JPH04121652A - Biosensor - Google Patents

Biosensor

Info

Publication number
JPH04121652A
JPH04121652A JP2241311A JP24131190A JPH04121652A JP H04121652 A JPH04121652 A JP H04121652A JP 2241311 A JP2241311 A JP 2241311A JP 24131190 A JP24131190 A JP 24131190A JP H04121652 A JPH04121652 A JP H04121652A
Authority
JP
Japan
Prior art keywords
electrode
glucose
electrode system
biosensor
pyruvic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2241311A
Other languages
Japanese (ja)
Other versions
JP2977258B2 (en
Inventor
Koichi Okuma
大熊 廣一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2241311A priority Critical patent/JP2977258B2/en
Publication of JPH04121652A publication Critical patent/JPH04121652A/en
Application granted granted Critical
Publication of JP2977258B2 publication Critical patent/JP2977258B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To separate and measure the concns. of two or more kinds of substrates by one set of an electrode system by providing layers of porous bodies having mutually different biologically related substances supported thereon on both sides of an electrode system constituted of a substrate permeable porous body. CONSTITUTION:When a sample solution containing glucose and pyruvic acid is dripped on a sensor, at first, glucose in the sample solution is decomposed in a triacetyl cellulose membrane 3 by glucose oxidase to generate hydrogen perioxide. Pyruvic acid in the sample solution is not reacted with glucose oxidase and passes through a measuring electrode 1 composed of conductively treated cloth containing a water absorbable polymer to reach the triacetyl cellulose membrane 4 under the electrode 1 and is decomposed by pyruvic acid oxidase to generate hydrogen peroxide. Since a time lag is generated between these reaction start times, pulse voltage is successively applied to the electrode system corresponding to the respective reaction start times and response currents are detected to measure the respective components.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は食品分析、医療分析、環境分析等の分野におい
て、液体状の試料をセンサ部に滴下するだけで微量の、
しかも複数の特定成分を定量することができるバイオセ
ンサに関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention is useful in the fields of food analysis, medical analysis, environmental analysis, etc., by simply dropping a liquid sample onto the sensor unit.
Moreover, the present invention relates to a biosensor that can quantify a plurality of specific components.

(従来の技術) 従来、環境中や生体試料中の特定成分を複雑な前処理を
行なうことなく高精度に測定する手段として、第2図に
示すようなバイオセンサが特開昭59−166852号
において提案されている。
(Prior Art) Conventionally, a biosensor as shown in Fig. 2 was disclosed in Japanese Patent Application Laid-Open No. 59-166852 as a means of measuring specific components in the environment or biological samples with high precision without complex pretreatment. It has been proposed in

絶縁性基板8にリード線11.12をそれぞれ有する白
金などからなる測定極9および対極10を埋設し、それ
らの電極系の上部を酸化還元酵素を担持させた多孔体1
3で覆ったものである。試料液を多孔体13に滴下する
と、試料液中に酸化還元酵素が溶解し、試料液中の基質
との間で酵素反応が進行し過酸化水素が発生する。この
過酸化水素を電気化学的に酸化し、この特待られる酸化
電流値から試料液中の基質濃度を求めるものである。
A porous body 1 in which a measurement electrode 9 and a counter electrode 10 made of platinum or the like, each having lead wires 11 and 12, are embedded in an insulating substrate 8, and an oxidoreductase is supported on the upper part of the electrode system.
It is covered by 3. When the sample liquid is dropped onto the porous body 13, the oxidoreductase is dissolved in the sample liquid, an enzymatic reaction proceeds with the substrate in the sample liquid, and hydrogen peroxide is generated. This hydrogen peroxide is electrochemically oxidized, and the substrate concentration in the sample solution is determined from the oxidation current value.

(発明が解決しようとする課B) このような従来の構成のバイオセンサでは、本質的には
一種類の目的物質の定量しか行なえず、複数種類の酵素
を用いたとしても、これらの酵素系から誘導された一種
類の目的物質の定量か、あるいは多種類の目的物質の総
量でしか定量することができなかった。従って複数種類
の目的物質を分離して検出するには目的物質の種類の数
に応じたセンサを用意しなければならなかった。また、
大きな電極出力を得るためには、電極表面積を大きくす
る必要から形状を大きくセざるを得なかった。
(Problem B to be solved by the invention) In a biosensor with such a conventional configuration, essentially only one type of target substance can be quantified, and even if multiple types of enzymes are used, these enzyme systems It has been possible to quantify only one type of target substance derived from the target substance, or the total amount of multiple types of target substances. Therefore, in order to separate and detect multiple types of target substances, it is necessary to prepare sensors corresponding to the number of types of target substances. Also,
In order to obtain a large electrode output, it was necessary to increase the electrode surface area, so the shape had to be made larger.

本発明は上記問題点を解消し、−組の電極系で複数種類
の目的物質の濃度を高感度に検出できるバイオセンサを
提供しようとするものである。
The present invention aims to solve the above problems and provide a biosensor that can detect the concentrations of multiple types of target substances with high sensitivity using a pair of electrode systems.

(課題を解決するための手段) 上記目的を達成するため本発明は、少くとも測定極と対
極とを有する電極系、および酵素、微生物等の生体関連
物質を備え、試料液中の基質と前記生体関連物質との反
応により生じる反応生成物の濃度変化を電気化学的に検
出するバイオセンサにおいて、前記測定極および対極の
中、少な(とも一方は導電性もしくは導電処理した基質
透過性の多孔体で構成すると共に、はぼ同一平面上に配
置し、該測定極および対極を挟んで両側に互いに種類の
異なる酵素、微生物等の生体関連物質を担持させた多孔
体よりなる層を設けた構成としたものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention comprises an electrode system having at least a measurement electrode and a counter electrode, and biologically related substances such as enzymes and microorganisms, In a biosensor that electrochemically detects a change in the concentration of a reaction product caused by a reaction with a biologically related substance, one of the measuring electrodes and the counter electrode is a porous material that is conductive or permeable to a substrate that has been treated to be conductive. and a layer made of a porous material supporting different types of enzymes, microorganisms, etc. on both sides of the measuring electrode and the counter electrode. This is what I did.

また上記構成のバイオセンサにおいて、前記生体関連物
質を担持させた多孔体よりなる層に、生体関連物質に加
えて酸化型電子受容体をも担持させた構成にしたもので
ある。
Furthermore, in the biosensor having the above configuration, the layer made of the porous body supporting the biologically related substance also supports an oxidized electron acceptor in addition to the biologically related substance.

(作 用) 上記のような構成にすることにより、担持させた生体関
連物質に対応する複数の基質を含む試料液を電極系の上
側に配置した多孔体の層に滴下すると、核層の生体関連
物質とこれに対応する基質との反応は速やかに開始し、
一方試料液が基質透過性の電極部を通過して電極系の下
側に配置した多孔体の層に達するとこの層の生体関連物
質とそれに対応する試料液中の基質との反応が、上記上
側の層における反応より遅れて開始する。
(Function) With the above configuration, when a sample solution containing a plurality of substrates corresponding to the supported biological substances is dropped onto the layer of the porous body placed above the electrode system, the biological substances in the core layer are dropped. Reactions between related substances and their corresponding substrates begin quickly;
On the other hand, when the sample solution passes through the substrate-permeable electrode section and reaches the porous layer placed below the electrode system, the reaction between the biologically relevant substances in this layer and the corresponding substrate in the sample solution occurs as described above. It starts later than the reaction in the upper layer.

このように反応開始時刻に時間差を住じるので、それぞ
れの反応開始時刻に対応して電極系に逐次パルス電圧を
印加すると、まず第1のパルス電圧により上側の多孔体
に担持させた生体関連物質に対応する基質の濃度に比例
する応答電流が、次に第2のパルス電圧により、上記応
答電流と、下側の多孔体に担持させた生体関連物質に対
応する基質の濃度に比例する電流との和に相当する応答
電流が得られる。従って後者の基質の濃度は再応答゛電
流の差として検出することが可能となる。
In this way, since there is a time difference in the reaction start time, when pulse voltages are sequentially applied to the electrode system corresponding to each reaction start time, the first pulse voltage first removes the biological substances supported on the upper porous body. A response current proportional to the concentration of the substrate corresponding to the substance is then generated by the second pulse voltage, which is equal to the response current and a current proportional to the concentration of the substrate corresponding to the biologically relevant substance supported on the lower porous body. A response current corresponding to the sum of Therefore, the concentration of the latter substrate can be detected as a difference in re-response current.

(実施例) 第1図に本発明の一実施例、グルコース、ピルビン酸セ
ンサを示す。同図(a)はその断面図、同図(ロ)はそ
の主要部の分解図である。1は測定極でありポリエステ
ルの基布に白金をスパッタリング(膜厚0.2μs)し
た導電処理クロスに吸水性高分子を含浸させたもの、2
は対極でリボン状カーボン、3はグルコースオキシダー
ゼを固定化したトリアセチルセルロース膜、4はピルビ
ル酸オキシダーゼを固定化したトリアセチルセルロース
膜、5は絶縁性支持体、6および7はそれぞれ測定極1
および対極2のリード線である。
(Example) FIG. 1 shows an example of the present invention, a glucose and pyruvic acid sensor. Figure (a) is a sectional view of the same, and figure (b) is an exploded view of its main parts. 1 is the measurement electrode, which is a conductive cloth made by sputtering platinum (film thickness 0.2 μs) on a polyester base cloth and impregnated with water-absorbing polymer; 2
3 is a triacetylcellulose membrane on which glucose oxidase is immobilized, 4 is a triacetylcellulose membrane on which pyruvate oxidase is immobilized, 5 is an insulating support, and 6 and 7 are each the measurement electrode 1.
and a lead wire for the counter electrode 2.

上記のように構成したセンサにグルコースとピルビン酸
を含む試料液を滴下すると、トリアセチルセルロース膜
3において、まず、試料液中のグルコースがグルコース
オキシダーゼによって分解され過酸化水素を発生する。
When a sample liquid containing glucose and pyruvic acid is dropped onto the sensor configured as described above, the glucose in the sample liquid is first decomposed by glucose oxidase in the triacetyl cellulose membrane 3 to generate hydrogen peroxide.

一方試料液中のピルビン酸はグルコースオキシダーゼと
は反応せず、吸水性高分子を含んだ導電処理クロスより
なる測定極lを通過し、その下側のトリアセチルセルロ
ース膜4に達しここでピルビン酸オキシダーゼによって
分解され、過酸化水素を発生する。それぞれの過酸水素
の発生には、時間的遅れが存在するが、試料液滴下直後
測定極に対極に対し700+V、パルス幅200m5の
パルス電圧を印加するとグルコースの分解により最初に
発生した過酸化水素が電気化学的に酸化され、酸化に伴
う応答電流を生じるのでまずこれを測定する。次にたと
えば2秒後に再び上記と同様なパルス電圧を印加すると
、この時点ではピルビン酸の分解による過酸化水素も発
生しており、両過酸化水素の濃度の和に対応する応答電
流を生じる。この結果箱1のパルス電圧による応答電流
はグルコースの濃度に、第2のパルス電圧による応答電
流はグルコースの濃度とピルビン酸の濃度の和に対応し
たものとなる。従って両応答電流の差がピルビン酸の濃
度に対応したものとしてとらえられる。
On the other hand, the pyruvic acid in the sample solution does not react with glucose oxidase, passes through the measurement electrode 1 made of a conductive cloth containing a water-absorbing polymer, reaches the triacetylcellulose membrane 4 below, and the pyruvic acid Decomposed by oxidase to generate hydrogen peroxide. There is a time delay in the generation of each hydrogen peroxide, but when a pulse voltage of 700+V and a pulse width of 200 m5 is applied to the measurement electrode immediately after dropping the sample liquid, the hydrogen peroxide that is first generated due to the decomposition of glucose. is electrochemically oxidized and a response current is generated due to oxidation, so this is first measured. Next, for example, when the same pulse voltage as above is applied again after 2 seconds, hydrogen peroxide has also been generated due to the decomposition of pyruvic acid at this point, and a response current corresponding to the sum of the concentrations of both hydrogen peroxides is generated. As a result, the response current due to the pulse voltage in box 1 corresponds to the concentration of glucose, and the response current due to the second pulse voltage corresponds to the sum of the concentration of glucose and the concentration of pyruvic acid. Therefore, the difference between both response currents can be interpreted as corresponding to the concentration of pyruvate.

(発明の効果) 以上説明したように本発明の構成によるバイオセンサは
測定極および対極の中、少なくとも一方は基質透過性の
多孔体で構成し、電極系を挾んで両側に互いに異なる種
類の生体関連物質を担持させた多孔体の層を設けている
ので、試料液中の基質が電極系を通過する際の時間遅れ
を利用した検出が可能となり、−組の電極系でありなが
ら、複数種類の基質の濃度を分離測定を行なわせること
ができる。なお、生体関連物質の種類により反応速度に
遅速がある場合は、反応速度の速い生体関連物質を電極
系の前面の多孔体の層に、反応速度の遅い生体関連物質
を電極系の背面の多孔体の層に担持させることが分離測
定上望ましい。
(Effects of the Invention) As explained above, in the biosensor according to the present invention, at least one of the measurement electrode and the counter electrode is made of a substrate-permeable porous material, and different types of living organisms are placed on both sides of the electrode system. Since it is equipped with a layer of porous material that supports related substances, it is possible to perform detection using the time delay when the substrate in the sample liquid passes through the electrode system. The concentration of the substrate can be measured separately. If the reaction rate is slow depending on the type of biological substance, the biological substance with a fast reaction rate is placed in the porous layer on the front side of the electrode system, and the biological substance with a slow reaction rate is placed in the porous layer on the back side of the electrode system. It is desirable for separation and measurement to have it supported on body layers.

本発明の電極系の少なくとも一方の電極は、基質透過性
の導電性または導電処理した多孔体で構成されることか
ら生体関連物質と基質との反応による反応生成物との接
触面積は一般の導体を用いた電極系の場合に較べ著しく
大きくなり、形状を大きくすることなく高感度なセンサ
を作ることができる。
At least one electrode of the electrode system of the present invention is composed of a substrate-permeable conductive or conductive-treated porous material, so that the contact area with the reaction product of the reaction between the biologically related substance and the substrate is smaller than that of a general conductor. The size of the sensor is significantly larger than that of an electrode system using a 300°C, and a highly sensitive sensor can be created without increasing the size.

なお上記の実施例では、電気化学的に検出される反応生
成物が過酸化水素の場合について説明したが、生体関連
物質による酸化反応において溶存酸素が少なく充分な酸
化が得られないような場合、また電極電圧の印加により
目的外の電気化学的反応による生成物を生じないよう極
力印加電圧値を低(したい場合など、生体関連物質を担
持させた多孔体の層に酸化型電子受容体をも担持させる
構成が有効である。
In the above example, the case where the electrochemically detected reaction product was hydrogen peroxide was explained, but in the case where there is insufficient dissolved oxygen in the oxidation reaction with biologically related substances and sufficient oxidation cannot be obtained, In addition, in order to avoid producing products due to unintended electrochemical reactions due to the application of electrode voltage, the applied voltage value should be kept as low as possible. A configuration in which it is supported is effective.

例えば生体関連物質として酸化還元酸素を用いる場合、
酸化型電子受容体、フェリシアン化カリウムを共存させ
ると、この電子受容体は、基質との酸化反応に伴って還
元型電子受容体、フェロシアン化カリウムに変じ、この
フェロシアン化カリウムが前述の過酸化水素と同等な電
気化学的役目を果たし、電極系への電圧印加により同様
な応答電流を得ることができる。この還元型電子受容体
、フェロシアン化カリウムの場合、必要な電圧(酸化電
位)は300mVであり、過酸化水素の場合の700m
Vの半分以下に抑制することができる。
For example, when using redox oxygen as a biologically related substance,
When an oxidized electron acceptor, potassium ferricyanide, coexists, this electron acceptor changes into a reduced electron acceptor, potassium ferrocyanide, through an oxidation reaction with the substrate, and this potassium ferrocyanide becomes a substance equivalent to the aforementioned hydrogen peroxide. It plays an electrochemical role, and a similar response current can be obtained by applying a voltage to the electrode system. In the case of this reduced electron acceptor, potassium ferrocyanide, the required voltage (oxidation potential) is 300 mV, and in the case of hydrogen peroxide, it is 700 mV.
It can be suppressed to less than half of V.

上記説明中、電極系としては測定極および対極のみに言
及したが特に精度を必要とする場合は、よく知られてい
るように参考極を併設した構造が有効である。
In the above description, only the measurement electrode and the counter electrode were mentioned as the electrode system, but when particularly high precision is required, a structure that includes a reference electrode is effective, as is well known.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のバイオセンサを示す。同図
(帽よその縦断面図、同図(b)はその主要部の分解図
である。第2図は従来のバイオセンサの縦断面図である
。 1.9・・・測定極、2,1o・・・対極、3.4・・
・互いに異なる種類の生体関連物質を担持させた多孔体
よりなる層、 3・・・酸化還元酵素を担持させた 多孔体。
FIG. 1 shows a biosensor according to an embodiment of the present invention. The same figure (longitudinal cross-sectional view of the cap, the same figure (b) is an exploded view of its main parts. Figure 2 is a vertical cross-sectional view of a conventional biosensor. 1.9... Measuring electrode, 2 , 1o... Opposite pole, 3.4...
- A layer made of a porous material supporting different types of biologically related substances, 3... A porous material supporting an oxidoreductase.

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも測定極と対極とを有する電極系、およ
び酵素、微生物等の生体関連物質を備え、試料液中の基
質と前記生体関連物質との反応により生じる反応生成物
の濃度変化を電気化学的に検出するバイオセンサにおい
て、 前記測定極および対極の中、少なくとも一方は、導電性
もしくは導電処理した基質透過性の多孔体で構成すると
共に、該測定極および対極をほぼ同一平面上に配置し、
これら両極を挟んで両側に互いに異なる種類の酵素、微
生物等の生体関連物質を担持させた多孔体よりなる層を
設けたことを特徴とするバイオセンサ。
(1) Equipped with an electrode system having at least a measurement electrode and a counter electrode, and a biologically related substance such as an enzyme or a microorganism, and electrochemically detects a change in the concentration of a reaction product caused by a reaction between a substrate in a sample liquid and the biologically related substance. In the biosensor for detecting the ,
A biosensor characterized in that a layer made of a porous body carrying different types of enzymes, microorganisms, and other biologically related substances is provided on both sides of these two poles.
(2)請求項第1項記載のバイオセンサにおいて、前記
生体関連物質を担持させた多孔体よりなる層に、生体関
連物質に加えて酸化型電子受容体をも担持させたことを
特徴とするバイオセンサ。
(2) The biosensor according to claim 1, characterized in that the layer made of the porous material supporting the biologically relevant substance also supports an oxidized electron acceptor in addition to the biologically relevant substance. biosensor.
JP2241311A 1990-09-13 1990-09-13 Biosensor Expired - Fee Related JP2977258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2241311A JP2977258B2 (en) 1990-09-13 1990-09-13 Biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2241311A JP2977258B2 (en) 1990-09-13 1990-09-13 Biosensor

Publications (2)

Publication Number Publication Date
JPH04121652A true JPH04121652A (en) 1992-04-22
JP2977258B2 JP2977258B2 (en) 1999-11-15

Family

ID=17072405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2241311A Expired - Fee Related JP2977258B2 (en) 1990-09-13 1990-09-13 Biosensor

Country Status (1)

Country Link
JP (1) JP2977258B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5532634A (en) * 1993-11-10 1996-07-02 Kabushiki Kaisha Toshiba High-integration J-K flip-flop circuit
US8083993B2 (en) 2003-06-20 2011-12-27 Riche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US8092668B2 (en) 2004-06-18 2012-01-10 Roche Diagnostics Operations, Inc. System and method for quality assurance of a biosensor test strip
US8293538B2 (en) 2003-06-20 2012-10-23 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US8507289B1 (en) 2003-06-20 2013-08-13 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5532634A (en) * 1993-11-10 1996-07-02 Kabushiki Kaisha Toshiba High-integration J-K flip-flop circuit
US8083993B2 (en) 2003-06-20 2011-12-27 Riche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US8293538B2 (en) 2003-06-20 2012-10-23 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US8507289B1 (en) 2003-06-20 2013-08-13 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US8092668B2 (en) 2004-06-18 2012-01-10 Roche Diagnostics Operations, Inc. System and method for quality assurance of a biosensor test strip

Also Published As

Publication number Publication date
JP2977258B2 (en) 1999-11-15

Similar Documents

Publication Publication Date Title
JP3118015B2 (en) Biosensor and separation and quantification method using the same
Wang et al. Simultaneous determination of guanine and adenine in DNA using an electrochemically pretreated glassy carbon electrode
CA1167923A (en) Substrate specific galactose oxidase enzyme electrodes
RU2305279C2 (en) Device and method for determining concentration of reduced form or oxidized form of reduction-oxidation substance in liquid sample
CA2984510C (en) Multi-region and potential test sensors, methods, and systems
JP3389106B2 (en) Electrochemical analysis element
Vidal et al. A chronoamperometric sensor for hydrogen peroxide based on electron transfer between immobilized horseradish peroxidase on a glassy carbon electrode and a diffusing ferrocene mediator
Cui et al. Disposable amperometric glucose sensor electrode with enzyme-immobilized nitrocellulose strip
Kim et al. Disposable creatinine sensor based on thick-film hydrogen peroxide electrode system
JPH01219661A (en) Analysis method and apparatus using enzyme electrode type sensor
Ishige et al. Extended-gate FET-based enzyme sensor with ferrocenyl-alkanethiol modified gold sensing electrode
Dempsey et al. Electropolymerised o-phenylenediamine film as means of immobilising lactate oxidase for a L-lactate biosensor
Wang et al. Carbon felt-based bioelectrocatalytic flow-through detectors: Highly sensitive amperometric determination of H2O2 based on a direct electrochemistry of covalently modified horseradish peroxidase using cyanuric chloride as a linking agent
US10620148B2 (en) Method and test element for electrochemically detecting at least one analyte in a sample of a body fluid
Chen et al. Electrochemical determination of reduced glutathione (GSH) by applying the powder microelectrode technique
JP4566064B2 (en) Biosensor using bamboo carbon nanotube
Rodriguez et al. Glucose biosensor prepared by the deposition of iridium and glucose oxidase on glassy carbon transducer
WO1995021934A1 (en) Hexacyanoferrate modified electrodes
Hahn et al. The development of new microelectrode gas sensors: an odyssey. Part 1. O2 and CO2 reduction at unshielded gold microdisc electrodes
Warriner et al. Modified microelectrode interfaces for in-line electrochemical monitoring of ethanol in fermentation processes
JP2977258B2 (en) Biosensor
Šnejdárková et al. Glucose minisensor based on self-assembled biotinylated phospholipid membrane on a solid support and its physical properties
Sántha et al. Amperometric uric acid biosensors fabricated of various types of uricase enzymes
JP3550675B2 (en) Concentration measurement method using biosensor
JPH04160354A (en) Biosensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees