JPH0411579B2 - - Google Patents

Info

Publication number
JPH0411579B2
JPH0411579B2 JP21849588A JP21849588A JPH0411579B2 JP H0411579 B2 JPH0411579 B2 JP H0411579B2 JP 21849588 A JP21849588 A JP 21849588A JP 21849588 A JP21849588 A JP 21849588A JP H0411579 B2 JPH0411579 B2 JP H0411579B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fiber
composition
fibers
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21849588A
Other languages
Japanese (ja)
Other versions
JPH0267326A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP21849588A priority Critical patent/JPH0267326A/en
Priority to PCT/JP1989/000904 priority patent/WO1990002642A1/en
Priority to EP19890909853 priority patent/EP0386266A4/en
Publication of JPH0267326A publication Critical patent/JPH0267326A/en
Publication of JPH0411579B2 publication Critical patent/JPH0411579B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、繊維補強熱可塑性樹脂組成物に関す
るのもであり、更に詳しくは、機械的物性とシー
トの表面平滑性に優れた繊維補強熱可塑性樹脂組
成物に関するものである。 〔従来技術〕 熱可塑性樹脂と補強繊維とからなる繊維補強熱
可塑性樹脂組成物としては、チヨツプドガラス繊
維をマトリツクス樹脂に分散させたERTP、ある
いはガラスの長繊維からなるスワールマツトを補
強層とする繊維補強熱可塑性樹脂シートが良く知
られている。 〔発明が解決しようとする課題〕 しかしながら、これらの繊維補強熱可塑性樹脂
組成物およびシートはガラス繊維を用いているこ
とから、成形品の表面平滑性は悪い。特にスワー
ルマツトを補強繊維とするときは、成形時に溶融
樹脂中表面から繊維が突き出るため表面平滑性は
極めて悪い。このスワールマツトを使用する欠点
を克服するものとして、特開昭60−158228号公報
に開示されている「高い弾性率を有し、かつ大部
分が7mmから50mmの長さと13μm以下の直径を有
する20重量%から60重量%の補強繊維と40重量%
から80重量%の熱可塑性物質とからなる繊維補強
シート」があるが、表面平滑性は今一つ不足で満
足できるものではない。 〔課題を解決するための手段〕 本発明者等は、このような事情に鑑み、鋭意検
討した結果、マトリツクス樹脂に特定の充填剤を
添加することによつて成形品表面の平滑性に優れ
た繊維補強熱可塑性樹脂組成物を提供できること
を見出して本発明を完成した。 すなわち、本発明は、 A熱可塑性樹脂40〜80重量%および繊維径3〜
20μm、繊維長1〜50mmの補強繊維60〜20重量%
からなる組成物、99〜50重量%とB充填剤、1〜
50重量%とからなり、C前記充填剤のアスペクト
比が3未満のときは、その内挿球の直径が、ま
た、同アスペクト比が3以上のときはその繊維径
が前記補強繊維径の1/4以下であり、かつ、D前
記充填剤と前記熱可塑性樹脂との2成分の組成物
の線膨脹率が前記熱可塑性樹脂の線膨脹率の90%
以下となるような組成比で前記充填剤を含有する
ことを特徴とする表面平滑性に優れた繊維補強熱
可塑性樹脂組成物 を提供する。 本発明に用いる熱可塑性樹脂は、ポリエチレ
ン、ポリプロピレン等のポリオレフイン樹脂、ポ
リスチレン、ゴム補強ポリスチレン、アクリロニ
トリルースチレン共重合体、ABS樹脂等のスチ
レン系樹脂、ポリエチレンテレフタレート、ポリ
ブチレンテレフタレート等のポリエステル樹脂、
ナイロン6、ナイロン66、ナイロン46等のポアミ
ド樹脂、ポリフエニレンエーテル、変性ポリフエ
ニレンエーテル等のポリエーテル系樹脂、ポリオ
キシメチレン系樹脂、ポリカーボネート樹脂、ポ
リアリレート、ポリフエニレンサルフアイド、ポ
リスルホン、ポリエーテルスルホン、ポリエーテ
ルエーテルケトン、ポリエーテルイミド等の超耐
熱樹またはポリカーボネート/ABS、ポリフエ
ニレンエーテル/ポリアミド、ポリカーボネー
ト/ポリブチレンテレフタレート、ポリフエニレ
ンエーテル/ポリブチレンテレフタレート等のブ
レンドポリマー類は挙げられる。 本発明に用いる補強繊維は、本発明に用いる熱
可塑性樹脂の引張り弾性率よりも高い弾性率をも
つものであれば何でも良く、例えば、ガラス繊
維、カーボン繊維、セラミツクス繊維、鉱物繊維
等の無機繊維、ステンレス、黄銅等の金属繊維、
超高分子量ポリエチレン繊維、ポリオキシメチレ
ン繊維、ポリビニルアルコール繊維、液晶性芳香
族ポリエステル繊維、ポリエチレンテレフタレー
ト繊維、ポリーpーフエニレンテレフタレート繊
維、ポリ−m−フエニレンイソフタルアミド繊維
等のアラミド繊維、ポリフエニレンベンゾチアゾ
ール繊維、ポリアクリロニトリル繊維、セルロー
ズ繊維等の有機繊維等が挙げられる。 補強繊維の径は3〜50μmであり、3μm未満で
は分散が困難であり好ましくない。また20μmを
越えるときは分散時に折れやすく好ましくない。
補強繊維の長さは1〜50、好ましくは1〜25mmで
ある。大部分の補強繊維が1mm未満のときは組成
物の補強効果は認められない。また、50mmを越え
る長さでは均一分散が困難である。 補強繊維の量は20〜60、好ましくは30〜50重量
%である。20重量%未満では補強効果はあまり認
められず、そして60重量%を越えると組成物は脆
くなるので好ましくない。 本発明に用いる充填剤は、その形状がどのよう
なものであつても良い。即ち球状または球に近い
形状をしているときは(アスペクト比が3未満の
とき)内挿球の直径が補強繊維の約1/4以下であ
る。また形状が繊維状(アスペクト比が3以上)
であれば、その繊維径が補強繊維径の約1/4以下
であればよい。上記の径が分布した形状の充填剤
においては、60重量%以上好ましくは70重量%以
上が補強繊維径の1/4以下であればよい。 アスペクト比とは、球状または球状に近い形状
のときは短径に対する長径の比であり、繊維状の
ときは、繊維径に対する繊維長の比で定義される
ものである。 さらに該充填剤と熱可塑性樹脂との組成物の線
膨脹率が熱可塑性樹脂の線膨脹率の90%以下とな
る場合に表面平滑性に優れた組成物となる。線膨
脹率は30℃から熱可塑性樹脂の融点またはガラス
転移温度よりも30℃低い温度までの範囲で測定し
た値である。昇温は10℃/minである。 充填剤の例として、炭酸カルシウム、炭酸マグ
ネシウム、水酸化アルミニウム、水酸化マグネシ
ウム、酸化亜鉛、酸化マグネシウム、ケイ酸アル
ミニウム、タルク、ウオラストナイト、ケイ酸、
ケイ酸カルシウム、ケイ酸アルミニウム、マイ
カ、ガラスバルン、石英バルン、黒鉛、ホウ素、
アルミナ、炭化ケイ素、炭化ホウ素、ボリア、窒
化ホウ素、シリカ、ベリリウム、石英、窒化ケイ
素、酸化ベリリウム、窒化アルミニウム等の無機
粉末、アスベスト、チタン酸カリ、炭素、黒鉛、
ホウ素、アルミナ、炭化ケイ素、炭化ホウ素、ボ
リア、窒化ホウ素、シリカ、ベリリウム、石英、
窒化ケイ素等の無機ウイスカー、マイクロセルロ
ーズ、熱硬化性樹脂の粉末、アラミドパルプ、繊
維補強熱可塑性樹脂組成物のマトリツクス樹脂の
融点よりも高い融点を有する熱可塑性樹脂の極細
繊維、例えば極細ポリエチレンテレフタレート繊
維等、または粉末等が挙げられる。これらの充填
剤を2種以上混合して用いることもできる。 充填剤の添加量は、繊維補強熱可塑性樹脂シー
トの機械的物性等の特徴を阻害しない限りで、充
填剤とマトリツクスとなる前記熱可塑性樹脂との
組成物の線膨脹率が熱可塑性樹脂の膨張率の90%
以下となる配合量であれば良いので、マトリツク
スと補強繊維との組合せで好ましい配合量は変わ
るが、一般的には繊維補強熱可塑性樹脂組成物を
構成する熱可塑性樹脂と補強繊維との合計重量が
99〜50重量%、充填剤が1重量%〜50重量%、好
ましくは5重量%〜30重量%の範囲である。 本発明の繊維補強熱可塑性樹脂組成物の製造に
は、種々の公知の技術を用いることができる。 たとえば、熱可塑性樹脂、補強繊維、充填剤を
ドライブレンドして押出機、ロール、バンバリー
ミキサー等で混練する方法がある。また、特開昭
57−28135号公報、特開昭58−59224号公報等に記
載されているように、粉末状熱可塑性樹脂、補強
繊維および充填剤とから、抄紙法によつて、繊維
補強熱可塑性樹脂組成物を製造し、インラインま
たはオンラインでベルトプレス等のホツトプレス
を用いて、該樹脂を溶融すると共に補強繊維およ
び充填剤とを一体化させる方法がある。 本発明の組成物に、難燃剤、熱安定剤、紫外線
防止剤、着色剤等の各種安定剤を組成物の機械的
物性を損わない範囲で添加してもよい。 〔実施例〕 次に本発明を実施例によつて更に詳細に説明す
るが、これに限定されるものではない。なお実施
例中、部は重量部を示す。 実施例 1 ポリプロピレン(溶融流れ指数MI=4)粉末
45部、直径10μm、長さ6mmのガラス繊維30部お
よび直径0.2〜0.5μmのチタン酸カリウイスカー25
部を抄紙法によりシート状組成物を得た。これを
200℃、100Kg/cm2の圧力下で圧縮成形法により溶
融固化して物性を測定した。 特性を表に示す。なお、ポリプロピレン樹脂と
チタン酸カリウムウイスカーとの組成物を抄紙法
で製造し線膨脹率を測定した結果40×10-6cm/
cm・℃であり、ポリプロピレンの線膨脹率は230
×10-6cm/cm・℃の17%であつた。表面平滑性は
像鮮明度により評価した。値が大きいほど表面平
滑性が優れている。 比較例 1 実施例1と同様の方法でポリプロピレン粉末60
部、ガラス繊維(直径10μm、長さ6mm)40部か
らなる溶融固化シートを作製した。特性を表に示
す。 実施例 2 ポリエチレンテレフタレート粉末49部、直径
10μm、長さ13mmのガラス繊維21部、直径が0.05
〜0.5μmの炭素質ウイスカー30部を抄紙法により
マツトを作製し、次いで300℃、100Kg/cm2の圧力
下で圧縮成形法により溶融固化シートとした。特
性を表に示す。ポリエチレンテレフタレートと炭
素質ウイスカーとの組成物の線膨脹率は45×10-6
cm/cm・℃であり、ポリエチレンテレフタレート
樹脂の線膨脹率200×10-6cm/cm・℃の23%であ
つた。 比較例 2 炭素質ウイスカーを含まない実施例2の組成で
溶融固化シートを作製した。特性を表に示す。 実施例 3 ポリプロピレン(MI=4)粉末54部、直径
10μm、長さ13mmのガラス繊維36部および平均粒
子径が1μmである水酸化アルミニウム粉末10部を
実施例1と同様の方法で溶融固化シートを作製し
た。特性を表に示す。ポリプロピレンと水酸化ア
ルミニウムとの組成物の線膨脹率は、160×10-6
cm/cm・℃であり、ポリプロピレン樹脂の線膨脹
率230×10-6cm/cm・℃の70%であつた。 比較例 3 水酸化アルミニウム粉末として平均粒子径が
3.5μmの粉末を用いた以外は実施例3と同一の組
成で溶融固化シートを作製した。特性を表に示
す。 実施例 4 ポリプロピレン(MI=4)粉末45部、直径
6μm、長さ13mmのガラス繊維50部および平均粒子
径が0.4μmであるハードクレー型カオリンクレー
5部を実施例1と同様の方法で溶融固化シートを
作製した。特性を表に示す。ポリプロピレンとハ
ードクレー型カオリンクレーとの組成物の線膨脹
率は195×10-6cm/cm・℃であり、ポリプロピレ
ン樹脂の線膨脹率230×10-6cm/cm・℃の85%で
あつた。 比較例 4 ハードクレー型カオリンクレーを含まない実施
例2の組成で溶融固化シートを作製した。特性を
表に示す。
[Industrial Application Field] The present invention relates to a fiber-reinforced thermoplastic resin composition, and more particularly, to a fiber-reinforced thermoplastic resin composition that has excellent mechanical properties and sheet surface smoothness. be. [Prior art] As a fiber-reinforced thermoplastic resin composition consisting of a thermoplastic resin and reinforcing fibers, ERTP, which has chopped glass fibers dispersed in a matrix resin, or fiber-reinforced thermoplastic resin composition, which has a swirl mat made of long glass fibers as a reinforcing layer, can be used. Plastic resin sheets are well known. [Problems to be Solved by the Invention] However, since these fiber-reinforced thermoplastic resin compositions and sheets use glass fibers, the surface smoothness of the molded products is poor. In particular, when swirl mat is used as reinforcing fibers, the fibers protrude from the surface of the molten resin during molding, resulting in extremely poor surface smoothness. To overcome the drawbacks of using swirl mats, Japanese Patent Application Laid-Open No. 158228/1987 discloses a method of using swirl mats that are described in Japanese Patent Application Laid-Open No. 158228/1982. wt% to 60wt% reinforcing fibers and 40wt%
There is a fiber-reinforced sheet consisting of 80% by weight of a thermoplastic material, but the surface smoothness is still unsatisfactory. [Means for Solving the Problems] In view of the above circumstances, the inventors of the present invention have made extensive studies and found that the surface smoothness of the molded product can be improved by adding a specific filler to the matrix resin. The present invention was completed by discovering that it is possible to provide a fiber-reinforced thermoplastic resin composition. That is, the present invention comprises A thermoplastic resin of 40 to 80% by weight and a fiber diameter of 3 to 80% by weight.
20μm, fiber length 1-50mm reinforcing fibers 60-20% by weight
A composition consisting of 99-50% by weight and filler B, 1-50% by weight
C. When the aspect ratio of the filler is less than 3, the diameter of the interpolated sphere is 1% of the reinforcing fiber diameter, and when the aspect ratio is 3 or more, the fiber diameter is 1 of the reinforcing fiber diameter. /4 or less, and D the linear expansion coefficient of the two-component composition of the filler and the thermoplastic resin is 90% of the linear expansion coefficient of the thermoplastic resin.
The present invention provides a fiber-reinforced thermoplastic resin composition with excellent surface smoothness, which contains the filler in the following composition ratio. Thermoplastic resins used in the present invention include polyolefin resins such as polyethylene and polypropylene, polystyrene, rubber-reinforced polystyrene, acrylonitrile-styrene copolymers, styrenic resins such as ABS resins, polyester resins such as polyethylene terephthalate and polybutylene terephthalate,
Poamide resins such as nylon 6, nylon 66, and nylon 46, polyether resins such as polyphenylene ether and modified polyphenylene ether, polyoxymethylene resins, polycarbonate resins, polyarylates, polyphenylene sulfide, polysulfone, Examples include super heat-resistant resins such as polyether sulfone, polyether ether ketone, and polyetherimide, and blend polymers such as polycarbonate/ABS, polyphenylene ether/polyamide, polycarbonate/polybutylene terephthalate, and polyphenylene ether/polybutylene terephthalate. It will be done. The reinforcing fibers used in the present invention may be anything as long as they have a tensile modulus higher than the tensile modulus of the thermoplastic resin used in the present invention, such as inorganic fibers such as glass fibers, carbon fibers, ceramic fibers, and mineral fibers. , metal fibers such as stainless steel and brass,
Aramid fibers such as ultra-high molecular weight polyethylene fibers, polyoxymethylene fibers, polyvinyl alcohol fibers, liquid crystalline aromatic polyester fibers, polyethylene terephthalate fibers, poly-p-phenylene terephthalate fibers, poly-m-phenylene isophthalamide fibers, polyphenylene fibers, etc. Examples include organic fibers such as nylenebenzothiazole fiber, polyacrylonitrile fiber, and cellulose fiber. The diameter of the reinforcing fibers is 3 to 50 μm, and if it is less than 3 μm, it is difficult to disperse and is not preferred. Moreover, if it exceeds 20 μm, it is undesirable because it tends to break during dispersion.
The length of the reinforcing fibers is 1 to 50 mm, preferably 1 to 25 mm. When most of the reinforcing fibers are less than 1 mm, no reinforcing effect of the composition is observed. Further, if the length exceeds 50 mm, uniform dispersion is difficult. The amount of reinforcing fibers is 20-60% by weight, preferably 30-50% by weight. If it is less than 20% by weight, the reinforcing effect will not be very noticeable, and if it exceeds 60% by weight, the composition will become brittle, which is not preferable. The filler used in the present invention may have any shape. That is, when the shape is spherical or close to a sphere (when the aspect ratio is less than 3), the diameter of the interpolated sphere is about 1/4 or less of the reinforcing fiber. Also, the shape is fibrous (aspect ratio is 3 or more)
If so, the fiber diameter may be approximately 1/4 or less of the reinforcing fiber diameter. In the above-mentioned filler having a shape with a distribution of diameters, it is sufficient that 60% by weight or more, preferably 70% by weight or more is 1/4 or less of the reinforcing fiber diameter. The aspect ratio is defined as the ratio of the major axis to the minor axis in the case of a spherical or nearly spherical shape, and the ratio of the fiber length to the fiber diameter in the case of a fibrous shape. Further, when the coefficient of linear expansion of the composition of the filler and the thermoplastic resin is 90% or less of the coefficient of linear expansion of the thermoplastic resin, the composition has excellent surface smoothness. The coefficient of linear expansion is a value measured in the range from 30°C to a temperature 30°C lower than the melting point or glass transition temperature of the thermoplastic resin. The temperature increase is 10°C/min. Examples of fillers include calcium carbonate, magnesium carbonate, aluminum hydroxide, magnesium hydroxide, zinc oxide, magnesium oxide, aluminum silicate, talc, wollastonite, silicic acid,
Calcium silicate, aluminum silicate, mica, glass balloon, quartz balloon, graphite, boron,
Inorganic powders such as alumina, silicon carbide, boron carbide, boria, boron nitride, silica, beryllium, quartz, silicon nitride, beryllium oxide, aluminum nitride, asbestos, potassium titanate, carbon, graphite,
Boron, alumina, silicon carbide, boron carbide, boria, boron nitride, silica, beryllium, quartz,
Inorganic whiskers such as silicon nitride, microcellulose, thermosetting resin powder, aramid pulp, ultrafine fibers of thermoplastic resin having a melting point higher than the melting point of the matrix resin of fiber-reinforced thermoplastic resin compositions, such as ultrafine polyethylene terephthalate fibers. etc., or powder. Two or more of these fillers can also be used in combination. The amount of filler added should be determined so that the coefficient of linear expansion of the composition of the filler and the thermoplastic resin serving as a matrix is such that the expansion of the thermoplastic resin 90% of rate
The following blending amount is sufficient, so the preferred blending amount changes depending on the combination of matrix and reinforcing fibers, but in general, the total weight of the thermoplastic resin and reinforcing fibers that make up the fiber-reinforced thermoplastic resin composition. but
99-50% by weight, with fillers ranging from 1% to 50%, preferably 5% to 30%. Various known techniques can be used to manufacture the fiber-reinforced thermoplastic resin composition of the present invention. For example, there is a method in which a thermoplastic resin, reinforcing fibers, and filler are dry blended and kneaded using an extruder, roll, Banbury mixer, or the like. Also, Tokukai Akira
As described in Japanese Patent Publication No. 57-28135, Japanese Patent Application Laid-Open No. 58-59224, etc., a fiber-reinforced thermoplastic resin composition is prepared from a powdered thermoplastic resin, reinforcing fibers, and a filler by a paper-making method. There is a method in which the resin is melted and the reinforcing fibers and filler are integrated using a hot press such as a belt press in-line or online. Various stabilizers such as flame retardants, heat stabilizers, ultraviolet inhibitors, colorants, etc. may be added to the composition of the present invention to the extent that they do not impair the mechanical properties of the composition. [Example] Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto. In the examples, parts indicate parts by weight. Example 1 Polypropylene (melt flow index MI=4) powder
45 parts, 30 parts of glass fibers with a diameter of 10 μm and a length of 6 mm and 25 parts of potassium titanate whiskers with a diameter of 0.2-0.5 μm.
A sheet-like composition was obtained by a papermaking method. this
The material was melted and solidified by compression molding at 200° C. and a pressure of 100 kg/cm 2 and its physical properties were measured. The characteristics are shown in the table. In addition, as a result of manufacturing a composition of polypropylene resin and potassium titanate whiskers using a papermaking method and measuring the linear expansion coefficient, it was 40 × 10 -6 cm /
cm・℃, and the coefficient of linear expansion of polypropylene is 230
It was 17% of ×10 -6 cm/cm・℃. Surface smoothness was evaluated by image clarity. The larger the value, the better the surface smoothness. Comparative Example 1 Polypropylene powder 60% was prepared in the same manner as in Example 1.
A melt-solidified sheet consisting of 40 parts of glass fiber (10 μm in diameter, 6 mm in length) was prepared. The characteristics are shown in the table. Example 2 49 parts of polyethylene terephthalate powder, diameter
21 parts of glass fiber of 10μm, length 13mm, diameter 0.05
A mat was prepared from 30 parts of carbonaceous whiskers of ~0.5 μm by a papermaking method, and then melted and solidified into a sheet by compression molding at 300° C. and a pressure of 100 Kg/cm 2 . The characteristics are shown in the table. The linear expansion coefficient of the composition of polyethylene terephthalate and carbonaceous whiskers is 45×10 -6
cm/cm·°C, which was 23% of the linear expansion coefficient of polyethylene terephthalate resin, 200×10 -6 cm/cm·°C. Comparative Example 2 A melt-solidified sheet was produced using the composition of Example 2, which did not contain carbonaceous whiskers. The characteristics are shown in the table. Example 3 54 parts of polypropylene (MI=4) powder, diameter
A melt-solidified sheet was prepared in the same manner as in Example 1 using 36 parts of glass fiber having a diameter of 10 μm and a length of 13 mm and 10 parts of aluminum hydroxide powder having an average particle diameter of 1 μm. The characteristics are shown in the table. The coefficient of linear expansion of the composition of polypropylene and aluminum hydroxide is 160×10 -6
cm/cm·°C, which was 70% of the linear expansion coefficient of polypropylene resin, 230×10 −6 cm/cm·°C. Comparative Example 3 As aluminum hydroxide powder, the average particle size is
A melt-solidified sheet was produced with the same composition as in Example 3 except that 3.5 μm powder was used. The characteristics are shown in the table. Example 4 45 parts of polypropylene (MI=4) powder, diameter
A melt-solidified sheet was prepared in the same manner as in Example 1 using 50 parts of glass fibers of 6 μm and 13 mm in length and 5 parts of hard clay type kaolin clay with an average particle diameter of 0.4 μm. The characteristics are shown in the table. The linear expansion coefficient of the composition of polypropylene and hard clay-type kaolin clay is 195×10 -6 cm/cm・℃, which is 85% of the linear expansion coefficient of polypropylene resin, 230×10 −6 cm/cm・℃. Ta. Comparative Example 4 A melt-solidified sheet was produced with the composition of Example 2, which did not contain hard clay-type kaolin clay. The characteristics are shown in the table.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、特定の大きさの充填剤で、か
つ充填剤と熱可塑性樹脂との組成物の線膨脹率が
熱可塑性樹脂の線膨脹率の90%以下となるように
充填剤を添加することによつて、極めて容易に表
面平滑性に優れた組成物を得ることができる。従
つて表面平滑性が望まれている分野の製品、例え
ば自動車用外板、産業用および民生用機器類で外
に出る部分等の製品として有用である。また、表
面平滑性を向上させるための種々の後加工、例え
ばコーテイング、フイルムの積層、成形金型温度
の高温化等が不要となりコストが安くなる効果も
ある。
According to the present invention, the filler is added so that the filler has a specific size and the coefficient of linear expansion of the composition of the filler and the thermoplastic resin is 90% or less of the coefficient of linear expansion of the thermoplastic resin. By doing so, a composition with excellent surface smoothness can be obtained very easily. Therefore, it is useful for products in fields where surface smoothness is desired, such as exterior panels for automobiles, and parts exposed to the outside of industrial and consumer equipment. In addition, various post-processing to improve surface smoothness, such as coating, lamination of films, and raising the temperature of the molding die, are not required, resulting in lower costs.

Claims (1)

【特許請求の範囲】[Claims] 1 A熱可塑性樹脂40〜80重量%および繊維径3
〜20μm、繊維長1〜50mmの補強繊維60〜20重量
%からなる組成物、99〜50重量%とB充填剤、1
〜50重量%とからなり、C前記充填剤のアスペク
ト比が3未満のときは、その内挿球の直径が、ま
た、同アスペクト比が3以上のときはその繊維径
が前記補強繊維径の1/4以下であり、かつ、D前
記充填剤と前記熱可塑性樹脂との2成分の組成物
の線膨脹率が前記熱可塑性樹脂の線膨脹率の90%
以下となるような組成比で前記充填剤を含有する
ことを特徴とする表面平滑性に優れた繊維補強熱
可塑性樹脂組成物
1 A thermoplastic resin 40-80% by weight and fiber diameter 3
Composition consisting of 60-20% by weight of reinforcing fibers of ~20 μm and fiber length of 1-50 mm, 99-50% by weight and filler B, 1
C. When the aspect ratio of the filler is less than 3, the diameter of the inserted sphere is equal to the reinforcing fiber diameter, and when the aspect ratio is 3 or more, the fiber diameter is equal to the reinforcing fiber diameter. D is 1/4 or less, and the coefficient of linear expansion of the two-component composition of the filler and the thermoplastic resin is 90% of the coefficient of linear expansion of the thermoplastic resin.
A fiber-reinforced thermoplastic resin composition with excellent surface smoothness, characterized by containing the filler in the following composition ratio:
JP21849588A 1988-09-02 1988-09-02 Fiber-reinforced thermoplastic resin composition with excellent surface flatness Granted JPH0267326A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP21849588A JPH0267326A (en) 1988-09-02 1988-09-02 Fiber-reinforced thermoplastic resin composition with excellent surface flatness
PCT/JP1989/000904 WO1990002642A1 (en) 1988-09-02 1989-09-01 Fiber-reinforced thermoplastic resin sheet or pellet
EP19890909853 EP0386266A4 (en) 1988-09-02 1989-09-01 Fiber-reinforced thermoplastic resin sheet or pellet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21849588A JPH0267326A (en) 1988-09-02 1988-09-02 Fiber-reinforced thermoplastic resin composition with excellent surface flatness

Publications (2)

Publication Number Publication Date
JPH0267326A JPH0267326A (en) 1990-03-07
JPH0411579B2 true JPH0411579B2 (en) 1992-02-28

Family

ID=16720827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21849588A Granted JPH0267326A (en) 1988-09-02 1988-09-02 Fiber-reinforced thermoplastic resin composition with excellent surface flatness

Country Status (1)

Country Link
JP (1) JPH0267326A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429407U (en) * 1990-07-06 1992-03-10
JP2863019B2 (en) * 1991-03-05 1999-03-03 ポリプラスチックス株式会社 Lamp reflector
US5918458A (en) * 1997-02-14 1999-07-06 General Electric Company System and method of providing clean filtered cooling air to a hot portion of a gas turbine engine
JPH10324784A (en) * 1997-03-27 1998-12-08 Kuraray Co Ltd Thermally melting polyvinyl alcoholic resin composition
JP2005141182A (en) 2003-10-14 2005-06-02 Kawai Musical Instr Mfg Co Ltd Repetition lever of grand piano
JP5570703B2 (en) * 2008-05-09 2014-08-13 旭化成ケミカルズ株式会社 Long glass fiber reinforced polyamide resin composition, resin pellets, and molded articles thereof
CN102558666A (en) * 2010-12-28 2012-07-11 上海金发科技发展有限公司 Ceramic fiber reinforced polypropylene complex and preparation method thereof
CN102757598A (en) * 2011-04-29 2012-10-31 上海金发科技发展有限公司 Ceramic-fiber-reinforced aging-resistant polypropylene complex and preparation method thereof

Also Published As

Publication number Publication date
JPH0267326A (en) 1990-03-07

Similar Documents

Publication Publication Date Title
KR930003378B1 (en) Fiber-reinforced thermoplastic resin composition
KR100927702B1 (en) Electrically insulating high thermal conductive resin composition
JPH0411579B2 (en)
KR101380841B1 (en) Method for preparing the molded parts of heat resistant and thermally conductive polymer compositions and the molded parts of heat resistant and thermally conductive polymer compositions prepared by the same method
Flaifel et al. The influence of adopted chemical modification route on the thermal and mechanical properties of alumina nanoparticles-impregnated thermoplastic natural rubber nanocomposite
JPH08277342A (en) Vibration damping thermoplastic resin composition and molding obtained from the same
JP2000256505A (en) Resin composition
JPH0411577B2 (en)
JP2001072866A (en) Polyarylene sulfide resin composition
JPS59182853A (en) Polyether sulfone resin composition
JPH09157525A (en) Polyphenylene sulfide resin composition for precision molding
JPH08165376A (en) Thermoplastic resin composition
JP2835596B2 (en) High rigidity vibration damping resin composition
WO2006095821A1 (en) Thermoplastic resin composition and thermoplastic resin molded article
JP3151823B2 (en) Polyarylene sulfide resin composition
JPS62246959A (en) Antistatic resin composition
JPH0570688A (en) Reinforced polyarylene sulfide resin composition and its molded product
JPH03273062A (en) Thermoplastic resin composition
JPS6251981B2 (en)
JP2605071B2 (en) Injection molding resin composition
JP2004123852A (en) Aromatic resin composition and film and sheet
JP2000086846A (en) Syndiotactic polystyrene/liquid crystal polyester resin composition
JPH0347711A (en) Structural body of fiber-reinforced thermoplastic resin pellet
Biswas et al. Properties of highly filled polypropylene derivative composites containing calcite and zeolite
JP6816489B2 (en) Injection molded products and their manufacturing methods