JPH0412433B2 - - Google Patents

Info

Publication number
JPH0412433B2
JPH0412433B2 JP58224189A JP22418983A JPH0412433B2 JP H0412433 B2 JPH0412433 B2 JP H0412433B2 JP 58224189 A JP58224189 A JP 58224189A JP 22418983 A JP22418983 A JP 22418983A JP H0412433 B2 JPH0412433 B2 JP H0412433B2
Authority
JP
Japan
Prior art keywords
ultrasonic
robot
data
distance
room
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58224189A
Other languages
Japanese (ja)
Other versions
JPS60117168A (en
Inventor
Hitoshi Ogasawara
Masao Obata
Kazuo Kaneko
Junji Shiokawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58224189A priority Critical patent/JPS60117168A/en
Publication of JPS60117168A publication Critical patent/JPS60117168A/en
Publication of JPH0412433B2 publication Critical patent/JPH0412433B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、走行ロボツトに係り、特に走行ロボ
ツトの位置を正確に検知することのできる位置認
識装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a traveling robot, and more particularly to a position recognition device that can accurately detect the position of a traveling robot.

〔発明の背景〕[Background of the invention]

従来の走行ロボツトに設けられているロボツト
位置認識装置は、回転計で車輪の回転数を測定し
て走行距離と進行方向を計算し、それらの値から
走行ロボツトの位置を演算する方式であつた。
The robot position recognition device installed in conventional traveling robots uses a tachometer to measure the number of rotations of the wheels, calculates the traveling distance and direction of travel, and calculates the position of the traveling robot from these values. .

しかし従来の車輪回転数を測定する方式だと、
走行している床面状態により車輪がスリツプし
て、走行ロボツトの走行距離や進行方向の計測に
誤差が生じ、かつロボツトの位置はそれらの累積
計算で求めるため、ロボツトの位置を正確に認識
できない欠点があつた。
However, with the conventional method of measuring wheel rotation speed,
The wheels slip due to the condition of the floor surface on which the robot is moving, causing errors in measuring the distance traveled and the direction of travel of the robot, and the robot's position is determined by cumulative calculations, making it impossible to accurately recognize the robot's position. There were flaws.

〔発明の目的〕[Purpose of the invention]

そこで本発明の目的は、従来技術の欠点をなく
し、走行ロボツトの位置を正確に認識することの
できる位置認識装置を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the prior art and provide a position recognition device that can accurately recognize the position of a traveling robot.

〔発明の概要〕[Summary of the invention]

本発明は、走行ロボツトの位置を、走行してい
る部屋の形状に対して相対的に認識することと
し、指向性の鋭い超音波を反射する送信器とそれ
を受信する受信器を設け、これらの超音波送受信
器の超音波送受信方向を90゜ずらせて複数個配置
し、かつ複数個の超音波送受信器を同一軸を中心
に回転させる構成とする。そして部屋の壁から反
射して来た超音波を受信することにより壁までの
距離と、ロボツトの進行方向あるいは基準方向に
対する壁の超音波反射面位置の方向を測定する。
The present invention recognizes the position of a traveling robot relative to the shape of the room in which it is traveling, and is equipped with a transmitter that reflects highly directional ultrasonic waves and a receiver that receives them. A plurality of ultrasonic transceivers are arranged with their ultrasonic transmission and reception directions shifted by 90 degrees, and the plurality of ultrasonic transceivers are rotated around the same axis. By receiving the ultrasonic waves reflected from the walls of the room, the distance to the wall and the direction of the position of the ultrasonic wave reflecting surface of the wall relative to the direction of movement of the robot or the reference direction are measured.

ところで一般家庭、オフイス、工場、病院、学
校などの走行ロボツトが使用される部屋、空間は
矩形である場合がほとんどである。したがつてこ
れら矩形の部屋の中に走行ロボツトを置き、ロボ
ツトに設置した前記超音波送受信器で周囲の壁か
らの超音波の反射を受信して壁までの距離と方向
を測定すると、90゜ずれた壁のデータが4個得ら
れるはずである。
By the way, the rooms and spaces in which mobile robots are used, such as in general homes, offices, factories, hospitals, and schools, are often rectangular. Therefore, if a traveling robot is placed inside these rectangular rooms and the ultrasonic transceiver installed on the robot receives the ultrasonic waves reflected from the surrounding walls and measures the distance and direction to the wall, the distance and direction to the wall will be 90°. You should be able to obtain data for four displaced walls.

本発明は、上記90゜ずれた壁からのデータを90゜
ずらせて配置した超音波送受信器で同時に測定す
ることで、走行ロボツトの位置を部屋の矩形形状
に対して相対的に認識し、かつ部屋の4方の壁に
ついての方向と距離のデータを同時に得ること
で、ロボツトの位置を正確に把握できるようにし
た。
The present invention recognizes the position of the mobile robot relative to the rectangular shape of the room by simultaneously measuring the data from the wall shifted by 90 degrees with the ultrasonic transmitter/receiver placed at a shift of 90 degrees. By simultaneously obtaining data on the direction and distance of the four walls of the room, the robot's position can be accurately determined.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面に従つて説明す
る。第1図は、本発明の超音波送受信器を備えた
走行ロボツトの構成を示す平面図、第2図は、第
1図の超音波送受信器で得られたデータから走行
ロボツトの位置を演算する位置認識装置のブロツ
ク図である。第3図はロボツト位置認識装置を示
す図、第4図は、ロボツト位置認識のアルゴリズ
ムのフローチヤートである。第1図で、1は走行
ロボツトの本体、2,3,4,5は本体1を走行
させる車輪、6は本体1に取りつけ図は省略する
が回転装置で矢印7の方向に回軸する回転軸、8
は本体1の上部に位置し回転軸6に固定された超
音波送受信器を取りつけるための送受信器フレー
ム、9は送受信器フレーム8に固定され指向性の
鋭い超音波をaの方向に発射するための超音波送
信器、10は前記超音波送信器9の超音波発射方
向と同一方向aにその受信方向を有した超音波受
信器で、超音波送信器9からaの方向に発射され
た指向性の鋭い超音波が物体11の面で反射さ
れ、a方向と反対の方向に返つて来た超音波を受
信する超音波受信器である。12は、指向性の鋭
い超音波を前記超音波送信器9および超音波受信
器10の超音波送受信方向aより90゜ずれたbの
方向に発射するための超音波送信器である。13
は前記超音波送信器12の送信方向bにその受信
方向を有した超音波受信器である。同様に、14
は9と反対方向cの方向に指向性の鋭い超音波を
発射する超音波送信器で、15は前記超音波送信
器14の送信方向cにその受信方向を有した超音
波受信器である。また同様に16は12と反対方
向dの方向に指向性の鋭い超音波を発射する超音
波送信器で、17は前記超音波送信器16の送信
方向dにその受信方向を有した超音波受信器であ
る。そして超音波送信器9,12,14,16お
よび超音波受信器10,13,15,17は、前
記送受信器フレーム8に固定し、回転軸6を中心
に矢印7の方向に回転する。18は走行ロボツト
の本体1の進行方向である。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a plan view showing the configuration of a traveling robot equipped with an ultrasonic transceiver according to the present invention, and FIG. 2 is a plan view showing the configuration of a traveling robot equipped with an ultrasonic transceiver according to the present invention. FIG. FIG. 2 is a block diagram of a position recognition device. FIG. 3 is a diagram showing a robot position recognition device, and FIG. 4 is a flowchart of an algorithm for robot position recognition. In Figure 1, 1 is the main body of the traveling robot, 2, 3, 4, and 5 are the wheels that make the main body 1 move, and 6 is a rotating device that is attached to the main body 1 and rotates in the direction of the arrow 7 (not shown). axis, 8
9 is a transmitter/receiver frame for attaching an ultrasonic transmitter/receiver located at the upper part of the main body 1 and fixed to the rotating shaft 6; 9 is fixed to the transmitter/receiver frame 8 for emitting ultrasonic waves with sharp directivity in the direction of a. 10 is an ultrasonic receiver having its reception direction in the same direction a as the ultrasonic emission direction of the ultrasonic transmitter 9, and 10 is an ultrasonic receiver having a receiving direction in the same direction a as the ultrasonic emission direction of the ultrasonic transmitter 9, This is an ultrasonic receiver that receives ultrasonic waves that have sharp characteristics and are reflected from the surface of an object 11 and returned in a direction opposite to the direction a. Reference numeral 12 denotes an ultrasonic transmitter for emitting ultrasonic waves with sharp directivity in a direction b that is 90 degrees off from the ultrasonic transmission/reception direction a of the ultrasonic transmitter 9 and the ultrasonic receiver 10. 13
is an ultrasonic receiver whose reception direction is in the transmission direction b of the ultrasonic transmitter 12. Similarly, 14
1 is an ultrasonic transmitter that emits highly directional ultrasonic waves in the direction c opposite to 9, and 15 is an ultrasonic receiver whose reception direction is in the transmission direction c of the ultrasonic transmitter 14. Similarly, 16 is an ultrasonic transmitter that emits highly directional ultrasonic waves in the direction d opposite to 12, and 17 is an ultrasonic receiver whose reception direction is in the transmission direction d of the ultrasonic transmitter 16. It is a vessel. The ultrasonic transmitters 9, 12, 14, 16 and the ultrasonic receivers 10, 13, 15, 17 are fixed to the transceiver frame 8 and rotated about the rotation axis 6 in the direction of the arrow 7. 18 is the traveling direction of the main body 1 of the traveling robot.

さて、第2図で、9,12,14,16は第1
図で述べた超音波送信器、10,13,15,1
7は第1図で述べた超音波受信器である。19は
超音波送信器および超音波受信器と接続したI/
Oポートである。20は、第1図の超音波送信器
9,12,14,16の超音波発射方向および超
音波受信器10,13,15,17の超音波受信
方向である。a,b,c,d方向とロボツト本体
1の進行方向18との角度を測定する送受信器回
転角度測定器(第1図の構成での説明は省略して
あるが、例えばエンコーダを用いれば良い。)で
ある。21は、送受信器回転角度測定器20と接
続されたI/Oポートである。22はロボツト位
置を演算するCPUなどの位置演算装置である。
そしてI/Oポート19およびI/Oポート21
と、位置演算装置22とは、データバス23で接
続されている。
Now, in Figure 2, 9, 12, 14, and 16 are the first
Ultrasonic transmitter described in figure 10, 13, 15, 1
7 is the ultrasonic receiver described in FIG. 19 is an I/O connected to an ultrasonic transmitter and an ultrasonic receiver;
This is the O port. Reference numeral 20 indicates the ultrasonic emission direction of the ultrasonic transmitters 9, 12, 14, and 16 and the ultrasonic reception direction of the ultrasonic receivers 10, 13, 15, and 17 in FIG. A transmitter/receiver rotation angle measuring device that measures the angles between directions a, b, c, and d and the direction of movement 18 of the robot body 1 (explanation of the configuration in FIG. 1 is omitted, but an encoder may be used, for example. ). 21 is an I/O port connected to the transceiver rotation angle measuring device 20. 22 is a position calculation device such as a CPU that calculates the robot position.
and I/O port 19 and I/O port 21
and the position calculation device 22 are connected by a data bus 23.

次に動作を説明する。第1図で、走行ロボツト
の本体1を、車輪2,3,4,5を駆動して進行
方向18の方向に走行させる。同時に回転軸6を
反時計方向(矢印7)の方向に回転させておく
と、送受信器フレーム8に取り付けた超音波送信
器9,12,14,16および超音波受信器1
0,13,15,17は、超音波送受信方向a,
b,c,dは90゜ずれた状態で回転する。超音波
送信器9,12,14,16と超音波受信器1
0,13,15,17で得られる超音波送信信号
と受信信号はI/Oポート19を経由して、ロボ
ツト位置演算装置22に入力される。一方、レー
ダ回転角度測定器20で得られる、第1図で示し
た超音波送信器9,12,14,16及び超音波
受信器10,13,15,17の超音波送信方向
a,b,c,dのロボツト進行方向18に対する
角度のデータ信号は第2図でI/Oポート21を
経由して、位置演算装置22に入力される。そし
て位置演算装置22では、第4図のアルゴリズム
フローチヤートで示す演算処理を行い、ロボツト
の位置を求める。第4図の説明をする前に、部屋
の形について述べる。一般に、走行ロボツトが使
用される工場、家庭、オフイス、病院、学校など
の部屋は矩形である。
Next, the operation will be explained. In FIG. 1, a main body 1 of a traveling robot is driven in a traveling direction 18 by driving wheels 2, 3, 4, and 5. At the same time, if the rotating shaft 6 is rotated counterclockwise (arrow 7), the ultrasonic transmitters 9, 12, 14, 16 attached to the transceiver frame 8 and the ultrasonic receiver 1
0, 13, 15, 17 are ultrasound transmission/reception directions a,
b, c, and d rotate with a 90° shift. Ultrasonic transmitters 9, 12, 14, 16 and ultrasonic receiver 1
The ultrasonic transmission signals and reception signals obtained at points 0, 13, 15, and 17 are input to the robot position calculation device 22 via the I/O port 19. On the other hand, the ultrasonic transmission directions a, b of the ultrasonic transmitters 9, 12, 14, 16 and the ultrasonic receivers 10, 13, 15, 17 shown in FIG. Data signals of angles c and d with respect to the robot traveling direction 18 are input to the position calculation device 22 via the I/O port 21 in FIG. Then, the position calculation device 22 performs calculation processing shown in the algorithm flowchart of FIG. 4 to determine the position of the robot. Before explaining Figure 4, we will discuss the shape of the room. Generally, the rooms in factories, homes, offices, hospitals, schools, etc. where mobile robots are used are rectangular.

この部屋の形が矩形であることを前提にして、
第3図と第4図により、位置演算装置22で行う
ロボツト位置認識のアルゴリズムを説明する。第
3図で、ロボツトの走行する矩形の部屋をOPQR
とし、走行ロボツトがA点からB点に動いたとす
る。その場合、位置演算装置22では、第4図に
示すように、まず第2図の超音波送信器9,1
2,14,16と超音波受信器10,13,1
5,17とで得られる超音波の発信信号と受信信
号とにより、超音波が発信されてから受信される
までの時間を計算する。この時間は位置演算装置
22の内部クロツクのカウントで求める。次に上
記超音波の発信から受信までの時間と超音波速度
330m/sとをかけることで、第1図の回転軸6
から物体11までの距離lを計算する。なおロボ
ツトの位置は回転軸6で考える。次に送受信器回
転角度測定器20からの信号より、超音波送受信
器が第1図のロボツト進行方向から物体を検出す
るまでの時間を、位置演算装置22の内部クロツ
クのカウントして求め、その時間と送受信器の回
転角速度ωo/sとをかけることにより、第1図
の物体11のロボツト進行方向18に対する角度
θを計算する。次に、物体を超音波の反射で検出
した時の回転角度測定器による角度データのうち
90゜ずれたデータ、すなわち第1図の超音波送信
器9,12,14,16および超音波受信器1
0,13,15,17で同時に得られるデータを
捜す。したがつて、ロボツトが第3図の矩形の部
屋OPQRのA点にあるとすれば、上記で捜した
90゜ずれた角度データに対応した距離データは、
la,lb,lc,ldである。そこで、基準になる座標を
第3図に示すように、A点から距離laの物体位置
aを通り線分Aaに対する垂直線ORをy軸とし、
A点から距離lbの物体位置bを通り線分Abに対
する垂直線OPをx軸とし、ORとOPの交点を原
点Oとする座標を設定する。したがつてA点の座
標(x0,y0)は(la,lb)となる。次に上記座標
設定ずみかを判断する。そして座標が設定されて
いなければ、前記90゜ずれた物体検出の角度デー
タに対応した物体までの距離のデータla,lb,lc
ldより部屋の形状を第3図のA点における矩形
OPQRと予測し、上記x軸y軸および原点とする
座標を設定する。上記座標がすでに設定されてい
れば、すなわち第3図のB点の座標を求める場
合、前記90゜ずれた角度と対応する距離のうち矩
形の部屋OPQRの壁までの距離と一致する距離デ
ータ、B点でのle,lf,lg,lhを捜し、B点の座
標(x,y)を(le,lf)とする。さらに、B点
の座標(x,y)を出発点A点の座標(x0,y0
と置き換え、第4図のアルゴリズムフローチヤー
トの処理を最初に戻し、ロボツトの位置B点の座
標(x,y)を次々に求める。以上の第3図と第
4図のアルゴリズムで走行ロボツトの位置を矩形
OPQRの部屋に対して相対的に認識する。
Assuming that the shape of this room is rectangular,
The algorithm for robot position recognition performed by the position calculation device 22 will be explained with reference to FIGS. 3 and 4. In Figure 3, the rectangular room in which the robot runs is shown as OPQR.
Assume that the traveling robot moves from point A to point B. In that case, the position calculation device 22 first uses the ultrasonic transmitters 9 and 1 shown in FIG.
2, 14, 16 and ultrasonic receivers 10, 13, 1
From the ultrasonic transmission signal and reception signal obtained in steps 5 and 17, the time from when the ultrasonic wave is transmitted to when it is received is calculated. This time is determined by counting the internal clock of the position calculation device 22. Next, the time from transmission to reception of the above ultrasonic waves and the ultrasonic speed
By multiplying by 330m/s, the rotation axis 6 in Fig.
The distance l from to the object 11 is calculated. Note that the position of the robot is considered based on the rotation axis 6. Next, based on the signal from the transmitter/receiver rotation angle measuring device 20, the time required for the ultrasonic transmitter/receiver to detect an object from the direction of robot movement shown in FIG. 1 is determined by counting the internal clock of the position calculation device 22. By multiplying time by the rotational angular velocity ωo/s of the transmitter/receiver, the angle θ of the object 11 in FIG. 1 with respect to the robot traveling direction 18 is calculated. Next, among the angle data obtained by the rotation angle measuring device when an object is detected by reflection of ultrasonic waves,
Data shifted by 90 degrees, that is, ultrasonic transmitters 9, 12, 14, 16 and ultrasonic receiver 1 in FIG.
Search for data obtained at the same time at 0, 13, 15, and 17. Therefore, if the robot is located at point A in the rectangular room OPQR in Figure 3, then
The distance data corresponding to the angle data shifted by 90 degrees is
They are l a , l b , l c , and l d . Therefore, as shown in Figure 3, the reference coordinates are the y-axis, which is a line OR perpendicular to the line segment Aa that passes through the object position a at a distance l a from point A.
The x-axis is a line OP perpendicular to the line segment Ab that passes through object position b at a distance l b from point A, and coordinates are set in which the origin O is the intersection of OR and OP. Therefore, the coordinates (x 0 , y 0 ) of point A become ( la , l b ). Next, it is determined whether the above coordinates have been set. If the coordinates are not set, the data of the distance to the object corresponding to the angle data of the object detection shifted by 90 degrees, la , l b , l c ,
l From d, the shape of the room is a rectangle at point A in Figure 3.
OPQR is predicted, and the coordinates of the x-axis, y-axis, and origin are set. If the above coordinates have already been set, that is, when determining the coordinates of point B in Figure 3, distance data that matches the distance to the wall of the rectangular room OPQR among the distances corresponding to the 90° shifted angle, Find l e , l f , lg, and l h at point B, and set the coordinates (x, y) of point B to ( le , l f ). Furthermore, the coordinates (x, y) of point B are the coordinates (x 0 , y 0 ) of the starting point A
4, the process of the algorithm flowchart in FIG. 4 is returned to the beginning, and the coordinates (x, y) of the robot's position B are determined one after another. The position of the traveling robot is set in a rectangle using the algorithms shown in Figures 3 and 4 above.
Recognize it relative to the OPQR room.

次に、以上で得られたA点(x0,y0)の座標
(la,lb)とB点(x,y)の座標(le,lf)のデ
ータを使つたロボツトの走行制御の1例を述べ
る。第3図で、A点ではZの方向にロボツトを走
行させたいとする。したがつてA点のロボツト進
行方向は、角度θAの方向とする。しかし、実際に
はZの方向(点線AZ)からずれてB点まで走行
し、B点での進行方向θBは、 θB=tan-1y−y0/x−x0=tan-1lf−lb/le−laに
なつたとす る。そこで、ロボツトがAZ線上を走行するよう
に、制御するには、A点からB点までの距離Lは
√(−)2+(−)2であるから、次に
めざす
位置をAZ線上のB点からの距離がLであるD点
と設定し、B点での進行方向を上記θBから、B点
から上記D点の方向θDに進行方向を変える制御を
行う。この制御に関しては従来公知であるのでこ
こでは詳述しない。ただし、この例は、ロボツト
がほぼ定速で走行している場合である。次に、第
1図の超音波送信器および超音波受信器の組を、
その超音波発信および受信方向を90゜ずらせて2
個以上設ける必要性について述べる。本発明の走
行ロボツトの位置認識は、ロボツトを走行させる
部屋が矩形であると限定して、部屋の直交する壁
を基準にロボツトの位置を認識する方式である。
したがつて、前記B点の座標(x,y)を求める
のに第3図のe点とf点についてのデータが必要
なことからわかるように、超音波送受信器は90゜
ずらせて少なくとも2個設ける必要がある。もし
超音波送受信器を1個だけ設けけて、それを回転
して部屋の壁についての距離と方向のデータを測
定した場合、ロボツトの位置認識に誤差を生じ
る。その理由を説明すると、壁から超音波が反射
して帰つて来るまでの時間は、例えば3m離れた
壁(往復6m)については約18m secである。し
たがつて、3m離れた壁のデータを測定するのに
演算処理時間を含めると約20m secかかる。そこ
で、角度を1゜分割でデータを取つて行くと、矩形
の部屋のある壁のデータを測定してから直交した
次の壁のデータを測定するまでに1.8secかかる。
この間に走行ロボツトは、例えば速度30cm/sec
で走つているとすれば、次の直交する壁のデータ
を測定するまでにロボツトは約54cmも走行するの
でロボツトの位置の認識は54cmの誤差を生じる。
これに対して上記した超音波送受信器をその送受
信方向を90゜ずらせて2個設置すると、矩形の部
屋のある壁のデータを測定してから、直交した他
の壁のデータを測定するまでの時間は超音波の反
射して来る時間差だけである。例えばある壁まで
の距離が1mで直交する他の壁までの距離が4mと
すると、ある壁のデータを測定してから直交した
他の壁のデータを測定するまでの時間は、超音波
が壁から反射して来る時間差20m secだけで、ほ
ぼ同時にデータが測定でき、その間にロボツトが
走行する距離は、走行走度を30cm/sとすると約
6mmで、ほぼ無視できる誤差である。
Next, we will create a robot using the data of the coordinates (l a , l b ) of point A (x 0 , y 0 ) and the coordinates (l e , l f ) of point B (x, y) obtained above. An example of travel control will be described. In FIG. 3, it is assumed that the robot wants to run in the Z direction at point A. Therefore, the direction in which the robot moves at point A is the direction of angle θ A. However, in reality, it travels to point B deviating from the Z direction (dotted line AZ), and the traveling direction θ B at point B is θ B = tan -1 y-y 0 /x-x 0 = tan -1 Suppose it becomes lf-lb/le-la. Therefore, in order to control the robot so that it travels on the AZ line, the distance L from point A to B is √(-) 2 + (-) 2 , so the next target position must be set at B on the AZ line. Point D is set at a distance L from the point, and control is performed to change the traveling direction at point B from the above θ B to the direction θ D from point B to the above point D. Since this control is conventionally known, it will not be described in detail here. However, this example is a case where the robot is running at a substantially constant speed. Next, the set of the ultrasonic transmitter and ultrasonic receiver shown in FIG.
The ultrasonic transmission and reception directions are shifted by 90° and
We will discuss the necessity of providing more than one. The position recognition of a traveling robot according to the present invention is a method in which the room in which the robot travels is limited to a rectangular shape, and the position of the robot is recognized based on orthogonal walls of the room.
Therefore, as can be seen from the fact that data on points e and f in Fig. 3 are required to obtain the coordinates (x, y) of point B, the ultrasonic transceiver is shifted by 90 degrees and placed at least two times. It is necessary to provide one. If only one ultrasonic transceiver is provided and it is rotated to measure distance and direction data about the walls of the room, errors will occur in the robot's position recognition. The reason for this is that the time it takes for ultrasonic waves to reflect from a wall and return is approximately 18 m sec for a wall that is 3 m away (6 m round trip), for example. Therefore, including calculation processing time, it takes approximately 20 m sec to measure data on a wall 3 m away. Therefore, if you collect data by dividing the angle by 1 degree, it will take 1.8 seconds to measure data for one wall in a rectangular room and then measure data for the next orthogonal wall.
During this time, the traveling robot moves at a speed of, for example, 30cm/sec.
If the robot is running at a distance of 54 cm, the robot will have traveled approximately 54 cm before measuring the data on the next perpendicular wall, resulting in an error of 54 cm in recognizing the robot's position.
On the other hand, if two ultrasonic transceivers are installed with their transmitting and receiving directions shifted by 90 degrees, the time between measuring data on one wall in a rectangular room and measuring data on another orthogonal wall can be reduced. Time is only the difference in time when the ultrasound waves are reflected. For example, if the distance to a certain wall is 1 m and the distance to another perpendicular wall is 4 m, the time from measuring data on one wall to measuring data on the other perpendicular wall will be Data can be measured almost simultaneously with only a 20 m sec time difference between reflections from the robot, and the distance the robot travels during that time is approximately 6 mm, assuming a travel speed of 30 cm/s, which is an almost negligible error.

さらに本実施例で超音波送受信器を4個設置し
た理由は、部屋の中に物があつて、ある方向の壁
についてのデータが得られない場合、少なくとも
2方の壁のデータが得られるようにするためであ
る。
Furthermore, the reason why four ultrasonic transmitters and receivers were installed in this example is that if there are objects in the room and it is not possible to obtain data for walls in a certain direction, data for at least two walls can be obtained. This is for the purpose of

次に本実施例の効果について述べる。本実施例
によれば、90゜ずらした超音波送受信器で部屋の
壁から超音波の反射して来る時間より、壁までの
距離と方向のデータが得られた時点での走行ロボ
ツトの位置を矩形の部屋に対して相対的に認識す
るので、従来技術の走行している床面状態により
車輪がスリツプして車輪の回転数と実際に走つた
距離や進行方向の計測に誤差が生じたり、車輪の
回転数の累積計算した場合の累積誤差がないの
で、ロボツトの位置を正確に認識できる効果があ
る。
Next, the effects of this embodiment will be described. According to this embodiment, the position of the traveling robot at the time when the distance and direction data to the wall is obtained is determined from the time when the ultrasonic wave is reflected from the wall of the room using the ultrasonic transmitter/receiver shifted by 90 degrees. Since recognition is performed relative to a rectangular room, the wheels of conventional technology may slip due to the condition of the floor surface on which the vehicle is running, causing errors in measuring the number of rotations of the wheels and the actual distance traveled and direction of travel. Since there is no cumulative error when calculating the number of rotations of the wheels, the position of the robot can be accurately recognized.

本実施例では、超音波送受信器を90゜ずらせて
4個設置する例について説明した。この4個とし
た理由は矩形の部屋に対応させて、4方の壁から
の超音波の反射を同時に受信できるようにしたい
ためである。しかし第3図の走行ロボツトの位置
Bの(x,y)の座標は、少なくとも直交する2
方の壁についてのデータすなわちleとlf,・lf
lg・lgとlh・lhとleのいずれかが測定されれば求
めることができる。したがつて、本発明の超音波
送受信器は、その送受信方向を90゜ずらせて少な
くとも2個以上(2個、3個、4個)すなわち複
数個設ければよいが、部屋の壁との間に物がある
場合、部屋の壁についてのデータが得られないこ
とが考えられるので安全性を考え4個としたもの
である。
In this embodiment, an example has been described in which four ultrasonic transmitter/receivers are installed at an angle of 90 degrees. The reason why we chose four is because we wanted to be able to receive the ultrasound reflected from the four walls at the same time in response to a rectangular room. However, the (x, y) coordinates of position B of the traveling robot in Fig. 3 are at least two orthogonal.
The data for the two walls, i.e., l e and l f , ・l f and
It can be determined if either lg・lg, l h・l h , or le are measured. Therefore, the ultrasonic transmitter/receiver of the present invention may be provided at least two or more (two, three, four), that is, a plurality of ultrasonic transceivers, with their transmission and reception directions shifted by 90 degrees, but between them and the wall of the room. If there are objects inside the room, it is possible that data about the walls of the room cannot be obtained, so the number is set to 4 for safety reasons.

なお本発明の超音波送受信器の数を例えば45゜
ずつずらせて8個すなわち90゜ずらせた4個の組
を2組設けたり、30゜ずらせて12個すなわち90゜ず
らせた組を3組設けたり、さらに増して4組、5
組などとすることは、90゜ずらせた超音波受信器
を複数個備えた構成の組合せなので本発明の範中
に入るものである。以上のように超音波送受信器
の数を増すと価格の面では不利であるが、部屋の
壁との間に数多くの物体がある場合に部屋の壁か
らのデータをより確実に得ることができ、ロボツ
トの位置を正確に認識できる効果がある。
In addition, the number of ultrasonic transceivers of the present invention may be set, for example, by providing two sets of 8 ultrasonic transmitters and receivers each shifted by 45 degrees, that is, 4 sets shifted by 90 degrees, or by providing 3 sets of 12 ultrasonic transmitters and receivers shifted by 30 degrees, that is, 3 sets shifted by 90 degrees. or even more, 4 groups, 5 groups
The combination of a plurality of ultrasonic receivers shifted by 90 degrees falls within the scope of the present invention. As mentioned above, increasing the number of ultrasonic transceivers is disadvantageous in terms of price, but if there are many objects between the walls of the room, data from the walls of the room can be obtained more reliably. This has the effect of accurately recognizing the robot's position.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、走行ロボツトの位置を正確に
認識できる効果がある。なぜなら、一般に家庭、
オフイス、工場、病院、学校などの部屋や廊下な
どの形は矩形である。したがつて、矩形の部屋の
中で本発明のロボツト位置認識装置を備えた走行
ロボツトを走らせた場合、超音波送受信方向を
90゜ずらせた複数個の超音波送受信器で、超音波
が発射されてから部屋の壁から反射されて受信器
で受信されるまでの時間と超音波速度より、部屋
の壁までの距離と方向を測定し、第3図に示すよ
うに、矩形の部屋の少なくとも直交した2方の壁
についての距離と方向のデータが得られた時点で
の走行ロボツトの位置が誤差の累積がなく認識で
きるので、従来技術における車輪の回転数を回転
計で測定し、走行距離と進行方向を累積計算し
て、それらの値からロボツトの位置を計算で求め
る場合の走行している床面状態により車輪のスリ
ツプが生じ、走行距離、走行方向に誤差が生じ
て、求めたロボツトの位置の計算に誤差が累積し
てロボツトの位置を正しく認識できないような欠
点がなくなり、本発明によれば、走行ロボツトの
位置を矩形の部屋に対して正確に認識できる効果
がある。
According to the present invention, there is an effect that the position of the traveling robot can be accurately recognized. Because in general, families
Rooms and hallways in offices, factories, hospitals, schools, etc. are rectangular in shape. Therefore, when a mobile robot equipped with the robot position recognition device of the present invention is run in a rectangular room, the direction of ultrasonic transmission and reception cannot be determined.
Using multiple ultrasonic transmitters and receivers offset by 90 degrees, the distance and direction to the wall of the room can be determined from the time and ultrasonic speed from when the ultrasonic wave is emitted until it is reflected from the wall of the room and received by the receiver. As shown in Figure 3, the position of the traveling robot at the time when distance and direction data for at least two orthogonal walls of a rectangular room is obtained can be recognized without accumulation of errors. In the conventional technology, the number of rotations of the wheels is measured with a tachometer, the distance traveled and the direction of travel are cumulatively calculated, and the position of the robot is calculated from these values. According to the present invention, the present invention eliminates the disadvantage that the position of the robot cannot be recognized correctly due to the accumulation of errors in calculation of the determined position of the robot due to errors in the travel distance and travel direction. This has the effect of accurately recognizing rectangular rooms.

また本発明によれば、走行ロボツトの位置を周
囲の部屋の形状に対して相対的に認識できるの
で、従来の車輪の回転数を測定する回転計を備え
た走行ロボツトでは部屋の壁にぶつからないよう
にするために周囲の部屋の形状を検知する接触セ
ンサなどの装置が必要であるが、本発明ではその
装置が不要になる効果がある。
Furthermore, according to the present invention, the position of the traveling robot can be recognized relative to the shape of the surrounding room, so that the traveling robot, which is equipped with a tachometer that measures the number of revolutions of the conventional wheels, will not collide with the walls of the room. In order to do this, a device such as a contact sensor that detects the shape of the surrounding room is required, but the present invention has the effect of eliminating the need for such a device.

さらに本発明では、特に一般家庭、オフイス、
工場、病院、学校などの部屋や廊下の矩形の壁で
囲まれた場所での走行ロボツトの位置認識に適し
ている特有の効果もある。
Furthermore, in the present invention, in particular, ordinary homes, offices,
It also has a unique effect that makes it suitable for position recognition of mobile robots in places surrounded by rectangular walls in rooms and hallways such as factories, hospitals, and schools.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の走行ロボツトの位置認識装
置を備えた走行ロボツトの全体構成を示す平面
図、第2図は、走行ロボツトの位置を演算する位
置認識装置のブロツク図、第3図は、本発明の矩
形の部屋に対するロボツト位置の認識方法を示す
座標を示す図、第4図は、ロボツト位置認識アル
ゴリズムのフローチヤート図である。 1…ロボツト本体、2,3,4,5…車輪、6
…回転軸、8…送受信器フレーム、9,12,1
4,16…超音波送信器、10,13,15,1
7…超音波受信器、19…I/Oポート、20…
超音波送受信器の回転角度測定器、21…I/O
ポート、22…ロボツト位置演算装置。
FIG. 1 is a plan view showing the overall configuration of a traveling robot equipped with a position recognition device for a traveling robot according to the present invention, FIG. 2 is a block diagram of a position recognition device that calculates the position of a traveling robot, and FIG. FIG. 4 is a flowchart of the robot position recognition algorithm. 1... Robot body, 2, 3, 4, 5... Wheels, 6
...Rotation axis, 8...Transmitter/receiver frame, 9, 12, 1
4, 16...Ultrasonic transmitter, 10, 13, 15, 1
7...Ultrasonic receiver, 19...I/O port, 20...
Ultrasonic transmitter/receiver rotation angle measuring device, 21...I/O
Port, 22...Robot position calculation device.

Claims (1)

【特許請求の範囲】 1 指向性の鋭い超音波を発射し、物体から反射
して来た超音波を受信することにより物体までの
距離と物体位置のロボツトから見た方向とを測定
する超音波送受信器を、その超音波送受信方向を
90゜ずらせて複数個配置し、かつそれらの超音波
送受信器を同一軸を中心に回転させて周囲全体の
物体についての上記距離と方向のデータを計測す
る構造とした超音波計測装置を設け、 ロボツトの移動前に該超音波計測装置で得られ
た90゜ずれた方向に対する複数個の距離データか
ら、周囲全体の物体を矩形と予測して基準直交座
標を設定した後、 ロボツトの移動後に得られた90゜のずれた方向
に対する複数個の距離データにより、上記基準直
交座標に基づいて移動後のロボツトの位置を計算
することを特徴とする走行ロボツトの位置認識装
置。
[Claims] 1 Ultrasonic waves that measure the distance to the object and the direction of the object position as seen from the robot by emitting ultrasonic waves with sharp directivity and receiving the ultrasonic waves reflected from the object. The transmitter/receiver, its ultrasonic transmission/reception direction
An ultrasonic measuring device is provided, in which a plurality of ultrasonic transmitters and receivers are arranged at an angle of 90 degrees, and the ultrasonic transmitters and receivers are rotated around the same axis to measure the distance and direction data of objects all around the object; From multiple distance data in directions shifted by 90 degrees obtained by the ultrasonic measuring device before the robot moves, the entire surrounding object is predicted to be rectangular and reference orthogonal coordinates are set. 1. A position recognition device for a traveling robot, characterized in that the position of the robot after movement is calculated based on the reference orthogonal coordinates using a plurality of distance data in a direction shifted by 90 degrees.
JP58224189A 1983-11-30 1983-11-30 Apparatus for discriminating position of running robot Granted JPS60117168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58224189A JPS60117168A (en) 1983-11-30 1983-11-30 Apparatus for discriminating position of running robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58224189A JPS60117168A (en) 1983-11-30 1983-11-30 Apparatus for discriminating position of running robot

Publications (2)

Publication Number Publication Date
JPS60117168A JPS60117168A (en) 1985-06-24
JPH0412433B2 true JPH0412433B2 (en) 1992-03-04

Family

ID=16809913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58224189A Granted JPS60117168A (en) 1983-11-30 1983-11-30 Apparatus for discriminating position of running robot

Country Status (1)

Country Link
JP (1) JPS60117168A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102004251A (en) * 2010-09-27 2011-04-06 北京航空航天大学 Compass-based horizontal scanning ultrasonic distance measurement instrument
CN104260092B (en) * 2014-07-08 2015-12-30 大连理工大学 One is automatically followed the tracks of robot controller and is automatically followed the tracks of robot
CN107972042A (en) * 2017-11-24 2018-05-01 合肥博焱智能科技有限公司 Swimming pool rescue robot rescue mode and device based on artificial intelligence

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108777A (en) * 1980-12-26 1982-07-06 Toshiba Corp Position detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108777A (en) * 1980-12-26 1982-07-06 Toshiba Corp Position detector

Also Published As

Publication number Publication date
JPS60117168A (en) 1985-06-24

Similar Documents

Publication Publication Date Title
US6289282B1 (en) Method of determining the distance between and object and a device of varying location
US8060256B2 (en) Apparatus, method, and medium for localizing moving robot and transmitter
US7474256B2 (en) Position detecting system, and transmitting and receiving apparatuses for the position detecting system
US6396435B1 (en) Method for determining the vertical distance between an object and a device with a variable position
JP3480576B2 (en) Method and apparatus for sensing an obstacle for an autonomous device
JPH07306042A (en) Method and device for forming peripheral map in cellular structure
JP2000056006A (en) Position recognizing device for mobile
US10473759B2 (en) Tool for automatic multiple radar calibration
JPH11295412A (en) Apparatus for recognizing position of mobile
Ghidary et al. A new Home Robot Positioning System (HRPS) using IR switched multi ultrasonic sensors
WO2019220503A1 (en) Object detection device and object detection method
US10551493B2 (en) Widely spaced radar nodes with unambiguous beam pattern
JPH0412433B2 (en)
JPH0248069B2 (en)
Shoval et al. Measurement of angular position of a mobile robot using ultrasonic sensors
JPH05257530A (en) Method and device for correcting bearing and position of moving robot
JPH0720223A (en) Device for measuring position of unmanned carrying vehicle
JP2944481B2 (en) Underwater active sound detector
CN114415662B (en) Intelligent robot obstacle avoidance method and device
Kreczmer Influence of Signal Interference on Determining Direction of Arrival by Using the Indirect Phase Determination Method
CA2107198A1 (en) Method and apparatus for accurate acoustic distance measurement
US20240111021A1 (en) System and method for radar calibration
JPH0587792B2 (en)
JPH06118170A (en) Acoustic position measuring device
JP3493570B2 (en) Method and apparatus for measuring instantaneous position of moving object