JPH04132909A - Size measuring apparatus with electron beam - Google Patents

Size measuring apparatus with electron beam

Info

Publication number
JPH04132909A
JPH04132909A JP25836990A JP25836990A JPH04132909A JP H04132909 A JPH04132909 A JP H04132909A JP 25836990 A JP25836990 A JP 25836990A JP 25836990 A JP25836990 A JP 25836990A JP H04132909 A JPH04132909 A JP H04132909A
Authority
JP
Japan
Prior art keywords
sample
electron beam
pattern
signal
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25836990A
Other languages
Japanese (ja)
Other versions
JP2548834B2 (en
Inventor
Susumu Takeuchi
晋 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2258369A priority Critical patent/JP2548834B2/en
Publication of JPH04132909A publication Critical patent/JPH04132909A/en
Application granted granted Critical
Publication of JP2548834B2 publication Critical patent/JP2548834B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the intensity of signals of reflecting electrons, secondary electrons, X rays or the like from a sample thereby to measure the length with high accuracy by inclining a sample stage on which the sample is mounted to an axis of incidence of converged electron beams so as to scan the inclined sample in a rectangular configuration. CONSTITUTION:A sample stage 5 having a sample 6 mounted thereon is inclined to an axis of incidence of converged electron beams 4 of the apparatus. Since the sample 6 is inclined, supposing that the inclining angle of the sample 6 is theta, the amount of signals is increased by the ratio of 1/costheta, so that the visibility of a pattern image is effectively enhanced. The obtained pattern image is an inclined image having greater contrast. The pattern width 16 of a pattern mounted in the X and Y directions such as a semiconductor cannot be correctly measured in this state. Therefore, the sample pattern is rotated 90 deg. or 270 deg. by the use of a stage rotating mechanism 17. Accordingly, the intensity of signals of reflecting electrons, secondary electrons, X rays or the like from the sample 6 can be increased, thereby making it possible to measure the length with high accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体ウェハ上に形成された微細パターンの
線幅等を測長する電子ビーム寸法測定装置に関し、特に
その高精度化に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electron beam dimension measuring device for measuring the line width, etc. of a fine pattern formed on a semiconductor wafer, and particularly relates to improving the accuracy thereof. .

〔従来の技術〕[Conventional technology]

第2図(a)は、例えば、特公昭58−24726号公
報等に示された従来の電子ビーム寸法測定装置を示す模
式図であり、図においてlは電子ビーム発生源、2は電
子ビーム集束レンズ、3は偏向コイル又は電極、4は電
子ビームである。また、5は試料ステージ、6は試料ス
テージ5に載置された試料、7は電子ビーム4により発
生した反射電子、二次電子、X線等の信号、8は信号7
の検出器、9は検出器8で検出された信号の増幅器であ
る。1oは電子ビーム4を偏向器3にて偏向し、試料6
上に電子ビームを走査するための走査信号発生器である
FIG. 2(a) is a schematic diagram showing a conventional electron beam size measuring device disclosed in, for example, Japanese Patent Publication No. 58-24726. In the figure, l is an electron beam source, and 2 is an electron beam focusing A lens, 3 a deflection coil or electrode, and 4 an electron beam. Further, 5 is a sample stage, 6 is a sample placed on the sample stage 5, 7 is a signal such as reflected electrons, secondary electrons, X-rays, etc. generated by the electron beam 4, and 8 is a signal 7
9 is an amplifier for the signal detected by the detector 8. 1o, the electron beam 4 is deflected by the deflector 3, and the sample 6 is
A scanning signal generator for scanning the electron beam on top.

次に、第2図(b)〜(d)において、この従来技術の
動作原理について説明する。第2図(b)は試料6に電
子ビーム4が入射している場面の断面を示す。
Next, the operating principle of this prior art will be explained with reference to FIGS. 2(b) to 2(d). FIG. 2(b) shows a cross section of a scene where the electron beam 4 is incident on the sample 6.

試料6上に形成されたパターン11の線幅を測定するの
に、電子ビーム4を12のように走査する。
To measure the line width of the pattern 11 formed on the sample 6, the electron beam 4 is scanned as shown at 12.

この時、発生する信号を走査信号に合わせて表示すると
、第2図(C)のような波形が得られる。この波形信号
(C)に対し、しきい値処理、最大傾斜処理などのエツ
ジ検出処理を施すことによりパターンエツジを決めて線
幅を決定する。この走査12をパターン上に二次元的に
行い、信号7を二次元的に表示すると、第2図(d)の
ようにパターンをビーム入射方向から見たごとくのパタ
ーン像15を走査領域13内に見ることができる。この
二次元パターン信号像から同様のエツジ検出処理を行っ
て線幅14を決める。電子ビーム4の走査を一次元でな
く、二次元で行っているのは、パターンのエツジに加工
による凹凸かある場合、これらを平均した結果を得るこ
とができるからであり、測長の再現精度が向上するから
である。この二次元の走査信号は、第2図(a)の走査
信号発生器lOで発生されるべきものであるが、その走
査する領域は第2図(d)の示す矩形領域13である。
If the signal generated at this time is displayed in conjunction with the scanning signal, a waveform as shown in FIG. 2(C) will be obtained. This waveform signal (C) is subjected to edge detection processing such as threshold processing and maximum slope processing to determine pattern edges and line widths. When this scanning 12 is performed two-dimensionally on the pattern and the signal 7 is displayed two-dimensionally, a pattern image 15 as seen from the beam incident direction is created within the scanning area 13 as shown in FIG. 2(d). It can be seen in A similar edge detection process is performed from this two-dimensional pattern signal image to determine the line width 14. The reason why the electron beam 4 is scanned in two dimensions instead of one dimension is that if there are irregularities on the edge of the pattern due to processing, it is possible to obtain a result by averaging these, which improves the reproducibility of length measurement. This is because it improves. This two-dimensional scanning signal is to be generated by the scanning signal generator IO shown in FIG. 2(a), but the area to be scanned is the rectangular area 13 shown in FIG. 2(d).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来装置は試料ステージ5が電子ビーム4の入射方向に
対して垂直に位置しており、第2図(b)に示す測定す
べきパターン11をビーム4の方向から見るため、第2
図(d)に示すがごとくの像を得ることができ、測定す
べきパターンを正しく測定できる利点がある。しかしな
がら、近年半導体ウェハに形成されるパターンが微細に
なるにつれて測定幅が小さくなり、高精度の測定精度が
要求されるようになってきた。また、パターン幅だけで
な(パターン膜厚も薄くなる傾向にあり、信号強度も小
さくなり特定精度を悪くする方向にある。このため、よ
り以上の信号強度を要する必要があり、従来装置での測
、定か困難になってきた。
In the conventional apparatus, the sample stage 5 is located perpendicular to the direction of incidence of the electron beam 4, and in order to view the pattern 11 to be measured shown in FIG. 2(b) from the direction of the beam 4, the second
This method has the advantage of being able to obtain an image as shown in Figure (d) and accurately measuring the pattern to be measured. However, in recent years, as patterns formed on semiconductor wafers have become finer, measurement widths have become smaller, and higher measurement accuracy has become required. In addition, not only the pattern width (pattern film thickness) also tends to become thinner, and the signal strength also decreases, worsening the identification accuracy.For this reason, it is necessary to require higher signal strength, which is difficult to achieve with conventional equipment. It has become difficult to measure and determine.

この発明は上記のような問題点を解消するためになされ
たもので、試料からの反射電子、二次電子、X線等の信
号強度を高め、高精度な測長をすることができる電子ビ
ーム寸法測定装置を得ることを目的とする。
This invention was made to solve the above problems, and it is an electron beam that can increase the signal strength of reflected electrons, secondary electrons, X-rays, etc. from a sample and perform highly accurate length measurements. The purpose is to obtain a dimension measuring device.

さらに、この発明は傾斜した試料上に正しく矩形に電子
ビームを照射することにより、さらに高精度な測長をす
ることができる電子ビーム寸法測定装置を得ることを目
的とする。
A further object of the present invention is to provide an electron beam dimension measuring device that can measure a length with even higher accuracy by irradiating an inclined sample with an electron beam in a correct rectangular shape.

〔課題を解決するための手段〕[Means to solve the problem]

第1の発明に係る電子ビーム寸法測定装置は、集束した
電子ビームの入射軸に対し、試料を載置した試料ステー
ジを傾斜させ、反射電子、二次電子、X線等の信号放出
効率を高め、試料像の信号強度を高くして測長をするよ
うにしたものである。
The electron beam dimension measuring device according to the first invention tilts the sample stage on which the sample is placed with respect to the incident axis of the focused electron beam, thereby increasing the efficiency of emitting signals such as reflected electrons, secondary electrons, and X-rays. , the length is measured by increasing the signal intensity of the sample image.

さらに、第2の発明は、試料が傾斜したことにより、試
料上に走査されるべき電子ビームの矩形領域が台形形状
に変化してしまうのを補正する偏向信号を発生するよう
にしたものである。
Furthermore, the second invention generates a deflection signal to correct the change in the rectangular area of the electron beam to be scanned onto the sample into a trapezoidal shape due to the tilting of the sample. .

〔作用〕[Effect]

この第1の発明においては、試料を傾斜させることによ
り、反射電子、二次電子、X線等の信号が高まり、試料
上のパターン像の信号対雑音比か向上する。この結果、
パターンの視認性が向上し、パターンのエツジの認識が
行い易くなる。
In this first invention, by tilting the sample, the signals of reflected electrons, secondary electrons, X-rays, etc. are increased, and the signal-to-noise ratio of the pattern image on the sample is improved. As a result,
The visibility of the pattern is improved, making it easier to recognize the edges of the pattern.

第2の発明においては偏向信号発生回路により、偏向信
号を補正することで、傾斜した試料に対して正しく矩形
に電子ビームを照射する。その結果、さらに高精度な測
長を行うことができる。
In the second invention, the deflection signal is corrected by the deflection signal generation circuit, so that the tilted sample is irradiated with the electron beam in a correct rectangular shape. As a result, even more accurate length measurement can be performed.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図(a)において、lは電子ビーム発生源、2は電
子ビーム集束レンズ、3は偏向用コイル又は電極、4は
電子ビームを示す。また、5は試料ステージ、6は試料
ステージ5に載置された半導体ウェハ、17は試料ステ
ージを回転する機構、7は電子ビーム4により発生した
反射電子、二次電子、X線等の信号、8は信号7の検出
器、9は検出器8で検出された信号の増幅器、1oは電
子ビーム4を偏向器3にて偏向し試料6上に電子ビーム
を走査するための走査信号である。また、第1図(b)
において、4は試料に入射する電子ビーム、6は傾斜し
た試料、7は電子ビーム4により発生した反射電子、二
次電子、X線等の信号を示す。
In FIG. 1(a), 1 is an electron beam generation source, 2 is an electron beam focusing lens, 3 is a deflection coil or electrode, and 4 is an electron beam. Further, 5 is a sample stage, 6 is a semiconductor wafer placed on the sample stage 5, 17 is a mechanism for rotating the sample stage, 7 is a signal such as reflected electrons, secondary electrons, X-rays, etc. generated by the electron beam 4; 8 is a detector for the signal 7, 9 is an amplifier for the signal detected by the detector 8, and 1o is a scanning signal for deflecting the electron beam 4 by the deflector 3 and scanning the electron beam on the sample 6. Also, Fig. 1(b)
, 4 indicates an electron beam incident on the sample, 6 indicates an inclined sample, and 7 indicates signals such as reflected electrons, secondary electrons, and X-rays generated by the electron beam 4.

また、第1図(C)は試料を二次元的に走査して得た傾
斜パターン像を示す図であり、図中13は走査領域、1
4はパターン線幅、15はパターン、16は別な方向の
パターン線幅を示す。
In addition, FIG. 1(C) is a diagram showing an inclined pattern image obtained by two-dimensionally scanning a sample, in which 13 is a scanning area;
4 indicates a pattern line width, 15 indicates a pattern, and 16 indicates a pattern line width in another direction.

次に、第1の発明の動作原理について説明する。Next, the operating principle of the first invention will be explained.

第1図体)の試料部分を拡大した図が第1図(b)であ
るが、第1図(b)の試料を傾けたことにより、試料の
傾斜角をθとすると、信号量は1 / c o sθの
比で、大きくなることはよく知られており(例えば、L
、Reimer ”Scanning Electro
n Microscopy”。
Figure 1(b) is an enlarged view of the sample part in Figure 1(b). By tilting the sample in Figure 1(b), if the tilt angle of the sample is θ, the signal amount is 1 / It is well known that the ratio of c o s θ increases (for example, L
, Reimer “Scanning Electro
n Microscopy”.

1985年刊p、145等参照)、これはパターン像の
視認性を上げる効果かある。こうして得られたパターン
像は第1図(C)のような傾斜した像になり、従来の第
2図(d)に比し、よりコントラストのついたイメージ
になる。この上で、半導体のようにX。
1985, p. 145, etc.), this has the effect of increasing the visibility of the pattern image. The pattern image thus obtained becomes an inclined image as shown in FIG. 1(C), and has more contrast than the conventional image shown in FIG. 2(d). On this, X like a semiconductor.

Y方向両方に配置されたパターンのうち、第1図(C)
の14で示されたようなパターン幅は、従来方法で測長
することができるか、16で示されたパターン幅は正し
く測長することができないので、第1図17のステージ
回転機構を用いて、試料パターンを90°又は2700
回転させることにより測長することができる。
Among the patterns arranged in both Y directions, Fig. 1 (C)
The pattern width shown in 14 can be measured using the conventional method, or the pattern width shown in 16 cannot be measured correctly, so it can be measured using the stage rotation mechanism shown in Fig. 17. and rotate the sample pattern to 90° or 2700°.
Length can be measured by rotating it.

このような第1の発明の実施例によれば、試料ステージ
を電子ビームに対して傾斜させることにより、パターン
像の視認性を上げる効果がある。
According to this embodiment of the first invention, by tilting the sample stage with respect to the electron beam, there is an effect of increasing the visibility of the pattern image.

また、この上で、半導体のようにX、 Y方向両方16
で示されたパターン幅は第1図17のステージ回転機構
を用いて、試料パターンを90’又は270°回転させ
ることにより試料上のパターンをよいコントラストで測
長することかできる効果がある。
Also, on top of this, like a semiconductor, both the X and Y directions 16
The pattern width shown by is effective in making it possible to measure the length of a pattern on a sample with good contrast by rotating the sample pattern by 90' or 270 degrees using the stage rotation mechanism shown in FIG. 17.

次に第2の発明の一実施例を第1図(d)〜げ)におい
て説明する。
Next, an embodiment of the second invention will be described with reference to FIGS. 1(d) to 1).

第1図(d)は試料傾斜した際の電子ビームの走査領域
がどのように変化するかを示した図であり、第1図(e
)はそれを補正する偏向信号発生回路の一例、第1図げ
)は上記偏向信号発生回路により補正された傾斜面での
走査領域が、正しく矩形領域を走査していることを示す
図である。
Figure 1(d) is a diagram showing how the scanning area of the electron beam changes when the sample is tilted, and Figure 1(e)
) is an example of a deflection signal generation circuit that corrects it, and Figure 1 (g) is a diagram showing that the scanning area on the slope corrected by the deflection signal generation circuit is correctly scanning a rectangular area. .

第1図(d)において、20は試料か電子ビームに対し
て垂直に配置された場合に、正しく矩形状に走査されて
いる領域である。22は試料傾斜角θ、21は試料が傾
斜角θで傾斜している場合の電子ビームの走査領域、2
3Dは電子ビームの偏向の作動距離、24は偏向作動点
を示す。また、第1図(e)において、30は矩形走査
信号発生回路、31はその走査領域、32は乗算器、3
6は除算器、37は補正された台形形状の走査領域を示
す。又、第1図げ)において、20は第1図(e)のよ
うな回路で発生した試料垂直面での走査領域、21は2
2の傾斜角θで傾斜された試料面で正しく矩形に走査さ
れた領域、23は電子ビーム偏向の作動距離、24は偏
向作動点を示す。
In FIG. 1(d), 20 is an area that is correctly scanned in a rectangular shape when the sample is placed perpendicular to the electron beam. 22 is the sample tilt angle θ, 21 is the scan area of the electron beam when the sample is tilted at the tilt angle θ, 2
3D indicates the working distance for deflection of the electron beam, and 24 indicates the deflection operating point. Further, in FIG. 1(e), 30 is a rectangular scanning signal generation circuit, 31 is its scanning area, 32 is a multiplier, 3
6 is a divider, and 37 is a corrected trapezoidal scanning area. In addition, in Fig. 1(e), 20 is the scanning area on the vertical plane of the sample generated by the circuit as shown in Fig. 1(e), and 21 is the scanning area 2
2, a region 23 indicates a working distance of electron beam deflection, and 24 indicates a deflection operating point.

次に第2の発明の動作原理を説明する。第1の発明では
、信号強度が向上してパターン像の視認性を向上するこ
とができたが、第1図(C)のように2次元走査領域で
の像は投影的にみえてしまい、測長する部分によっては
正しく測長ができない。
Next, the operating principle of the second invention will be explained. In the first invention, the signal strength was improved and the visibility of the pattern image could be improved, but as shown in FIG. 1(C), the image in the two-dimensional scanning area looks like a projection. Depending on the part to be measured, the length may not be measured correctly.

これは第1図(d)に示すように、電子ビームに対し垂
直に試料を配置した際には正しく矩形を走査するように
偏向信号を発生すれば、傾斜面では21のように逆台形
形状の領域を走査することになる。
As shown in Figure 1(d), if a deflection signal is generated to correctly scan a rectangle when the sample is placed perpendicular to the electron beam, it will form an inverted trapezoidal shape as shown in 21 on an inclined surface. The area will be scanned.

それを二次元的に表示すれば、第1図(C)のように投
影的な像が見えてしまう。
If you display it two-dimensionally, you will see a projected image as shown in Figure 1(C).

そこで第1図(d)において、垂直面上での座標(X、
 Y)と、傾斜面に投影された傾斜面上での座標(x、
  y)との関係を正しく計算すると、X= 1 +−s i nθ であった。ここでDは作動距離を示し、θは傾斜角を示
す。
Therefore, in Fig. 1(d), the coordinates (X,
Y) and the coordinates (x,
When the relationship with y) was correctly calculated, it was X = 1 + - sin θ. Here, D indicates the working distance and θ indicates the tilt angle.

傾斜面上の(x、 y)の点を正しく矩形に走査するた
めには、(x、  y)に矩形走査信号を与え、式(1
)に従って(X、 Y)を計算しつつ補正した偏向信号
を与えれば可能である。その実施例として第1図(e)
の回路を示す。30で矩形走査信号(X。
In order to correctly scan the point (x, y) on the slope in a rectangular manner, give a rectangular scanning signal to (x, y) and use equation (1).
), it is possible to calculate (X, Y) and provide a corrected deflection signal. As an example, Fig. 1(e)
The circuit is shown below. 30, a rectangular scanning signal (X.

y)を与える。これは従来の偏向走査回路でよい。y). This may be a conventional deflection scanning circuit.

その後、X信号と、作動距離り、傾斜角θのデータから
、 1+     s inθ を計算する回路32を通し、X信号を 1+    sinθ で除する除算器36を通してX信号を出力する。
Thereafter, the X signal is outputted through a circuit 32 that calculates 1+ sin θ from the data of the X signal, the working distance, and the inclination angle θ, and a divider 36 that divides the X signal by 1+ sin θ.

又、X信号にCOSθを乗算器35で乗して後、1−1
−     sinθ て除して後X信号を出力する。こうすると、X。
Also, after multiplying the X signal by COSθ by the multiplier 35, 1-1
- After dividing by sinθ, output the X signal. This way, X.

Yには37で示したような台形形状の走査をする信号を
発生する。
A signal for trapezoidal scanning as shown at 37 is generated at Y.

第1図げ)の電子ビームに対して垂直面20に第1図(
elの台形形状の偏向信号を与えると、傾斜面21に正
しく矩形形状の走査領域ができることかわかる。このよ
うに、第1図(a)において、lOで示される走査信号
発生器に第1図(e)で示すような実施例の回路を用い
れば、傾斜面上の走査を、正しく矩形形状に行うことが
でき、二次元状にパターン像を表示すると、パターンの
エツジが平行に表示でき正しく測長することができる。
The plane 20 perpendicular to the electron beam in Figure 1 (Figure 1)
It can be seen that if a trapezoidal deflection signal of el is given, a rectangular scanning area can be correctly formed on the inclined surface 21. In this way, if the circuit of the embodiment shown in FIG. 1(e) is used for the scanning signal generator indicated by lO in FIG. When the pattern image is displayed two-dimensionally, the edges of the pattern can be displayed in parallel and the length can be measured correctly.

このような第2の発明の実施例によれば、試料を傾斜し
たことで生ずる傾斜面上での走査領域の変形を、第1図
(a)において、10で示される走査信号発生器に第1
図(e)で示すような実施例の回路を用いることで、傾
斜面上での試料に対し、正しい矩形領域の走査をするこ
とができ、二次元のパターン像のエツジを正しく平行に
とることかでき、高精度の測長ができる効果がある。
According to this embodiment of the second invention, the deformation of the scanning area on the inclined surface caused by tilting the sample is detected by the scanning signal generator indicated by 10 in FIG. 1(a). 1
By using the circuit of the embodiment as shown in Figure (e), it is possible to scan a correct rectangular area for a sample on an inclined surface, and the edges of a two-dimensional pattern image can be made correctly parallel. This has the effect of allowing highly accurate length measurements.

〔発明の効果〕〔Effect of the invention〕

以上のように、第1の発明によれば試料ステージを電子
ビームに対して傾斜させ、かつ所望の方向のパターンを
測長できるようにステージを回転できるようにしたので
、試料上のパターンをよいコントラストで測長すること
ができ、所望パターンを正しく測長することができる効
果がある。
As described above, according to the first invention, the sample stage is tilted with respect to the electron beam, and the stage can be rotated so that the length of the pattern in a desired direction can be measured. Length measurement can be performed using contrast, which has the effect of accurately measuring the length of a desired pattern.

さらに、第2の発明によれば試料を傾斜したことで生ず
る傾斜面上での走査領域の変形を、補正するような走査
信号発生回路を設けたので、傾斜面上での試料に対し、
正しい矩形領域の走査をすることができ、二次元のパタ
ーン像のエツジを正しく平行にとることができ、高精度
の測長ができる効果がある。
Furthermore, according to the second aspect of the invention, a scanning signal generation circuit is provided that corrects deformation of the scanning area on the inclined surface caused by tilting the sample.
It is possible to scan a correct rectangular area, the edges of a two-dimensional pattern image can be set correctly parallel, and highly accurate length measurement is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)はこの発明の一実施例による電子ビーム寸
法測定装置を示す図、第1図(b)はその効果を示す試
料近傍の拡大図、第1図(C)は試料を傾斜したことに
よって得られる二次元パターン像を示す図、第1図(d
)は試料を傾斜したことによって傾斜面での走査領域か
変形することを説明する図、第1図(e)は傾斜面の走
査領域の変形を補正する走査信号発生回路を示す図、第
1図げ)は電子ビームが補正され正しく傾斜面に矩形走
査されていることを示す図である。 第2図(a)は従来例による電子ビーム寸法測定装置を
示す図、第2図(b)はその原理を示すための試料近傍
拡大図、第2図(C)は−次元信号例を示す図、第2図
(dは従来例での二次元パターン像を示す図である。 図中、lは電子ビーム発生源、2は電子ビーム集束レン
ズ、3は偏向用コイル又は電極、4は電子ビーム、5は
試料ステージ、6は試料、7は信号、8は検出器、9は
増幅器、lOは走査信号発生器、17はステージ回転機
構、13は二次元走査領域、14は測長線幅、16は別
な測長幅、15はパターンを示す。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1(a) is a diagram showing an electron beam dimension measuring device according to an embodiment of the present invention, FIG. 1(b) is an enlarged view of the vicinity of the sample showing its effect, and FIG. 1(C) is a diagram showing the sample tilted. Figure 1 (d) shows a two-dimensional pattern image obtained by
) is a diagram explaining that the scanning area on an inclined surface is deformed by tilting the sample, FIG. Figure 1) is a diagram showing that the electron beam is corrected and correctly scanned in a rectangular manner on an inclined surface. Figure 2(a) is a diagram showing a conventional electron beam dimension measuring device, Figure 2(b) is an enlarged view of the vicinity of a sample to illustrate its principle, and Figure 2(C) is an example of a -dimensional signal. 2 (d is a diagram showing a two-dimensional pattern image in a conventional example. In the figure, l is an electron beam generation source, 2 is an electron beam focusing lens, 3 is a deflection coil or electrode, and 4 is an electron beam generation source. 5 is a sample stage, 6 is a sample, 7 is a signal, 8 is a detector, 9 is an amplifier, IO is a scanning signal generator, 17 is a stage rotation mechanism, 13 is a two-dimensional scanning area, 14 is a length measurement line width, Reference numeral 16 indicates another length measurement width, and 15 indicates a pattern. In the figures, the same reference numerals indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)電子ビーム発生源と、この電子ビームを集束する
レンズと、この集束した電子ビームを偏向する偏向手段
とを備えた電子ビーム光学系と、試料を載置する試料ス
テージと、該試料上のパターンに電子線を二次元的に走
査しながら照射する走査信号発生手段と、 上記パターンから発生する信号を検出する手段とを備え
、 その二次元信号像よりパターンエッジを決定し、そのパ
ターン寸法を測定するようにした電子ビーム寸法測定装
置において、 上記試料ステージは入射する電子線に対し反射電子線の
強度を強くするよう傾斜しており、かつ上記試料ステー
ジは、試料の所望のパターンを測定できるよう回転可能
に設けられていることを特徴とする電子ビーム寸法測定
装置。
(1) An electron beam optical system including an electron beam generation source, a lens that focuses the electron beam, and a deflection means that deflects the focused electron beam, a sample stage on which a sample is placed, and a sample stage on which a sample is placed; scanning signal generating means for irradiating an electron beam while scanning the pattern two-dimensionally, and means for detecting a signal generated from the pattern, determining the pattern edge from the two-dimensional signal image, and determining the pattern size. In the electron beam dimension measuring apparatus, the sample stage is inclined to increase the intensity of the reflected electron beam relative to the incident electron beam, and the sample stage measures a desired pattern of the sample. An electron beam dimension measuring device characterized in that it is rotatably provided so as to be able to perform measurements.
(2)上記偏向手段に対して走査信号を与える走査信号
発生手段は、傾斜試料上の座標を(x,y),試料傾斜
角をθ,偏向作動距離をDとすると、▲数式、化学式、
表等があります▼ で表される走査信号を発生し、傾斜試料上に矩形走査せ
しめることを特徴とする請求項1記載の電子ビーム寸法
測定装置。
(2) The scanning signal generation means for supplying a scanning signal to the deflection means has the following formula: ▲Mathematical formula, chemical formula,
2. The electron beam dimension measuring device according to claim 1, wherein a scanning signal represented by ▼ is generated and scanned in a rectangular manner on an inclined sample.
JP2258369A 1990-09-25 1990-09-25 Electron beam dimension measuring device Expired - Lifetime JP2548834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2258369A JP2548834B2 (en) 1990-09-25 1990-09-25 Electron beam dimension measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2258369A JP2548834B2 (en) 1990-09-25 1990-09-25 Electron beam dimension measuring device

Publications (2)

Publication Number Publication Date
JPH04132909A true JPH04132909A (en) 1992-05-07
JP2548834B2 JP2548834B2 (en) 1996-10-30

Family

ID=17319290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2258369A Expired - Lifetime JP2548834B2 (en) 1990-09-25 1990-09-25 Electron beam dimension measuring device

Country Status (1)

Country Link
JP (1) JP2548834B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078775A1 (en) * 2004-02-13 2005-08-25 Nikon Corporation Measurement method, transfer characteristic measurement method, exposure device adjustment method, and device manufacturing method
WO2010097860A1 (en) * 2009-02-27 2010-09-02 株式会社 日立ハイテクノロジーズ Charged particle beam device and method for correcting position with respect to charged particle beam
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US20170011885A1 (en) * 2015-07-09 2017-01-12 Carl Zeiss Microscopy Gmbh Method for preparing cross-sections by ion beam milling
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US7848594B2 (en) 2004-02-13 2010-12-07 Nikon Corporation Measurement method, transfer characteristic measurement method, adjustment method of exposure apparatus, and device manufacturing method
WO2005078775A1 (en) * 2004-02-13 2005-08-25 Nikon Corporation Measurement method, transfer characteristic measurement method, exposure device adjustment method, and device manufacturing method
JP2011151425A (en) * 2004-02-13 2011-08-04 Nikon Corp Method for measuring transfer characteristic, adjustment method of exposure apparatus and method of manufacturing device
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2010199003A (en) * 2009-02-27 2010-09-09 Hitachi High-Technologies Corp Charged particle beam apparatus, and method for correcting position regarding charged particle beam
US8629394B2 (en) 2009-02-27 2014-01-14 Hitachi High-Technologies Corporation Charged particle beam device and method for correcting position with respect to charged particle beam
WO2010097860A1 (en) * 2009-02-27 2010-09-02 株式会社 日立ハイテクノロジーズ Charged particle beam device and method for correcting position with respect to charged particle beam
US9947507B2 (en) * 2015-07-09 2018-04-17 Carl Zeiss Microscopy Gmbh Method for preparing cross-sections by ion beam milling
US20170011885A1 (en) * 2015-07-09 2017-01-12 Carl Zeiss Microscopy Gmbh Method for preparing cross-sections by ion beam milling

Also Published As

Publication number Publication date
JP2548834B2 (en) 1996-10-30

Similar Documents

Publication Publication Date Title
JP6668408B2 (en) System and method for SEM overlay measurement
JPH04132909A (en) Size measuring apparatus with electron beam
JP5606791B2 (en) Charged particle beam equipment
US7282711B2 (en) Multiple electron beam device
US4916315A (en) Scanning electron microscope for observing and measuring minute pattern of sample
JPH09311112A (en) Defect inspection device
US5936252A (en) Charged particle beam performance measurement system and method thereof
US8872106B2 (en) Pattern measuring apparatus
JP2003109985A (en) Method and apparatus for inspection of bump on wafer
JP3430788B2 (en) Sample image measuring device
JPH09293477A (en) Charged beam adjusting method
JP2002245960A (en) Charged particle beam device and device manufacturing method using the same
JPH08227840A (en) Adjusting method and drawing method in charged-particle-line drawing apparatus
US20220392738A1 (en) Charged Particle Beam Apparatus and Image Acquiring Method
JP3369835B2 (en) Shape evaluation method of shaping aperture in charged beam writing apparatus and rotation adjustment method of shaping aperture
JPH04137720A (en) Charged beam strength profile measuring instrument, and measuring method using same
JPS5999216A (en) Measuring device of surface height of body
JPH01140007A (en) Height measuring device
JPH07286842A (en) Method and device for inspecting dimension
JPS59195112A (en) Apparatus for measuring surface height of sample in charged particle ray apparatus
JPS5999215A (en) Measuring device of surface height of body
JPH04242919A (en) Charged beam drawing apparatus
JPS58106746A (en) Axis alignment process of electron lens
JPH0125004B2 (en)
JPH02236105A (en) Length measurement using electron beam