JPH04127039A - Identification of material by fluorescent spectrum - Google Patents

Identification of material by fluorescent spectrum

Info

Publication number
JPH04127039A
JPH04127039A JP24700890A JP24700890A JPH04127039A JP H04127039 A JPH04127039 A JP H04127039A JP 24700890 A JP24700890 A JP 24700890A JP 24700890 A JP24700890 A JP 24700890A JP H04127039 A JPH04127039 A JP H04127039A
Authority
JP
Japan
Prior art keywords
excitation
fluorescence
wavelength
excitation wavelength
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24700890A
Other languages
Japanese (ja)
Inventor
Shigeru Matsui
繁 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24700890A priority Critical patent/JPH04127039A/en
Publication of JPH04127039A publication Critical patent/JPH04127039A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To enable identification of materials at a high efficiency by comparing fluorescent spectrums for unknown material and respective reference materials in measurements with more than one excitation wavelengths. CONSTITUTION:Combination of a band pass filter 2, a dichroic mirror 3 and an absorption filter 6 is prepared in plurality so as to select a plurality of excitation wavelengths and the combinations are switched with an excitation wavelength switching mechanism 20 which is operated by control of a microcomputer 13. Fluorescence transmitted through the absorption filter 6 is analyzed with a diffraction grating 9 and converted to a digital signal with a photomultiplier 11 and an A/D converter 12 to be taken into the microcomputer 13. Comparison using fluorescent spectrums in measurements with a plurality of excitation wavelengths enables identification of a plurality of materials thereby yielding an effect for improving an identifying capacity of unknown material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は蛍光スペクトルを用いて主に有機物質である未
知物質を複数の標準物質の中から同定する同定方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an identification method for identifying an unknown substance, which is mainly an organic substance, from among a plurality of standard substances using a fluorescence spectrum.

〔従来の技術〕[Conventional technology]

未知物質の蛍光スペクトルの形状を、既知の標準物質の
それと比較して、未知物質の同定を行う手法は従来から
試みられていた。しかしながら従来これらの分析を行う
場合、励起波長は特定の一つの波長に固定した状態で測
定された1本の蛍光スペクトルを用いて比較を行われて
いた。この種の装置として関連するものには例えば第2
5回応用スペクトロメトリー東京討論会予稿集(199
0年)において論じられている。
A method of identifying an unknown substance by comparing the shape of the fluorescence spectrum of the unknown substance with that of a known standard substance has been attempted in the past. However, conventionally, when performing these analyses, comparisons have been made using one fluorescence spectrum measured with the excitation wavelength fixed at one specific wavelength. Related devices of this type include, for example,
Proceedings of the 5th Applied Spectrometry Tokyo Conference (1999)
Discussed in 2010).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術では、用いた励起波長において複数の標準
物質が酷似した蛍光スペクトルを示す場合について配慮
がされておらず、このような場合、これらの物質量の識
別ができず、未知物質の同定が困難となる問題があった
The above conventional technology does not take into account the case where multiple standard substances exhibit very similar fluorescence spectra at the excitation wavelength used, and in such cases, the amounts of these substances cannot be distinguished, making it difficult to identify the unknown substance. There was a problem that was difficult.

本発明の目的は、このような場合においても更にこれら
類似の標準物質間の識別を可能にする同定方法を提供す
ることを目的とする。
An object of the present invention is to provide an identification method that enables discrimination between these similar standard substances even in such cases.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、1つの励起波長における蛍
光スペクトルのみではなく、未知物質及び各々の標準物
質について2つ以上の予め定められた励起波長における
蛍光スペクトルを測定し、これら複数の蛍光スペクトル
を用いて比較を行うようにしたものである。
In order to achieve the above objective, we measure not only the fluorescence spectrum at one excitation wavelength but also the fluorescence spectra at two or more predetermined excitation wavelengths for the unknown substance and each standard substance, and analyze these multiple fluorescence spectra. It is designed to be used for comparison.

〔作用〕[Effect]

350nm近辺の近紫外から550nm近辺の可紫域の
範囲の励起光で励起した場合、一般に有機物の示す蛍光
スペクトルはピーク数も大抵の場合1個と少なく、半値
幅も1100n〜200nmと広く、単純な形状をとる
ことが多い。例として第3図に半導体製造を行うクリー
ンルーム中で異物として問題となる代表的な物質である
。人間の皮フ片の励起波長405nmにおける蛍光スペ
クトルを示す。このような特徴から、ある励起波長にお
いて、2つ以上の物質が同様の蛍光スペクトル形状をも
つことも少なくない。しかし、このような場合でも別の
励起波長においては、形状に有意な差のある蛍光スペク
トルが得られ可能性がある。このため、2つ以上の励起
波長で訓定した蛍光スペクトルを比較して同定すること
は有益である。更に、この新たな励起波長で再び相似の
蛍光スペクトルが得られた場合でも、強度関係まで同一
のことは少ない。即ち、今、物質Aが励起波長λlでF
^1(λ)、λ2でF^2(λ)(但しλは蛍光側波長
を表す)なる蛍光スペクトルを示し、物質Bが同様に励
起波長λ1及びλ2においてFBI(λ)及びFBI(
λ)を示し、(但し、kl及びに2は定数) なる関係、即ちF^1(λ)とFal(λ)、Fへ2(
λ)とFBI(λ)の各組が相似関係にあるとした時、
更にk s = k 2が成立つ場合もあるが、多くの
場合に1≠に2となる。kl及びに2の各個そのものは
あまり意味を持たない。何故ならば蛍光スペクトルの強
度は、 1)物質の大きさ(量)または濃度 2)物質の形状9表面状態 によって左右され、一般に定性分析においては特別な前
処理を施さない限り、一定の条件を仮定することは難し
いからである。しかし、これらの影響は、励起波長に無
関係かもしくは励起波長を多少変えても変化しないもの
であり、ある波長λ0における2つの励起波長による蛍
光スペクトル強度の比FAI(λO)/FA2(λ0)
やFat(λo)/FB2(λ0)は物質が同じであれ
ば、はぼ一定と考えられることができる。先程のkt、
kzは多くの場合に1≠に2であったから、このような
時、である。この場合各励起波長における蛍光スペクト
ルの形状は相似で有意な差はなくても、強度関係まで寛
れば、識別が可能となる。
When excited with excitation light in the range from near ultraviolet light around 350 nm to ultraviolet light around 550 nm, the fluorescence spectrum of organic substances generally has a small number of peaks, usually one, and a wide half-width of 1100 nm to 200 nm. It often takes the form of As an example, FIG. 3 shows typical substances that pose a problem as foreign matter in a clean room where semiconductors are manufactured. The fluorescence spectrum of human skin flakes at an excitation wavelength of 405 nm is shown. Because of these characteristics, two or more substances often have similar fluorescence spectrum shapes at a certain excitation wavelength. However, even in such a case, fluorescence spectra with significant differences in shape may be obtained at different excitation wavelengths. For this reason, it is beneficial to compare and identify fluorescence spectra trained at two or more excitation wavelengths. Furthermore, even if a similar fluorescence spectrum is obtained again with this new excitation wavelength, it is unlikely that the intensity relationship will be the same. That is, now the substance A is F at the excitation wavelength λl
At excitation wavelengths λ1 and λ2, substance B exhibits a fluorescence spectrum of F^2(λ) (where λ represents the wavelength on the fluorescence side) at excitation wavelengths λ1 and λ2.
λ), (however, kl and 2 are constants), that is, F^1(λ) and Fal(λ), F to 2(
Assuming that each pair of λ) and FBI(λ) has a similar relationship,
Furthermore, although k s = k 2 may hold true in some cases, in many cases 1≠2. Each of kl and ni2 itself does not have much meaning. This is because the intensity of a fluorescence spectrum is influenced by 1) the size (amount) or concentration of the substance, 2) the shape and surface condition of the substance, and in general, in qualitative analysis, unless special pretreatment is performed, certain conditions are not met. This is because it is difficult to make assumptions. However, these effects are independent of the excitation wavelength or do not change even if the excitation wavelength is slightly changed, and the ratio of fluorescence spectral intensities due to two excitation wavelengths at a certain wavelength λ0 is
and Fat(λo)/FB2(λ0) can be considered to be approximately constant if the substances are the same. kt earlier,
In such a case, kz is 1≠2 in many cases. In this case, even if the shapes of the fluorescence spectra at each excitation wavelength are similar and there is no significant difference, discrimination is possible if the intensity relationship is satisfied.

このように、2つ以上の励起波長において測定した蛍光
スペクトルを用いて比較を行え1′J、高い効率で各物
質の識別が可能となる。
In this way, fluorescence spectra measured at two or more excitation wavelengths can be compared and each substance can be identified with high efficiency.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。励起
光源1は超高圧水銀灯のように近紫外域から可視域にお
いて複数の波長の発光線をもつもの、もしくはキャノン
灯のように連続波長分布をもつもので、試料を励起して
蛍光を出させるのに充分な発光エネルギーをもつものを
用いる。この励起光g1から出た光から励起光として必
要な波長帯域の光のみを取出すためにバンドパスフィル
タ2を用いる。バンドパスフィルタ2を通過した励起光
はダイクロインクミラー3を経て対物レンズ4に導かれ
、試料5に照射される。このダイクロインクミラー3は
バンドパスフィルタ2によって選択される波長域の光に
ついては高い反射率で反射し、それより長い波長域は高
い透過率で透過する特性をもつ。励起光の照射により試
料5からは蛍光及び励起光の散乱光が発生するが、これ
らは再び対物レンズ4によって捕集され、ダイクロイン
クミラー3において蛍光の大部分は透過し。
An embodiment of the present invention will be described below with reference to FIG. The excitation light source 1 is one that has emission lines of multiple wavelengths in the near-ultraviolet to visible range, such as an ultra-high-pressure mercury lamp, or one that has a continuous wavelength distribution, such as a Cannon lamp, to excite the sample and emit fluorescence. Use a material with sufficient luminous energy. A bandpass filter 2 is used to extract only light in a wavelength band necessary as excitation light from the light emitted from this excitation light g1. The excitation light that has passed through the bandpass filter 2 is guided to the objective lens 4 via the dichroic ink mirror 3, and is irradiated onto the sample 5. This dichroic ink mirror 3 has a characteristic of reflecting light in a wavelength range selected by the bandpass filter 2 with high reflectance, and transmitting light in a longer wavelength range with high transmittance. Fluorescence and scattered light of the excitation light are generated from the sample 5 by irradiation with the excitation light, but these are collected again by the objective lens 4, and most of the fluorescence is transmitted through the dichroic ink mirror 3.

励起光の散乱光の大部分は反射されるが、この散乱光の
一部は透過してしまうのでこれを完全に除くために励起
波長を完全に吸収し、かつ励起波長より長い波長域の光
はできる限り励起波長に近い波長の光まで高い透過率で
透過させるよう作られた吸収フィルタ6を用いる。ダイ
クロインクミラー3及び吸収フィルタ6の波長特性はバ
ンドパスフィルタ2の透過波長に対応する必要があり、
この3つの光学部品は1組として働く。本実施例では複
数の励起波長が選べるように、バンドパスフィルタ2.
ダイクロイックミラー3及び吸収フィルタ6の組合せを
複数個備え、マイクロコンピュータ13からの制御によ
って動作する励起波長切替え機構2oによってこれらを
切替えることができる。吸収フィルタ6を透過した蛍光
の一部はビームスプリンタ18で反射されて接眼レンズ
19に導かれ、肉眼にて試料5の蛍光像が観察される。
Most of the scattered light of the excitation light is reflected, but some of this scattered light is transmitted, so in order to completely eliminate this, we must completely absorb the excitation wavelength and use light in a wavelength range longer than the excitation wavelength. uses an absorption filter 6 that is made to transmit light with a wavelength as close as possible to the excitation wavelength with high transmittance. The wavelength characteristics of the dichroic ink mirror 3 and the absorption filter 6 need to correspond to the transmission wavelength of the bandpass filter 2.
These three optical components work as a set. In this embodiment, a bandpass filter 2.
A plurality of combinations of dichroic mirrors 3 and absorption filters 6 are provided, and these can be switched by an excitation wavelength switching mechanism 2o operated under control from a microcomputer 13. A portion of the fluorescence that has passed through the absorption filter 6 is reflected by the beam splinter 18 and guided to the eyepiece 19, where a fluorescence image of the sample 5 is observed with the naked eye.

ビームスプリッタ18を透過した蛍光は分光器8に導か
れる。分光器8は回折格子91回回折格子走査用モータ
0.光電子増倍管11から成り、蛍光は回折格子9で分
光され、光電子増倍管11においてその波長成分の光強
度が電気信号に変換され、A、 / D変換器12でデ
ジタル信号化されマイクロコンピュータ13に取込まれ
る。この際、回折格子走査用モータ10はマイクロコン
ピュータに制御されており、この走査と同期してA/D
変換器12の出力信号を読取ることにより、蛍光スペク
トルがマイクロコンピュータ13に取込まれる。マイク
ロコンピュータ13は磁気ディスク記憶装置14を有し
、測定した蛍光スペクトルのデータを保存することがで
きる。またマイクロコンピュータ13はキーボード15
及びCRT表示装置16及びプリンタ17を有し、操作
者からの情報の入力及び結果等のCRTへの表示及びプ
リンタへの印字が可能である。
The fluorescence transmitted through the beam splitter 18 is guided to the spectrometer 8. The spectrometer 8 has a diffraction grating 91 and a diffraction grating scanning motor 0. It consists of a photomultiplier tube 11, the fluorescence is separated by a diffraction grating 9, the light intensity of the wavelength component is converted into an electric signal in the photomultiplier tube 11, and converted into a digital signal by an A/D converter 12 and sent to a microcomputer. Incorporated into 13. At this time, the diffraction grating scanning motor 10 is controlled by a microcomputer, and in synchronization with this scanning, the A/D
By reading the output signal of the converter 12, the fluorescence spectrum is captured into the microcomputer 13. The microcomputer 13 has a magnetic disk storage device 14, and can store data of measured fluorescence spectra. Also, the microcomputer 13 has a keyboard 15.
It also has a CRT display device 16 and a printer 17, and is capable of inputting information from an operator, displaying results, etc. on a CRT, and printing on a printer.

以下、第2図に従い、本実施例の動作を説明する。第2
図はマイクロコンピュータ13上で動作するソフトウェ
アの流れ図である。ここでは2つの励起波長λ^及びλ
Bにおいて測定された波長λ1からλ2の範囲で標本化
波長間隔Δλ毎に取込まれた蛍光スペクトルを基に同定
を行う場合の動作について説明する。同定対象となる標
準物質はN個あるとし、1番目(i=1.2.・・・、
N)の標準物質をλ八で励起した時の蛍光スペクトルデ
ータ列を(Aha)  F=λ1.λ工+Δλ、・・λ
2)、λBで励起した時の蛍光スペクトルデータ列を(
BIJ) (j=λ1.λ1+Δλ、・・、λ2)とし
、N個の標準物質に対するこれらの各データ列及びその
物質名が予め磁気ディスク記憶装置14に記憶されてい
るものとする。本ソフトウェアは動作を開始するとまず
励起波長切替え機構20を制御して励起波長をλ^に切
替える。次に回折格子走査用モータ1oを制御して分光
器8の波長をλ1からλ2まで走査し、Δλ毎にA/D
変換器12の出力信号を取込み、未知試料5の励起波長
λ^における蛍光スペクトルデータ列(a、)(j=λ
1.λ1+Δλ、・・・、λ2)を測定する。次に励起
波長をλBに切替え、同様に励起波長λBにおける蛍光
スペクトルデータ列(b、)  (j=λ1.λ1+Δ
λ、・・、λ2)を測定する。これら2つのスペクトル
の測定が終了すると、予め測定された各標準物質の蛍光
スペクトルとの比較が開始する。この比較に際して、未
知試料の蛍光スペクトルデータ列(a、)及び(tz)
と1番目の標準物質の蛍光スペクトルデータ列(A、、
)及び(BIJ)との一致の度合いαiは、下式のよう
にこれらのデータ間の相関係数をもって計算する。
The operation of this embodiment will be explained below with reference to FIG. Second
The figure is a flowchart of software running on the microcomputer 13. Here two excitation wavelengths λ^ and λ
The operation when performing identification based on fluorescence spectra captured at each sampling wavelength interval Δλ in the range of wavelengths λ1 to λ2 measured in B will be described. Assume that there are N standard substances to be identified, and the first one (i=1.2...,
The fluorescence spectrum data sequence when the standard material of N) is excited at λ8 is (Aha) F=λ1. λ engineering + Δλ,...λ
2) The fluorescence spectrum data sequence when excited with λB is (
BIJ) (j=λ1.λ1+Δλ, . . . , λ2), and each data string for N standard substances and the name of the substance are stored in the magnetic disk storage device 14 in advance. When this software starts operating, it first controls the excitation wavelength switching mechanism 20 to switch the excitation wavelength to λ^. Next, the diffraction grating scanning motor 1o is controlled to scan the wavelength of the spectrometer 8 from λ1 to λ2, and the A/D
The output signal of the converter 12 is taken in and the fluorescence spectrum data string (a,) (j=λ) of the unknown sample 5 at the excitation wavelength λ
1. λ1+Δλ, ..., λ2). Next, the excitation wavelength is switched to λB, and in the same way, the fluorescence spectrum data string (b,) at the excitation wavelength λB (j=λ1.λ1+Δ
λ, ..., λ2). When the measurement of these two spectra is completed, comparison with the fluorescence spectra of each standard substance measured in advance begins. For this comparison, the fluorescence spectrum data strings (a,) and (tz) of the unknown sample
and the fluorescence spectrum data string of the first standard material (A, ,
) and (BIJ) are calculated using the correlation coefficient between these data as shown in the equation below.

Σ(xk−マ)(yk−y) ただし、データ列(xk)はデータ列(a、)の後にデ
ータ列(b、)を結合したもの、同様にデータ列(y、
)はデータ列 (Atdの後にデータ列(B、d を結合したものであ
る。またXは(X、)の平均値、yは(yk)の平均値
を表わす。
Σ(xk-ma)(yk-y) However, the data string (xk) is the data string (a,) followed by the data string (b,), and similarly the data string (y,
) is a combination of data string (Atd followed by data string (B, d). Also, X represents the average value of (X, ), and y represents the average value of (yk).

1:1からi=Nまで各標準物質の蛍光スペクトルと一
致の度合いα、を求め、最も大きいα1を与えた標準物
質から順にCRT及びプリンタに標準物質名と一致の度
合いを表示及び印字を行って本ソフトウェアは動作を終
了する。
From 1:1 to i=N, determine the degree of agreement α between the fluorescence spectrum of each standard substance, and display and print the name of the standard substance and the degree of agreement on the CRT and printer in order from the standard substance that gave the largest α1. This software will terminate its operation.

本実施例によれば、励起波長λ^またはλBの一方にお
いて未知試料の蛍光スペクトルと形状の一致する標準物
質が複数存在した場合には他方の励起波長における蛍光
スペクトルの形状に差が見られる場合にはそれら複数の
標準物質に対する一致の度合いに差が出るため、識別が
可能となる。
According to this example, when there are multiple standard substances whose shape matches the fluorescence spectrum of an unknown sample at either the excitation wavelength λ^ or λB, a difference is observed in the shape of the fluorescence spectrum at the other excitation wavelength. Since there are differences in the degree of agreement with these multiple standard materials, identification becomes possible.

また、両方の励起波長において未知スペクトルの蛍光ス
ペクトルと形状の一致する標準物質が複数存在した場合
でも、2つの励起波長間での蛍光スペクトル強度の比が
それら複数の標準物質毎に異なれば、その差が一致の度
合いの値に反映するため、それら複数の物質量の識別が
可能となる。このように本実施例では、ただ一つの励起
波長における蛍光スペクトルを用いて比較を行う場合よ
りも類似の蛍光スペクトルに形状を示す物質量の識別能
力を向上させられる効果がある。また、別の効果として
ただ一つの励起波長における蛍光スペクトルを用いて比
較を行う場合には、予め未知物質が効率良く励起される
励起波長を調べて励起波長を決める必要があるのに対し
、複数の励起波長を用いれば、それらのうちのいずれか
の励起波長では未知物質が効率良く励起されることが期
待でき、未知試料毎に励起波長を決定する手間を省ける
効果もある。
Furthermore, even if there are multiple standard substances whose shapes match the fluorescence spectra of the unknown spectrum at both excitation wavelengths, if the ratio of the fluorescence spectrum intensities between the two excitation wavelengths differs for each of the standard substances, Since the difference is reflected in the value of the degree of agreement, it becomes possible to identify the amounts of these multiple substances. In this way, this example has the effect of improving the ability to identify amounts of substances that exhibit shapes in similar fluorescence spectra, compared to the case where comparison is made using fluorescence spectra at only one excitation wavelength. Another effect is that when comparing fluorescence spectra at only one excitation wavelength, it is necessary to determine the excitation wavelength at which the unknown substance is efficiently excited by determining the excitation wavelength in advance. If one of these excitation wavelengths is used, it can be expected that the unknown substance will be efficiently excited by one of these excitation wavelengths, and there is also the effect of saving the effort of determining the excitation wavelength for each unknown sample.

上記実施例中の励起波長切替え機構20は上記ソフトウ
ェアの動作と同期して手動で切替える機構としても良い
。また励起波長を選択する手段としてバンドパスフィル
タ2に代えて分光器を用いても良い。また蛍光スペクト
ルを測定する分光器8は回折格子9を用いる代わりに波
長可変フィルタを用いても良い。また回折格子9を固定
として、光電子増倍管に代えて一次元または二次元のマ
ルチチャネル光検知器を用いても良い。
The excitation wavelength switching mechanism 20 in the above embodiment may be a mechanism in which switching is performed manually in synchronization with the operation of the software. Furthermore, a spectrometer may be used instead of the bandpass filter 2 as a means for selecting the excitation wavelength. Furthermore, instead of using the diffraction grating 9, the spectroscope 8 that measures the fluorescence spectrum may use a variable wavelength filter. Further, the diffraction grating 9 may be fixed, and a one-dimensional or two-dimensional multichannel photodetector may be used instead of the photomultiplier tube.

〔発明の効果〕 本発明によれば、一つの励起波長においては類似の蛍光
スペクトル形状を示す標準物質が複数存在する場合では
、複数の励起波長において測定した蛍光スペクトルを用
いて比較することにより多くの場合にこれら複数の物質
量の識別が可能となるので、未知物質の同定能力を向上
させられる効果がある。
[Effects of the Invention] According to the present invention, when there are multiple standard substances that exhibit similar fluorescence spectrum shapes at one excitation wavelength, more information can be obtained by comparing fluorescence spectra measured at multiple excitation wavelengths. In this case, it becomes possible to identify the amounts of these multiple substances, which has the effect of improving the ability to identify unknown substances.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成を示すブロック図、第
2図は本発明の一実施例の動作を示す流れ図、第3図は
蛍光スペクトルを示す図である。 1・・励起光源、2・・・バンドパスフィルタ、3・・
・ダイクロイックミラー、4・・・対物レンズ、5・・
・試料、6・・・吸収フィルタ、7・・・接眼レンズ、
8・・分光器、9・・回折格子、10・・回折格子走査
用モータ、11・・・光電子増倍管、12・・・A/D
変換器、13・・マイクロコンピュータ、14・・・磁
気ディスク記憶装置、15・・・キーボード、16・・
・CRT表示装置、17・・・プリンタ、20・・・励
起波長切替え機構。 第 図 第2図 第 図
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, FIG. 2 is a flowchart showing the operation of the embodiment of the invention, and FIG. 3 is a diagram showing a fluorescence spectrum. 1...Excitation light source, 2...Band pass filter, 3...
・Dichroic mirror, 4...Objective lens, 5...
・Sample, 6... Absorption filter, 7... Eyepiece,
8... Spectrometer, 9... Diffraction grating, 10... Diffraction grating scanning motor, 11... Photomultiplier tube, 12... A/D
Converter, 13...Microcomputer, 14...Magnetic disk storage device, 15...Keyboard, 16...
- CRT display device, 17... printer, 20... excitation wavelength switching mechanism. Figure 2 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、未知物質の蛍光スペクトルを複数の予め測定された
標準物質の蛍光スペクトルと一対比較し、最も良く一致
するものを捜す同定方法において、未知物質及び各々の
標準物質について2つ以上の励起波長において測定され
た複数の蛍光スペクトルを用いて比較を行うことを特徴
とする蛍光スペクトルによる物質の同定方法。
1. In an identification method that compares the fluorescence spectrum of an unknown substance with the fluorescence spectra of multiple pre-measured standard substances and searches for the best match, the unknown substance and each standard substance are compared at two or more excitation wavelengths. A method for identifying substances based on fluorescence spectra, the method comprising comparing a plurality of measured fluorescence spectra.
JP24700890A 1990-09-19 1990-09-19 Identification of material by fluorescent spectrum Pending JPH04127039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24700890A JPH04127039A (en) 1990-09-19 1990-09-19 Identification of material by fluorescent spectrum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24700890A JPH04127039A (en) 1990-09-19 1990-09-19 Identification of material by fluorescent spectrum

Publications (1)

Publication Number Publication Date
JPH04127039A true JPH04127039A (en) 1992-04-28

Family

ID=17157016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24700890A Pending JPH04127039A (en) 1990-09-19 1990-09-19 Identification of material by fluorescent spectrum

Country Status (1)

Country Link
JP (1) JPH04127039A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915171A (en) * 1995-03-16 1997-01-17 Bio Rad Lab Inc Fluorescent image formation system and fluorescent image formation method
JP2006527858A (en) * 2003-06-16 2006-12-07 カール ツァイス イエナ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for fluorescence microscopy
EP2037255A1 (en) * 2006-06-05 2009-03-18 Nikon Corporation Spectrum observation method and spectrum observation system
JP2009527766A (en) * 2006-02-21 2009-07-30 バイオ−ラッド ラボラトリーズ,インコーポレイティド Overlap density (OD) heatmap and consensus data display
JP2011521237A (en) * 2008-05-20 2011-07-21 ユニバーシティー ヘルス ネットワーク Apparatus and method for imaging and monitoring based on fluorescent light
JP2011196848A (en) * 2010-03-19 2011-10-06 Sharp Corp Chemical material determination apparatus, chemical material determination method, control program, and recording medium
JP2012063148A (en) * 2010-09-14 2012-03-29 Shimadzu Corp Spectrophotofluorometer
JP2014134557A (en) * 2014-04-30 2014-07-24 Sharp Corp Chemical substance determination device
US10438356B2 (en) 2014-07-24 2019-10-08 University Health Network Collection and analysis of data for diagnostic purposes

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915171A (en) * 1995-03-16 1997-01-17 Bio Rad Lab Inc Fluorescent image formation system and fluorescent image formation method
JP2006527858A (en) * 2003-06-16 2006-12-07 カール ツァイス イエナ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for fluorescence microscopy
JP2009527766A (en) * 2006-02-21 2009-07-30 バイオ−ラッド ラボラトリーズ,インコーポレイティド Overlap density (OD) heatmap and consensus data display
EP3214430A1 (en) * 2006-06-05 2017-09-06 Nikon Corporation Spectrum observation method and spectrum observation system
EP2037255A1 (en) * 2006-06-05 2009-03-18 Nikon Corporation Spectrum observation method and spectrum observation system
EP2037255A4 (en) * 2006-06-05 2010-03-17 Nikon Corp Spectrum observation method and spectrum observation system
US7724365B2 (en) 2006-06-05 2010-05-25 Nikon Corporation Spectral observation method and spectral observation system
US11154198B2 (en) 2008-05-20 2021-10-26 University Health Network Method and system for imaging and collection of data for diagnostic purposes
JP2011521237A (en) * 2008-05-20 2011-07-21 ユニバーシティー ヘルス ネットワーク Apparatus and method for imaging and monitoring based on fluorescent light
US11284800B2 (en) 2008-05-20 2022-03-29 University Health Network Devices, methods, and systems for fluorescence-based endoscopic imaging and collection of data with optical filters with corresponding discrete spectral bandwidth
US11375898B2 (en) 2008-05-20 2022-07-05 University Health Network Method and system with spectral filtering and thermal mapping for imaging and collection of data for diagnostic purposes from bacteria
JP2011196848A (en) * 2010-03-19 2011-10-06 Sharp Corp Chemical material determination apparatus, chemical material determination method, control program, and recording medium
JP2012063148A (en) * 2010-09-14 2012-03-29 Shimadzu Corp Spectrophotofluorometer
JP2014134557A (en) * 2014-04-30 2014-07-24 Sharp Corp Chemical substance determination device
US10438356B2 (en) 2014-07-24 2019-10-08 University Health Network Collection and analysis of data for diagnostic purposes
US11676276B2 (en) 2014-07-24 2023-06-13 University Health Network Collection and analysis of data for diagnostic purposes
US11954861B2 (en) 2014-07-24 2024-04-09 University Health Network Systems, devices, and methods for visualization of tissue and collection and analysis of data regarding same
US11961236B2 (en) 2014-07-24 2024-04-16 University Health Network Collection and analysis of data for diagnostic purposes

Similar Documents

Publication Publication Date Title
US5998796A (en) Detector having a transmission grating beam splitter for multi-wavelength sample analysis
US8873041B1 (en) Raman spectroscopy using multiple excitation wavelengths
US7692775B2 (en) Time and space resolved standoff hyperspectral IED explosives LIDAR detection
EP1004042B1 (en) Optical computational system
US5591981A (en) Tunable excitation and/or tunable emission fluorescence imaging
US7304741B2 (en) Pesticide detector and method
US7619742B2 (en) High-speed spectrographic sensor for internal combustion engines
JPH0915171A (en) Fluorescent image formation system and fluorescent image formation method
WO1994015184A1 (en) Image multispectral sensing
JPH04127039A (en) Identification of material by fluorescent spectrum
US6208413B1 (en) Hadamard spectrometer
US7257289B2 (en) Spectral microscope and method for data acquisition using a spectral microscope
WO1998059225A1 (en) Dispersive atomic vapor raman filter
JPH07128144A (en) Spectral measuring apparatus
US8289503B2 (en) System and method for classifying a disease state using representative data sets
US5212538A (en) Fluorescence measurement apparatus with an automatic recorder full-scale setting function
US7446867B2 (en) Method and apparatus for detection and analysis of biological materials through laser induced fluorescence
CN109342394A (en) A kind of handheld Raman spectrometer and implementation method using dual-wavelength laser
JP2002005835A (en) Raman spectroscopic measuring apparatus and analytical method for living body sample using the same
JPH07333516A (en) Fluorescence microscope
JPH10115583A (en) Spectrochemical analyzer
US6765669B1 (en) Signal enhancement of spectrometers
JPS62235548A (en) Fluorescence absorption analysis method and apparatus
JP2002296116A (en) Multichannel spectrograph
JPH01274043A (en) Quantometer