used as a mask does not exhibit resistance, so a metal mask or the like must be used, which complicates the process. Furthermore, there is a problem in that the etched shape has poor perpendicularity (θ shown in FIG. 3 is 20 to 30').

また、K 、 Cr= 07 /)IBr/CH3CO
OH混液やBr2/ tl B r / H20混液て
は組成によってはフォトレジストが耐性を示し、かつ垂
直性も比較的良好(第3図に示されるθが54〜55’
 )なエツチングが行なえる。しかし、これらのエツチ
ング液は、^uGe等^Uを主成分とする金属で形成さ
れるソース(又はドレイン)電極、又はソースバット電
極部(ドレインパッド電極部)を容易に溶解させる。こ
のため、裏面からInP基板をエツチングする際に、基
板を少しでもオーバーエツチングするとAuGe製の電
極が消失してしまうという問題があり、第3図に示すよ
うな貫通孔を形成する妨げとなっていた。
Also, K, Cr= 07/)IBr/CH3CO
Depending on the composition of the OH mixed solution or Br2/tlBr/H20 mixed solution, the photoresist exhibits resistance and has relatively good perpendicularity (θ shown in Figure 3 is 54 to 55').
) can perform etching. However, these etching solutions easily dissolve a source (or drain) electrode or a source butt electrode (drain pad electrode) formed of a metal whose main component is U such as ^Ge. For this reason, when etching an InP substrate from the back side, there is a problem that if the substrate is over-etched even a little, the AuGe electrodes will disappear, which prevents the formation of through holes as shown in Figure 3. Ta.

(発明が解決しようとする課題) 以上述べたように、I n P基板にバイアホール形成
用貫通孔を基板裏面からエツチング形成することは、従
来知られている方法では困難であり、これがInP  
FETの高出力化・高周波化を図る上で大きな障害とな
っていた。
(Problems to be Solved by the Invention) As described above, it is difficult to form through holes for forming via holes in an InP substrate by etching from the back surface of the substrate using conventional methods.
This was a major obstacle in achieving higher output and higher frequency FETs.

本発明は、上記の問題点を躬消するためになされたもの
で、バイアホール構造を備えた良好な特性のInP  
FET、及びその製造方法を提供することを目的として
いる。
The present invention was made to eliminate the above-mentioned problems, and is an InP film with good characteristics and a via-hole structure.
The purpose of the present invention is to provide an FET and a method for manufacturing the same.

[発明の構成] (課題を解決するための手段) 上記目的を達成するために、本発明の化合物半導体装置
では、化合物半導体基板の一主面上に形成された動作層
と、この動作層上に設けられたゲート電極と、このゲー
ト電極を挟んで前記動作層上で対向するソース電極及び
ドレイン電極と、前記化合物半導体基板の裏面に形成さ
れた導体層と、前記ソース又はドレイン電極と電気的に
接続されかつバイアホールを通して前記裏面導体層と電
気的に接続されたソースパッド部又はドレインパッド部
と、前記化合物半導体基板と前記ソースパッド部又はド
レインパッド部との間に配置され、前記化合物半導体基
板を蝕刻するエツチング手段に耐蝕性を有する薄膜層と
より成ることを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the compound semiconductor device of the present invention includes an active layer formed on one main surface of a compound semiconductor substrate, and an active layer formed on the active layer. A gate electrode provided on the active layer, a source electrode and a drain electrode facing each other on the active layer with the gate electrode in between, a conductive layer formed on the back surface of the compound semiconductor substrate, and an electrically conductive layer with the source or drain electrode. a source pad portion or a drain pad portion connected to the back conductor layer through a via hole, and a source pad portion or a drain pad portion disposed between the compound semiconductor substrate and the source pad portion or the drain pad portion, and The etching means for etching the substrate is characterized by comprising a thin film layer having corrosion resistance.

また、その製造方法は、この化合物半導体基板の一主面
上にゲート電極と、このゲート電極を挟んで対向するソ
ース電極及びドレイン電極とを形成する工程と、前記化
合物半導体基板を蝕刻するエツチング手段に耐蝕性を有
する薄膜を形成する工程と、前記薄膜上及び前記化合物
半導体基板上に引出して設けられ、前記ソース又はトレ
イン電極と電気的に接続された各パッド部を形成する工
程と、前記化合物半導体基板を裏面側からエツチングし
、前記薄膜層に到達する貫通孔を形成する工程と、前記
薄膜層をエツチングし前記ソース又はドレインパッド部
に到達するバイアホールを形成する工程と、前記バイア
ホールを介して前記パッド部と電気的に接続された裏面
導体層を形成する工程とを含むことを特徴とする。
The manufacturing method also includes a step of forming a gate electrode on one main surface of the compound semiconductor substrate, and a source electrode and a drain electrode facing each other with the gate electrode in between, and an etching means for etching the compound semiconductor substrate. a step of forming a thin film having corrosion resistance on the compound semiconductor substrate; a step of forming each pad portion extended on the thin film and the compound semiconductor substrate and electrically connected to the source or train electrode; a step of etching the semiconductor substrate from the back side to form a through hole reaching the thin film layer; a step of etching the thin film layer to form a via hole reaching the source or drain pad portion; The method is characterized in that it includes a step of forming a back conductor layer electrically connected to the pad portion via the pad portion.

また、化合物半導体基板がInPであることを実施態様
とする。
Further, it is an embodiment that the compound semiconductor substrate is InP.

(作用) 本発明によれば、InP基板を蝕刻するエツチング手段
に耐蝕性を有する薄膜をソース(又はドレイン)パッド
電極部と前記化合物半導体層との間に介在させるため、
貫通孔形成工程において、InP基板上に形成されたソ
ース(又はドレイン)パッド電極を腐食又は溶解させる
ことなく、良好な形状のバイアホールを基板裏面から形
成することか可能となり、バイアホール構造を有する高
出力1nP  FETを提供することかできるようにな
る。
(Function) According to the present invention, in order to interpose a corrosion-resistant thin film between the source (or drain) pad electrode portion and the compound semiconductor layer in the etching means for etching the InP substrate,
In the through-hole formation process, it is possible to form a well-shaped via hole from the back side of the substrate without corroding or dissolving the source (or drain) pad electrode formed on the InP substrate, resulting in a via hole structure. It becomes possible to provide high power 1nP FETs.

(実施例) 以下、本発明における第1の発明の一実施例について、
図面を参照して説明する。
(Example) Hereinafter, an example of the first invention of the present invention will be described.
This will be explained with reference to the drawings.

第1図は第1の発明の一実施例の化合物半導体装置(I
 nP絶縁ゲート型電界効果トランジスタ、以下InP
  MISFETと記す)の断面図である。第1図にお
いて、10は半絶縁性InP基板で、その一方の主面上
にクロライドV P E (Vapor Phase 
Epitaxial )法によりバッファ層11.n型
動作層12が順次形成されている。前記n型動作層12
上には^uGeて離間して形成されたソース電極13S
、ドレイン電極13Dと、これら両電極に挟まれた領域
にはゲート絶縁膜13■、及びこのゲート絶縁膜上にケ
ート電極13Gとが設けられている。ソース電極135
からはソース電極13Sと電気的に接続されたソースパ
ッド電極14が引出して形成される。このパッド電極1
4は、InP基板を蝕刻するエツチング手段に耐蝕性を
示す薄膜15(例えばSiO、)上をバイアホール16
まて引出されており、このバイアホール16を通して裏
面金属層17と電気的に接続されている。
FIG. 1 shows a compound semiconductor device (I
nP insulated gate field effect transistor, hereinafter referred to as InP
FIG. In FIG. 1, reference numeral 10 denotes a semi-insulating InP substrate, on one main surface of which chloride V P E (Vapor Phase
The buffer layer 11. An n-type operating layer 12 is sequentially formed. The n-type operating layer 12
On top are source electrodes 13S formed spaced apart from each other.
, a drain electrode 13D, a gate insulating film 132 in a region sandwiched between these two electrodes, and a gate electrode 13G on this gate insulating film. Source electrode 135
A source pad electrode 14 electrically connected to the source electrode 13S is drawn out and formed. This pad electrode 1
4 is a via hole 16 formed on a thin film 15 (for example, SiO) exhibiting corrosion resistance as an etching means for etching the InP substrate.
The metal layer 17 is electrically connected to the back metal layer 17 through the via hole 16 .

次に、第2の発明のInP  MISFETの製造方法
の一実施例について、工程順に示す断面図の第2図(a
)〜(d)によって説明する。
Next, FIG. 2 (a
) to (d).

まず、第2図(a)に示したように、半絶縁性InP基
板10の一方の主面上にクロライドVPE法によりバッ
ファ層11.n型動作層12を順次形成する。メサエッ
チングにより素子間分離を行なった後、n型動作層12
上に^uGeによりソース電極13S、ドレイン電極1
3Dを形成し、これら両電極に挟まれたn型動作層12
の表面に絶縁膜131を形成し、このケート絶縁股上に
ゲート電極13Gを形成する。次に、CVD(Chem
ical Vapor Deposition)法によ
り所定の領域にSiO2膜15を200−500 n 
m堆積した後、ソース電極13Sに電気的に接続されA
u/Pt/Tj積層構造からなるソースパッド電極14
を5102膜15上に形成する(第2図(b))。なお
、以上の工程はすべて周知の方法により容易に行えるも
のである。 次にごのInP基板10の主面の裏面をラ
ッピング及びポリッシングすることにより厚さ約50t
1mに薄層化し、裏面にフォトレジスト層18を塗布後
、基板表面のソースバ・ソト電極14の所定の位置の直
下に位置するように、フォトレジスト層18に開孔19
を形成する。次いて、エツチング液としてBr2 / 
I(Br/ O20混液を用いて3.5分間エツチング
を施し、第2図(C)に示したように、SiO2膜15
に達する開孔16aを形成する。このエツチングの際多
少のオーツ(エツチングを行ってもエツチングはSiO
2膜15て停止し、ソースパッド電極14は腐食されな
い。
First, as shown in FIG. 2(a), a buffer layer 11 is formed on one main surface of a semi-insulating InP substrate 10 by the chloride VPE method. An n-type operating layer 12 is sequentially formed. After performing device isolation by mesa etching, the n-type active layer 12
Source electrode 13S and drain electrode 1 are formed by uGe on the top.
An n-type operating layer 12 forming a 3D structure and sandwiched between these two electrodes
An insulating film 131 is formed on the surface of the gate electrode 131, and a gate electrode 13G is formed on the insulating layer of the gate. Next, CVD (Chem)
A SiO2 film 15 is deposited on a predetermined area to a thickness of 200 to 500 nm using the ical vapor deposition method.
After m is deposited, A is electrically connected to the source electrode 13S.
Source pad electrode 14 consisting of u/Pt/Tj laminated structure
is formed on the 5102 film 15 (FIG. 2(b)). Note that all of the above steps can be easily performed by well-known methods. Next, the back side of the main surface of the InP substrate 10 is lapped and polished to a thickness of approximately 50t.
After thinning the layer to 1 m and coating the photoresist layer 18 on the back surface, an opening 19 is formed in the photoresist layer 18 so as to be located directly under a predetermined position of the source bar/soto electrode 14 on the surface of the substrate.
form. Then, Br2/
Etching was performed for 3.5 minutes using a mixed solution of I(Br/O20), and the SiO2 film 15 was etched as shown in FIG. 2(C).
An aperture 16a is formed that reaches the point. During this etching, some oats (even if etching is performed, the etching is SiO
The second film 15 is stopped, and the source pad electrode 14 is not corroded.

次に、前記1nP基板のエツチングに引続き、フッ化ア
ンモニウム溶液によりSiO、膜15をエツチングし、
SiO2膜15に開孔16bを形成してバイアホール1
6が貫通する(第2図(d))。
Next, following the etching of the 1nP substrate, the SiO film 15 is etched using an ammonium fluoride solution.
Via hole 1 is formed by forming an opening 16b in the SiO2 film 15.
6 penetrates (Fig. 2(d)).

この際、AuGeはフッ化アンモニウムに耐性を有する
ため少し位のオーバーエ・ソチングでは腐食されること
はない。次に、エツチングマスクとして使用したフォト
レジスト18を除去した後、裏側からAuメツキを施し
バイアホール16を通してソスバッド電極14と裏面の
Auを電気的に接続して第1図に示すようなバイアホー
ル構造を備えたInP  MISFETが完成する。
At this time, since AuGe is resistant to ammonium fluoride, it will not be corroded by slight over-sodching. Next, after removing the photoresist 18 used as an etching mask, Au plating is applied from the back side, and the sosbad electrode 14 and the Au on the back side are electrically connected through the via hole 16 to form a via hole structure as shown in FIG. An InP MISFET equipped with this is completed.

なお、上記の薄膜15は、SiO、に限らず、例えばS
iNx等の絶縁膜であってもよい。ここで、本発明の効
果は、薄膜15がInP基板を蝕刻するエツチング手段
に耐蝕性を示す導電性の薄膜においても得られる。しか
しながらInPの場合、GaAs等に比べると金属/半
導体界面の密着力が一般的に弱い上、比較的密着力が強
いNi、Ti、AI又はPdといった金属は、バイアホ
ールを形成する際に使用可能なエツチング溶液8例えば
Brz / HBr /H,0混液に腐食されやすく、
薄膜15としては適当てはない。また、仮に適当な導電
性(金属)膜がエツチング手段に耐蝕性を示したとして
も、この場合薄膜/ I n P界面においてエツチン
グ液との電気化学的反応を起しやすくなり、界面異常エ
ツチング等好ましくない結果を招くおそれが強い。この
ため薄膜15としては実施例のような絶縁膜が適してい
る。
Note that the thin film 15 described above is not limited to SiO, but may also be made of, for example, S.
An insulating film such as iNx may also be used. Here, the effects of the present invention can also be obtained when the thin film 15 is a conductive thin film that exhibits corrosion resistance to the etching means that etches the InP substrate. However, in the case of InP, the adhesion at the metal/semiconductor interface is generally weaker than that of GaAs, etc., and metals such as Ni, Ti, AI, or Pd, which have relatively strong adhesion, can be used when forming via holes. It is easily corroded by etching solutions such as Brz/HBr/H,0 mixed solution.
There is no suitable material for the thin film 15. Furthermore, even if a suitable conductive (metallic) film exhibits corrosion resistance to the etching means, in this case it is likely to cause an electrochemical reaction with the etching solution at the thin film/InP interface, resulting in abnormal interface etching, etc. There is a strong possibility that it will lead to undesirable results. Therefore, as the thin film 15, an insulating film as in the embodiment is suitable.

また、上述した各電極層は上記実施例に限定されること
なく、例えば、ソース又はドレイン電極に関していえば
n型動作層12にオーム性接触を形成する金属、さらに
、これらの金属を最下層とした多層構造であってもよい
。また、上記実施例においては本発明をInP  MI
SFETに適用した場合について説明したが、本発明の
効果はこのFETに限定されるものではなく、例えばI
nP接合型電界効果トランジスタであってもよいし、さ
らにはInP以外の化合物半導体基板てあってもよいこ
とは上記の説明より明らかである。
Furthermore, each of the above-mentioned electrode layers is not limited to the above-mentioned embodiments, but for example, regarding the source or drain electrode, metals that form ohmic contact with the n-type operating layer 12, and furthermore, these metals may be used as the bottom layer. It may also have a multilayer structure. In addition, in the above embodiment, the present invention is applied to InP MI
Although the case where it is applied to SFET has been described, the effects of the present invention are not limited to this FET, and for example, I
It is clear from the above description that an nP junction field effect transistor or a compound semiconductor substrate other than InP may be used.

[発明の効果] 上述したように本発明によれば、化合物半導体、特にI
nP半導体基板の裏面から表面に達するバイアホールを
形成するにあたり、半導体基板表面に設けられた電極金
属層を溶解又は腐食させることなく、良好な形状を有す
るバイアホール構造を備えたトランジスタ、特にInP
  FET及びその製造方法を提供することができる。
[Effects of the Invention] As described above, according to the present invention, compound semiconductors, especially I
In forming a via hole reaching from the back surface to the front surface of an nP semiconductor substrate, a transistor having a via hole structure having a good shape without dissolving or corroding the electrode metal layer provided on the surface of the semiconductor substrate, especially InP
A FET and a method for manufacturing the same can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す絶縁ゲート型電界効果
トランジスタの断面図、第2図(a)〜(cl)はこの
発明の一実施例の絶縁ゲート型電界効果トランジスタの
製造方法を工程順に示す、いずれも断面図、第3図は従
来のバイアホールを説明するための断面図である。 1、       InP半導体基板 2、       フォトレジスト等のエツチングマス
ク 3、       マスクの開孔部 4S、13S 4D、13D 4G、13G 5゜ 11゜ 12゜ 13I 。 14゜ 15゜ 16a 。 16b 。 17゜ ■8゜ 19゜ ソース電極 トレイン電極 ゲート電極 貫通孔 半絶縁性1nP基板 バッファ層 n型動作層 ゲート絶縁膜 ソースパッド電極 薄膜 InPの開孔 薄膜15の開孔 バイアホール 裏面金属層 フォトレジスト フォトレジストの開孔
FIG. 1 is a sectional view of an insulated gate field effect transistor according to an embodiment of the present invention, and FIGS. 2(a) to (cl) show a method for manufacturing an insulated gate field effect transistor according to an embodiment of the present invention. All are sectional views shown in the order of steps, and FIG. 3 is a sectional view for explaining a conventional via hole. 1. InP semiconductor substrate 2, etching mask 3 such as photoresist, openings of mask 4S, 13S 4D, 13D 4G, 13G 5゜11゜12゜13I. 14゜15゜16a. 16b. 17° ■ 8° 19° Source electrode Train electrode Gate electrode Through hole Semi-insulating 1nP substrate Buffer layer N-type active layer Gate insulating film Source pad electrode Thin film InP opening Opening of thin film 15 Via hole Back surface Metal layer Photoresist Photo hole in resist

Claims (3)

【特許請求の範囲】[Claims] (1)化合物半導体基板の一主面上に形成された動作層
と、この動作層上に設けられたゲート電極と、このゲー
ト電極を挟んで前記動作層上で対向するソース電極及び
ドレイン電極と、前記化合物半導体基板の裏面に形成さ
れた導体層と、前記ソース又はドレイン電極と電気的に
接続されかつバイアホールを通して前記裏面導体層と電
気的に接続されたソースパッド部又はドレインパッド部
と、前記化合物半導体基板と前記ソースパッド部又はド
レインパッド部との間に配置され、前記化合物半導体基
板を蝕刻するエッチング手段に耐蝕性を有する薄膜層と
より成る化合物半導体装置。
(1) An active layer formed on one main surface of a compound semiconductor substrate, a gate electrode provided on the active layer, and a source electrode and a drain electrode facing each other on the active layer with the gate electrode in between. , a conductor layer formed on the back surface of the compound semiconductor substrate, a source pad portion or a drain pad portion electrically connected to the source or drain electrode and electrically connected to the back surface conductor layer through a via hole; A compound semiconductor device comprising a thin film layer disposed between the compound semiconductor substrate and the source pad section or the drain pad section and having corrosion resistance to an etching means for etching the compound semiconductor substrate.
(2)化合物半導体基板の一主面上に、ゲート電極と、
このゲート電極を挟んで対向するソース電極及びドレイ
ン電極とを形成する工程と、前記半導体基板を蝕刻する
エッチング手段に耐蝕性を有する薄膜を形成する工程と
、前記薄膜上及び前記半導体基板上に引出して設けられ
、前記ソースもしくはドレイン電極と電気的に接続され
た各パッド部を形成する工程と、前記半導体基板の裏面
側から該半導体基板をエッチングし、前記薄膜層に到達
する貫通孔を形成する工程と、前記薄膜層をエッチング
し前記ソース又はドレインパッド部に到達するバイアホ
ールを形成する工程と、前記バイアホールを介して前記
パッド部と電気的に接続された裏面導体層を形成する工
程とを含むことを特徴とする化合物半導体装置の製造方
法。
(2) a gate electrode on one main surface of the compound semiconductor substrate;
forming a source electrode and a drain electrode facing each other with the gate electrode in between; forming a corrosion-resistant thin film on an etching means for etching the semiconductor substrate; and forming a thin film on the thin film and the semiconductor substrate. a step of forming pad portions provided on the substrate and electrically connected to the source or drain electrode; and etching the semiconductor substrate from the back side of the semiconductor substrate to form a through hole reaching the thin film layer. a step of etching the thin film layer to form a via hole reaching the source or drain pad portion; and a step of forming a back conductor layer electrically connected to the pad portion via the via hole. A method for manufacturing a compound semiconductor device, comprising:
(3)化合物半導体基板がInPであることを特徴とす
る請求項(2)記載の化合物半導体装置の製造方法。
(3) The method for manufacturing a compound semiconductor device according to claim (2), wherein the compound semiconductor substrate is InP.
JP25431090A 1990-09-26 1990-09-26 Compound semiconductor device and manufacture thereof Pending JPH04133472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25431090A JPH04133472A (en) 1990-09-26 1990-09-26 Compound semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25431090A JPH04133472A (en) 1990-09-26 1990-09-26 Compound semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04133472A true JPH04133472A (en) 1992-05-07

Family

ID=17263218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25431090A Pending JPH04133472A (en) 1990-09-26 1990-09-26 Compound semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04133472A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143616A (en) * 1997-08-22 2000-11-07 Micron Technology, Inc. Methods of forming coaxial integrated circuitry interconnect lines
US6187677B1 (en) 1997-08-22 2001-02-13 Micron Technology, Inc. Integrated circuitry and methods of forming integrated circuitry
US6219237B1 (en) 1998-08-31 2001-04-17 Micron Technology, Inc. Structure and method for an electronic assembly
US6294455B1 (en) 1997-08-20 2001-09-25 Micron Technology, Inc. Conductive lines, coaxial lines, integrated circuitry, and methods of forming conductive lines, coaxial lines, and integrated circuitry
US6392296B1 (en) 1998-08-31 2002-05-21 Micron Technology, Inc. Silicon interposer with optical connections
US6424034B1 (en) 1998-08-31 2002-07-23 Micron Technology, Inc. High performance packaging for microprocessors and DRAM chips which minimizes timing skews
US6570248B1 (en) 1998-08-31 2003-05-27 Micron Technology, Inc. Structure and method for a high-performance electronic packaging assembly
US6586835B1 (en) 1998-08-31 2003-07-01 Micron Technology, Inc. Compact system module with built-in thermoelectric cooling
US6639303B2 (en) * 1996-10-29 2003-10-28 Tru-Si Technolgies, Inc. Integrated circuits and methods for their fabrication
JP2004095849A (en) * 2002-08-30 2004-03-25 Fujikura Ltd Method for manufacturing semiconductor substrate with through electrode, and method for manufacturing semiconductor device with through electrode
US6781215B2 (en) * 2000-11-29 2004-08-24 Siemens Aktiengesellschaft Intermediate base for a semiconductor module and a semiconductor module using the intermediate base
US6882030B2 (en) 1996-10-29 2005-04-19 Tru-Si Technologies, Inc. Integrated circuit structures with a conductor formed in a through hole in a semiconductor substrate and protruding from a surface of the substrate
KR100663321B1 (en) * 2004-04-30 2007-01-02 주식회사 이츠웰 light emitting diode with vertical electrode and manufacturing method of the same
CN103681799A (en) * 2012-08-29 2014-03-26 英飞凌科技股份有限公司 Semiconductor device with a passivation layer

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6882030B2 (en) 1996-10-29 2005-04-19 Tru-Si Technologies, Inc. Integrated circuit structures with a conductor formed in a through hole in a semiconductor substrate and protruding from a surface of the substrate
US6639303B2 (en) * 1996-10-29 2003-10-28 Tru-Si Technolgies, Inc. Integrated circuits and methods for their fabrication
US6576542B2 (en) 1997-08-20 2003-06-10 Micron Technology, Inc. Conductive lines, coaxial lines, integrated circuitry, and methods of forming conductive lines, coaxial lines, and integrated circuitry
US6294455B1 (en) 1997-08-20 2001-09-25 Micron Technology, Inc. Conductive lines, coaxial lines, integrated circuitry, and methods of forming conductive lines, coaxial lines, and integrated circuitry
US6774491B2 (en) 1997-08-20 2004-08-10 Micron Technology, Inc. Conductive lines, coaxial lines, integrated circuitry, and methods of forming conductive lines, coaxial lines, and integrated circuitry
US6187677B1 (en) 1997-08-22 2001-02-13 Micron Technology, Inc. Integrated circuitry and methods of forming integrated circuitry
US6313531B1 (en) 1997-08-22 2001-11-06 Micron Technology, Inc. Coaxial integrated circuitry interconnect lines, and integrated circuitry
US6143616A (en) * 1997-08-22 2000-11-07 Micron Technology, Inc. Methods of forming coaxial integrated circuitry interconnect lines
US6410976B1 (en) 1997-08-22 2002-06-25 Micron Technology, Inc. Integrated circuitry having conductive passageway interconnecting circuitry on front and back surfaces of a wafer fragment
US6392296B1 (en) 1998-08-31 2002-05-21 Micron Technology, Inc. Silicon interposer with optical connections
US6570248B1 (en) 1998-08-31 2003-05-27 Micron Technology, Inc. Structure and method for a high-performance electronic packaging assembly
US6586835B1 (en) 1998-08-31 2003-07-01 Micron Technology, Inc. Compact system module with built-in thermoelectric cooling
US6496370B2 (en) 1998-08-31 2002-12-17 Micron Technology, Inc. Structure and method for an electronic assembly
US6424034B1 (en) 1998-08-31 2002-07-23 Micron Technology, Inc. High performance packaging for microprocessors and DRAM chips which minimizes timing skews
US6821802B2 (en) 1998-08-31 2004-11-23 Micron Technology, Inc. Silicon interposer with optical connections
US6219237B1 (en) 1998-08-31 2001-04-17 Micron Technology, Inc. Structure and method for an electronic assembly
US7022553B2 (en) 1998-08-31 2006-04-04 Micron Technology, Inc. Compact system module with built-in thermoelectric cooling
US6781215B2 (en) * 2000-11-29 2004-08-24 Siemens Aktiengesellschaft Intermediate base for a semiconductor module and a semiconductor module using the intermediate base
JP2004095849A (en) * 2002-08-30 2004-03-25 Fujikura Ltd Method for manufacturing semiconductor substrate with through electrode, and method for manufacturing semiconductor device with through electrode
KR100663321B1 (en) * 2004-04-30 2007-01-02 주식회사 이츠웰 light emitting diode with vertical electrode and manufacturing method of the same
CN103681799A (en) * 2012-08-29 2014-03-26 英飞凌科技股份有限公司 Semiconductor device with a passivation layer
US9859395B2 (en) 2012-08-29 2018-01-02 Infineon Technologies Ag Semiconductor device with a passivation layer

Similar Documents

Publication Publication Date Title
JPH04133472A (en) Compound semiconductor device and manufacture thereof
US3994758A (en) Method of manufacturing a semiconductor device having closely spaced electrodes by perpendicular projection
JPH05275373A (en) Manufacture of compound semiconductor device
JP3533796B2 (en) Method for manufacturing semiconductor device
JPH02237040A (en) Semiconductor device
JPS61268060A (en) Semiconductor device
JPS61232625A (en) Manufacture of semiconductor device
JPH0330428A (en) Formation of wiring substrate
JPS6057977A (en) Manufacture of shottky gate field effect transistor
JPS61240684A (en) Schottky-type field effect transistor and manufacture thereof
JP2591162B2 (en) Method of manufacturing semiconductor device and semiconductor device manufactured thereby
JPH01268150A (en) Semiconductor device
JP2877322B2 (en) InP substrate etching method
JPS6240770A (en) Manufacture of semiconductor device
JPH05152340A (en) Field-effect transistor
JPS58159381A (en) Semiconductor device
JPS62281356A (en) Manufacture of semiconductor device
JPH0574817A (en) Manufacture of semiconductor device
JPS6088444A (en) Formation of three-dimensional wiring
JPH0330438A (en) Manufacture of semiconductor device
JPS6165480A (en) Manufacture of semiconductor device
JPS59126676A (en) Field effect type transistor
JPH02102544A (en) Semiconductor device
JPS5823950B2 (en) Semiconductor device and its manufacturing method
JPH04206842A (en) Formation of pad