JPH04117212U - Hydrostatic bearing device - Google Patents

Hydrostatic bearing device

Info

Publication number
JPH04117212U
JPH04117212U JP2836391U JP2836391U JPH04117212U JP H04117212 U JPH04117212 U JP H04117212U JP 2836391 U JP2836391 U JP 2836391U JP 2836391 U JP2836391 U JP 2836391U JP H04117212 U JPH04117212 U JP H04117212U
Authority
JP
Japan
Prior art keywords
pocket
base plate
hydrostatic bearing
air
aperture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2836391U
Other languages
Japanese (ja)
Other versions
JP2602345Y2 (en
Inventor
雄三郎 大隅
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP1991028363U priority Critical patent/JP2602345Y2/en
Publication of JPH04117212U publication Critical patent/JPH04117212U/en
Application granted granted Critical
Publication of JP2602345Y2 publication Critical patent/JP2602345Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

(57)【要約】 【目的】静圧軸受装置において、流体を噴出する絞り穴
および表面絞りを含むポケット部の製造を容易にすると
ともに、加工精度を高めて、剛性値のばらつきを小さく
する。 【構成】絞り穴および表面絞りを含むポケット部を別体
として作成し、本体に結合して構成する。
(57) [Summary] [Purpose] In a hydrostatic bearing device, to facilitate manufacturing of a pocket portion including a throttle hole for ejecting fluid and a surface throttle, improve processing accuracy, and reduce variations in rigidity values. [Structure] The pocket part including the aperture hole and the surface aperture is created separately and combined with the main body.

Description

【考案の詳細な説明】[Detailed explanation of the idea]

【0001】0001

【産業上の利用分野】[Industrial application field]

本考案は、機械要素における軸受けの中で、空気圧や水圧、油圧で保持される 静圧軸受装置の構造にするものである。 This invention is held in a bearing in a machine element using air pressure, water pressure, or hydraulic pressure. The structure is a hydrostatic bearing device.

【0002】0002

【従来の技術】[Conventional technology]

従来より、空気圧や水圧、油圧で保持される静圧軸受装置は、摩擦や摩耗が無 く滑らかな特性が得られることが知られている。 Traditionally, hydrostatic bearing devices, which are held by air, water or hydraulic pressure, have no friction or wear. It is known that smooth characteristics can be obtained.

【0003】 例えば、図6に示すエアースライドは、ガイド軸2上で摺動体1を移動可能に 支持してなり、両者の隙間に摺動体1より空気を噴出させるようになっていた。 また、上記摺動体1は4枚のベース板をボルトで固定したものであり、そのうち の1枚を図7、図8に示すように、ベース板20には複数のポケット21が形成 されており、このポケット21には空気導通孔24からの空気を噴出する絞り穴 22、および田の字状の溝からなる表面絞り23が形成され、また、互いのベー ス板20をボルトで締結するためのボルト孔25を有していた。0003 For example, the air slide shown in FIG. 6 allows the sliding body 1 to move on the guide shaft 2. The slider 1 is supported and air is blown out from the sliding body 1 into the gap between the two. In addition, the sliding body 1 has four base plates fixed with bolts, of which As shown in FIGS. 7 and 8, a plurality of pockets 21 are formed in the base plate 20. This pocket 21 has a restriction hole that blows out air from the air passage hole 24. 22, and a surface aperture 23 consisting of a square-shaped groove, and the bases of each other are It had bolt holes 25 for fastening the base plate 20 with bolts.

【0004】 一般に静圧にて支持するためには複数個のポケット21を形成し、これらの内 圧を一定に保つ必要があるが、空気導通孔24とポケット21の間に絞り穴22 が形成されているため、外力により1つのポケット21内の圧力低下が起こって も空気導通孔24側の圧力低下は小量に抑えられる。したがって、他のポケット 21の圧力低下も抑えられ、静圧による支持は継続することとなる。そのため、 安定した支持をするためには、ポケット21の数量はできるだけ多く、また絞り 穴22や表面絞り23の形状はバランス良く揃っているものが良い。0004 Generally, in order to support with static pressure, a plurality of pockets 21 are formed, and the inside of these pockets 21 are formed. Although it is necessary to keep the pressure constant, there is a restriction hole 22 between the air passage hole 24 and the pocket 21. is formed, the pressure inside one pocket 21 decreases due to external force. Also, the pressure drop on the air passage hole 24 side can be suppressed to a small amount. Therefore, other pockets 21 pressure drop is also suppressed, and support by static pressure continues. Therefore, In order to provide stable support, the number of pockets 21 must be as large as possible, and the number of pockets 21 must be It is preferable that the shapes of the holes 22 and the surface apertures 23 are well-balanced.

【0005】 また、このベース板20は、アルミナなどのセラミックスで一体的に形成され ており、ポケット21の形状を製作する場合は、表面絞り23の深さは数10μ m程度と小さいことから、フライス加工やエッチング、ブラスト加工(砥粒噴射 による加工)等により行っていた。なお、絞り穴22は直径数100μm程度と 小さく、直接加工は難しいため、絞り穴22を形成したチップを別に作成し、接 着剤で固着する方法をとっていた。[0005] Moreover, this base plate 20 is integrally formed of ceramics such as alumina. Therefore, when manufacturing the shape of the pocket 21, the depth of the surface drawing 23 should be several tens of microns. Because of its small size, it is suitable for milling, etching, and blasting (abrasive injection). processing) etc. Note that the aperture hole 22 has a diameter of about 100 μm. Since it is small and difficult to process directly, a separate chip with aperture hole 22 is made and connected. The method used was to fix it with adhesive.

【0006】[0006]

【考案が解決しようとする課題】[Problem that the idea aims to solve]

ところが、上記のような従来の静圧軸受装置では次の課題があった。 1)ポケット21の加工をエッチングやブラスト加工等で行うと、±20μm程 度の精度が限界であり、表面絞り23の形状を数μmの精度でバランス良く形成 することはできなかった。そのため、偏荷重が加わったときの部分剛性のバラツ キが大きく、全体の剛性もこれに応じて低下してしまうという問題点があった。 However, the conventional hydrostatic bearing device as described above has the following problems. 1) If the pocket 21 is processed by etching or blasting, it will be approximately ±20 μm. The limit is accuracy, and the shape of the surface aperture 23 is formed in a well-balanced manner with an accuracy of several μm. I couldn't. Therefore, variations in partial stiffness when an unbalanced load is applied There was a problem in that the force was large and the overall rigidity decreased accordingly.

【0007】 2)また、ポケット21の加工をフライス加工にて行う場合は、非常に多くの工 数がかかり、静圧軸受装置全体のコスト高の主要因となっていた。さらに、この 場合でも加工精度は±5μm程度が限界であり、部分剛性のバラツキが大きかっ た。[0007] 2) In addition, if the pocket 21 is processed by milling, a large amount of machining is required. This is a major factor in the high cost of the entire hydrostatic bearing device. Furthermore, this Even in this case, the machining accuracy is limited to about ±5μm, and there are large variations in partial stiffness. Ta.

【0008】 3)さらに、静圧軸受装置の製造工程において、ポケット21を含むベース板2 0全体は一体加工とし、絞り穴22は別加工して接着する方法であるため、多く の工程数を要しコスト高の要因であった。 4)ポケット21に一ヵ所でも加工不良が発生すると、ベース板20全体が不良 となってしまい、歩留りが悪いものであった。[0008] 3) Furthermore, in the manufacturing process of the hydrostatic bearing device, the base plate 2 including the pocket 21 is Since the entire part 0 is machined as one piece, and the aperture hole 22 is machined separately and glued, many The number of steps required was a factor in high costs. 4) If a processing defect occurs in even one part of the pocket 21, the entire base plate 20 will be defective. As a result, the yield was poor.

【0009】[0009]

【課題を解決するための手段】[Means to solve the problem]

上記に鑑みて本考案では、静圧軸受装置を構成する摺動体のベース板において 、絞り穴および表面絞りを含むポケット部をベース板本体と別体として形成した 後、ベース板本体に結合したものである。 In view of the above, in the present invention, in the base plate of the sliding body constituting the hydrostatic bearing device, , the pocket part including the aperture hole and surface aperture is formed separately from the base plate body. After that, it is connected to the base plate body.

【0010】0010

【作用】[Effect]

本考案によれば、ポケット部のみを別体で製造することから、絞り穴および表 面絞りの形状が標準化され形状の精度が向上し、またポケット数を数多く構成す ることが容易となるため、静圧軸受装置の剛性特性の向上や部分剛性のバラツキ を抑えることができる。また、ポケット部をセラミックスで形成する場合は、成 形方法にプレス成形を用いることが可能となり、量産化を計ることが容易となっ てコストを低減できる。 According to the present invention, since only the pocket part is manufactured separately, the aperture hole and the front The shape of the face drawing has been standardized, improving shape accuracy, and making it possible to configure a large number of pockets. This makes it easier to improve the rigidity characteristics of hydrostatic bearing devices and reduce variations in partial rigidity. can be suppressed. In addition, when forming the pocket part with ceramics, It became possible to use press forming for the shape method, making it easy to mass produce. can reduce costs.

【0011】[0011]

【実施例】【Example】

以下、本考案実施例を図によって説明する。 本考案の一実施例であるエアースライドは、図6に示すように、ガイド軸2と このガイド軸2上で支持された摺動体1からなり、この摺動体1より両者の隙間 に空気を噴出するようになっている。 Hereinafter, embodiments of the present invention will be explained with reference to the drawings. As shown in FIG. 6, the air slide, which is an embodiment of the present invention, has a guide shaft 2 and It consists of a sliding body 1 supported on this guide shaft 2, and the gap between the two is It is designed to blow out air.

【0012】 上記摺動体1は4枚のベース板から構成されるが、このベース板のみの斜視図 を図1に示す。このベース板10は、ポケット部材11とベース板本体15から なり、ポケット部材11には、絞りノズル12および表面絞り13が形成されて いる。また、ベース板本体15には、空気導通孔16および他のベース板10と 締結するためのボルト孔17が形成されている。さらに、図2に断面を示すよう に、ポケット部材11はベース板本体15に接着され、空気導通孔16と絞りノ ズル12が連通するように構成されており、この空気導通孔16から供給した空 気を絞り穴12より噴出するようになっている。0012 The above-mentioned sliding body 1 is composed of four base plates, but a perspective view of only the base plates is shown in Figure 1. This base plate 10 consists of a pocket member 11 and a base plate main body 15. The pocket member 11 is formed with an aperture nozzle 12 and a surface aperture 13. There is. In addition, the base plate main body 15 has an air passage hole 16 and other base plate 10. A bolt hole 17 for fastening is formed. Furthermore, as shown in the cross section in Figure 2, The pocket member 11 is glued to the base plate main body 15, and the air passage hole 16 and the aperture nozzle are connected to each other. The nozzle 12 is configured to communicate with the air supplied through the air passage hole 16. The air is blown out from the throttle hole 12.

【0013】 また、他の実施例を図3(A)に示すように、ベース板本体15のポケット部 材11を取り付ける部分に凹部18を形成しておいて、この凹部18中にポケッ ト部材11を接着すれば、位置決めを容易にすることができる。[0013] In addition, as shown in FIG. 3(A), another example is a pocket portion of the base plate main body 15. A recess 18 is formed in the part where the material 11 is attached, and a pocket is inserted into this recess 18. By adhering the contact member 11, positioning can be facilitated.

【0014】 さらに、他の実施例を図3(B)に示すように、ベース板本体15の空気導通 孔16を溝状としておき、各ポケット部材11に形成したフランジ14の端面同 士を合わせて、上記空気導通孔16を覆うように接着する構造とすることもでき る。この構造とすれば、ベース板本体15の製造が容易である。[0014] Furthermore, as shown in FIG. 3(B) in another embodiment, the air conduction of the base plate body 15 is The holes 16 are groove-shaped, and the end surfaces of the flanges 14 formed on each pocket member 11 are the same. It is also possible to have a structure in which the air conduction holes 16 are bonded together so as to cover the air conduction holes 16. Ru. With this structure, the base plate main body 15 can be easily manufactured.

【0015】 なお、上記ポケット部材11の材質は、アルミナ、ジルコニアなどのさまざま なセラミックスからなり、セラミック原料粉末をプレス成形法によって成形し、 このとき金型の形状によって絞り穴12や表面絞り13を形成すれば、容易にか つ高精度に製造できる。また、ベース板本体15についてもセラミックスとする ことが望ましく、比較的大型品であるから鋳込み成形を行うが、形状が簡単であ るため製造が容易である。[0015] The pocket member 11 may be made of various materials such as alumina and zirconia. It is made of ceramics made by molding ceramic raw powder using a press molding method. At this time, if the aperture hole 12 and surface aperture 13 are formed depending on the shape of the mold, it is easy to It can be manufactured with high precision. Furthermore, the base plate body 15 is also made of ceramics. It is desirable to use cast molding because it is a relatively large product, but the shape is simple. It is easy to manufacture.

【0016】 このように、ポケット部材11を別体として製造することにより、製造が容易 であり、かつ高精度とすることができるとともに、歩留りも向上できる。[0016] In this way, by manufacturing the pocket member 11 as a separate body, manufacturing is easy. In addition, high precision can be achieved, and yield can also be improved.

【0017】 また、以上の実施例では図6に示す直線方向のエアースライドについて示した が、回転方向のエアベアリングであっても同様の構造とすることができる。例え ば図4に示すように、絞り穴12、表面絞り13を備えたポケット部材11を扇 形に形成し、各ポケット部材11を隣接させて円弧状に並べることによって回転 軸のスラスト方向の静圧軸受を構成することができる。また、図5に示すように 、絞り穴12、表面絞り13を備えたポケット部材11を曲面状(瓦形状)に形 成し、各ポケット部材11を隣接させて円筒状に並べることによって、回転軸の ラジアル方向の静圧軸受を構成することもできる。[0017] In addition, in the above embodiment, the air slide in the linear direction shown in FIG. However, even an air bearing in the rotational direction can have a similar structure. example For example, as shown in FIG. The pocket members 11 are formed into a shape and rotated by arranging the pocket members 11 adjacently in an arc shape. A hydrostatic bearing in the thrust direction of the shaft can be constructed. Also, as shown in Figure 5 , the pocket member 11 having the aperture hole 12 and the surface aperture 13 is shaped into a curved surface (tile shape). By arranging the pocket members 11 adjacently in a cylindrical shape, the axis of rotation can be adjusted. A radial hydrostatic bearing can also be constructed.

【0018】実験例 ここで、本考案の静圧軸受装置として図1、図2に示すベース板10を試作し 、エアースライドを組み立てた。また、比較例として図7、図8に示すベース板 20を用いた従来のエアースライドを用意し、性能を比較する実験を行った。い ずれも、ガイド軸、摺動体はアルミナセラミックスで形成し、ガイド軸断面の大 きさは60×60mm、摺動体の幅は150mmで、供給空気圧を4kg/cm 2 としたときの摺動体上面における、各部分の剛性の大きさを測定した。[0018]Experimental example Here, a base plate 10 shown in FIGS. 1 and 2 was prototyped as a hydrostatic bearing device of the present invention. , assembled an air slide. In addition, as a comparative example, the base plate shown in FIGS. 7 and 8 A conventional air slide using 20 was prepared and an experiment was conducted to compare the performance. stomach In both cases, the guide shaft and sliding body are made of alumina ceramics, and the guide shaft cross section is large. The size is 60 x 60 mm, the width of the sliding body is 150 mm, and the supply air pressure is 4 kg/cm. 2 The rigidity of each part on the upper surface of the sliding body was measured.

【0019】 表1はブラスト加工にてポケットの加工を行ったエアースライド(比較例1) の部分剛性表、表2はフライス加工でポケットの加工を行ったエアースライド( 比較例2)の部分剛性表である。これらの結果より、比較例1は、剛性のバラツ キ(±2σ)が1.2kg/μm以上と大きく、剛性値自体も中央で5.96k g/μmと低かった。また、比較例2でも、剛性のバラツキ(±2σ)は0.5 kg/μm以上あり、剛性値自体も中央で6.26kg/μmと低かった。[0019] Table 1 shows an air slide with pockets processed by blasting (Comparative Example 1) Partial rigidity table, Table 2 shows the air slide (with pockets processed by milling). It is a partial rigidity table of Comparative Example 2). From these results, Comparative Example 1 shows that the variation in rigidity is Ki (±2σ) is large at 1.2 kg/μm or more, and the stiffness value itself is 5.96 k at the center. It was as low as g/μm. Also, in Comparative Example 2, the rigidity variation (±2σ) was 0.5 kg/μm or more, and the stiffness value itself was low at 6.26 kg/μm at the center.

【0020】 これに対し、本考案のエアースライドにおける部分剛性表は表3に示すように 、剛性のバラツキ(±2σ)が0.4kg/μm以下と小さく、剛性値も中央で 9.66kg/μmと高かった。[0020] On the other hand, the partial stiffness table for the air slide of this invention is as shown in Table 3. , the rigidity variation (±2σ) is small at 0.4 kg/μm or less, and the rigidity value is also in the center. It was as high as 9.66 kg/μm.

【0021】[0021]

【表1】 比較例1 [Table 1] Comparative example 1

【0022】[0022]

【表2】 比較例2 [Table 2] Comparative example 2

【0023】[0023]

【表3】 本考案実施例 [Table 3] Examples of the present invention

【0024】 次に、本考案と比較例について製造工程を比較した。まず、比較例の製造工程 は以下に示すように、多くの工程が必要であり、工数(時間)も長くかかること がわかる。特に8.のラップ加工や、9.のポケット溝入れ加工の工数が大きい ウェイトをしめている。尚、工数は全加工費を一人当たりの時間経費で割った値 である。[0024] Next, the manufacturing processes of the present invention and a comparative example were compared. First, the manufacturing process of the comparative example As shown below, it requires many steps and takes a long time (man-hours). I understand. Especially 8. wrapping process, 9. Pocket grooving requires a large amount of man-hours. I'm lifting weights. In addition, the number of man-hours is the value obtained by dividing the total processing cost by the time cost per person. It is.

【0025】 比較例 1.セラミック原料の調合 0.48時間 2.部材の大枠成形(ラバープレス、鋳込み成形等) 1.21 3.乾燥 0.21 4.生切削(不要な所を予め切削加工)(穴開け、溝入れ) 1.88 5.焼成 1.55 6.絞り穴チップやナットブッシュの接着・硬化 2.22 7.研削加工(±5μm程度の精度まで成形) 1.32 8.ラップ加工(±1μm以下の精度まで手加工) 3.24 9.ポケット溝入れ加工(ダイヤモンドフライス加工) 4.22 10.スライド組立 1.56 11.計測、ラップ調整 2.45 合計 30.34Comparative Example 1. Preparation of ceramic raw materials 0.48 hours 2. Large-frame molding of parts (rubber press, casting molding, etc.) 1.21 3. Drying 0.21 4. Raw cutting (cutting unnecessary areas in advance) (drilling, grooving) 1.88 5. Firing 1.55 6. Adhesion and curing of orifice hole tips and nut bushes 2.22 7. Grinding (forming to an accuracy of about ±5 μm) 1.32 8. Lapping processing (manual processing to an accuracy of ±1 μm or less) 3.24 9. Pocket grooving (diamond milling) 4.22 10. Slide assembly 1.56 11. Measurement, lap adjustment 2.45 total 30.34

【0026】 次に本考案の加工の工程とその工数は以下の通りである。上記の一体加工の例 と比べると工数が1/3以下と、大幅に改善されたことがわかる。[0026] Next, the processing steps and the number of man-hours of the present invention are as follows. Example of the above integral processing It can be seen that the number of man-hours was reduced to less than 1/3, which was a significant improvement.

【0027】 本考案 1.セラミック原料の調合 0.48時間 2.部材の大枠成形(鋳込み成形) 0.44 3.乾燥 0.18 4.絞りノズルのプレス成形 0.08 5.焼成 1.65 6.ナットブッシュの接着・硬化 1.68 7.研削加工(±5μm程度の精度まで成形) 0.44 8.絞りノズルの研削・ラップ・取付 0.34 9.スライド組立 1.56 10.計測、ラップ調整 2.45 合計 9.30Present invention 1. Preparation of ceramic raw materials 0.48 hours 2. Large frame molding of parts (casting molding) 0.44 3. Dry 0.18 4. Press molding of drawing nozzle 0.08 5. Firing 1.65 6. Nut bush adhesion/curing 1.68 7. Grinding (forming to an accuracy of about ±5 μm) 0.44 8. Grinding, lapping, and mounting of the aperture nozzle 0.34 9. Slide assembly 1.56 10. Measurement, lap adjustment 2.45 total 9.30

【0028】[0028]

【考案の効果】[Effect of the idea]

叙上のように本考案によれば、静圧軸受装置の摺動体を構成するベース板にお いて、絞り穴および表面絞りを含むポケット部材を別体として形成し、ベース板 本体に結合する構造としたことによって、複雑な構造をとる絞り穴および表面絞 りを容易に、かつ高精度に加工することができ、ポケット数を多くすることがで きる。そのため、静圧軸受装置の基本特性である剛性が1. 5倍以上となり、部 分的な剛性も安定することから、負荷の大きい用途についても対応できることと なり、超精密な測定機や加工機に使用される。また、製造工数が短くなることか ら、コストを低減し、精度の高いものを安く供給することが可能となるなど、多 くの効果を奏することができる。 As described above, according to the present invention, the base plate constituting the sliding body of the hydrostatic bearing device is The pocket member including the aperture hole and the surface aperture is formed separately, and the base plate is By adopting a structure that is connected to the main body, the aperture hole and surface aperture, which have a complex structure, can be avoided. can be processed easily and with high precision, and the number of pockets can be increased. Wear. Therefore, the rigidity, which is a basic characteristic of a hydrostatic bearing device, is increased by 1.5 times or more, and the Since the partial rigidity is also stable, it can be used in applications with large loads. It is used in ultra-precise measuring and processing machines. Also, will the manufacturing man-hours be shortened? This makes it possible to reduce costs and supply highly accurate products at low prices. It can have many effects.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本考案の静圧軸受装置の一実施例であるエアー
スライドを構成するベース板のみの斜視図である。
FIG. 1 is a perspective view of only a base plate constituting an air slide which is an embodiment of the hydrostatic bearing device of the present invention.

【図2】図1中のX−X線断面図である。FIG. 2 is a sectional view taken along the line XX in FIG. 1;

【図3】(A)(B)はそれぞれ、図2に相当する本考
案の他の実施例を示す断面図である。
3A and 3B are sectional views showing other embodiments of the present invention corresponding to FIG. 2, respectively;

【図4】本考案の他の実施例であるエアーベアリングの
スラスト方向軸受を示す概略図である。
FIG. 4 is a schematic diagram showing a thrust direction bearing of an air bearing according to another embodiment of the present invention.

【図5】本考案の他の実施例であるエアーベアリングの
ラジアル方向軸受を示す概略図である。
FIG. 5 is a schematic diagram showing a radial bearing of an air bearing according to another embodiment of the present invention.

【図6】静圧軸受装置の一例であるエアースライドを示
す斜視図である。
FIG. 6 is a perspective view showing an air slide that is an example of a hydrostatic bearing device.

【図7】従来のエアースライドを構成するベース板のみ
の斜視図である。
FIG. 7 is a perspective view of only a base plate constituting a conventional air slide.

【図8】図7中のY−Y線断面図である。8 is a sectional view taken along the line Y-Y in FIG. 7. FIG.

【符号の説明】[Explanation of symbols]

1 摺動体 2 ガイド軸 10 ベース板 11 ポケット部材 12 絞り穴 13 表面絞り 15 ベース板本体 16 空気導通孔 1 Sliding body 2 Guide shaft 10 Base plate 11 Pocket member 12 Aperture hole 13 Surface aperture 15 Base plate body 16 Air conduction hole

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】絞り穴より静圧流体を噴出するようにした
静圧軸受装置において、別体として形成した、上記絞り
穴を有するポケット部材を本体に結合したことを特徴と
する静圧軸受装置。
1. A hydrostatic bearing device configured to eject hydrostatic fluid from a throttle hole, characterized in that a separately formed pocket member having the throttle hole is coupled to a main body. .
JP1991028363U 1991-03-29 1991-03-29 Hydrostatic bearing device Expired - Fee Related JP2602345Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1991028363U JP2602345Y2 (en) 1991-03-29 1991-03-29 Hydrostatic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1991028363U JP2602345Y2 (en) 1991-03-29 1991-03-29 Hydrostatic bearing device

Publications (2)

Publication Number Publication Date
JPH04117212U true JPH04117212U (en) 1992-10-20
JP2602345Y2 JP2602345Y2 (en) 2000-01-11

Family

ID=31912476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1991028363U Expired - Fee Related JP2602345Y2 (en) 1991-03-29 1991-03-29 Hydrostatic bearing device

Country Status (1)

Country Link
JP (1) JP2602345Y2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052844A (en) * 2004-07-13 2006-02-23 Konica Minolta Opto Inc Static pressure slide
JP2006132605A (en) * 2004-11-04 2006-05-25 Yokogawa Electric Corp Slider
JP2007146868A (en) * 2005-11-24 2007-06-14 Okamoto Machine Tool Works Ltd Static pressure water bearing linear slide system
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS425609Y1 (en) * 1964-04-30 1967-03-20
JPS6237622U (en) * 1985-08-22 1987-03-05

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS425609Y1 (en) * 1964-04-30 1967-03-20
JPS6237622U (en) * 1985-08-22 1987-03-05

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2006052844A (en) * 2004-07-13 2006-02-23 Konica Minolta Opto Inc Static pressure slide
JP4621981B2 (en) * 2004-07-13 2011-02-02 コニカミノルタオプト株式会社 Static pressure slide
JP2006132605A (en) * 2004-11-04 2006-05-25 Yokogawa Electric Corp Slider
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP2007146868A (en) * 2005-11-24 2007-06-14 Okamoto Machine Tool Works Ltd Static pressure water bearing linear slide system
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method

Also Published As

Publication number Publication date
JP2602345Y2 (en) 2000-01-11

Similar Documents

Publication Publication Date Title
JPH04117212U (en) Hydrostatic bearing device
CN100496894C (en) Clamping device comprising a centring device on a grinding spindle rotor, and rotary part comprising one such centring device
US7066652B2 (en) Externally pressurized gas bearing and spindle equipment using this
JPH03138105A (en) Cutter wheel integrated with shaft
CA1039826A (en) Rotary position transducer assembly
US20030044095A1 (en) Aerostatic gas bearing
JPH09290361A (en) Ceramics-made multigroove roller for wire saw
JPS6228519A (en) Ceramic bearing device
JP3660779B2 (en) Static pressure gas bearing device
JP3285761B2 (en) Hydrostatic bearing
JPH01297182A (en) Air-flow type centrifugal classifier
CN1132667A (en) Grading wheel for centrifugal wheel air classifier
EP0865877A3 (en) Grinding wheel
JPH0521319Y2 (en)
JPH0645701Y2 (en) Ceramic rotating shaft
US20240044364A1 (en) Ultra-low profile aerostatic bearing and the method of manufacturing the same
JP2007313415A (en) Die head
JPS6254668A (en) Liquid static pressure bearing
CN116717541A (en) Aerostatic bearing and aerostatic turntable
JPS6125740A (en) Static pressure gas bearing system
JPS63231020A (en) Static pressure bearing pad
JP2009281506A (en) Manufacturing method of static pressure air bearing type linear guide, and guide
KR970010846B1 (en) Shaft-integral type cutter wheel and cutter
JP2834016B2 (en) Whetstone with centering mechanism
JP2001140885A (en) Sliding component for hydrostatic pressure bearing

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees