JPH04115195A - Fuzzy method for controlling water level of steam drum - Google Patents

Fuzzy method for controlling water level of steam drum

Info

Publication number
JPH04115195A
JPH04115195A JP2235108A JP23510890A JPH04115195A JP H04115195 A JPH04115195 A JP H04115195A JP 2235108 A JP2235108 A JP 2235108A JP 23510890 A JP23510890 A JP 23510890A JP H04115195 A JPH04115195 A JP H04115195A
Authority
JP
Japan
Prior art keywords
flow rate
steam
valve
feed water
water level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2235108A
Other languages
Japanese (ja)
Other versions
JPH0816718B2 (en
Inventor
Takashi Iijima
隆 飯島
Hidetaka Takahashi
高橋 秀孝
Katsumi Kishiwada
岸和田 勝実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Reactor and Nuclear Fuel Development Corp filed Critical Power Reactor and Nuclear Fuel Development Corp
Priority to JP2235108A priority Critical patent/JPH0816718B2/en
Publication of JPH04115195A publication Critical patent/JPH04115195A/en
Publication of JPH0816718B2 publication Critical patent/JPH0816718B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Control Of Non-Electrical Variables (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To improve an operation control performance by a method wherein the amount of adjustment of the opening of a feed water adjusting valve is inferred discretely by a three kinds of fuzzy inference elements on the basis of a steam drum water level deviation, a water level change rate, etc. and a weighting synthetic computation is executed therefor in accordance with the state of a plant. CONSTITUTION:Receiving a steam drum water level deviation etc. as inputs, a first fuzzy inference element 51 of a steam drum system infers the amount of operation of a valve according to such a control rule that 'the valve is closed in a large degree when a level difference is positive and large and when a level change rate is large', for instance. When a flow rate evaluated from the opening of a main valve etc. is inputted, a second fuzzy inference element 52 of a steam-feed water flow rate system infers the amount of operation of the valve according to such a control rule that 'the valve is closed when the flow rate deviation shows that feed water is somewhat excessive', for instance. Receiving as an input a flow rate deviation of an actual feed water flow rate from an optimum feed water flow rate, which is evaluated from a reactor output, a third fuzzy inference element 53 of a reactor output system infers the amount of operation of the valve according to such a control rule that 'the valve is closed in a large degree when the flow rate deviation shows that the feed water is excessive', for instance. Such three discrete inferences as statd above are executed, a weighting synthetic computation is executed and thereby the opening of a feed water adjusting valve is controlled.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、原子力発電プラント等における蒸気ドラム内
の液相水位を自動制卸する方法に関するものである。更
に詳しく述べると、例えば原子炉低出力領域において、
原子炉で発生した蒸気−水混合流体を気水分離する蒸気
ドラム内の水位をファジィ推論の手法を用いて制御する
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for automatically controlling the liquid phase water level in a steam drum in a nuclear power plant or the like. To explain in more detail, for example, in the low power region of the nuclear reactor,
The present invention relates to a method of controlling the water level in a steam drum that separates steam-water mixed fluid generated in a nuclear reactor using fuzzy inference techniques.

[従来の技術] 以下、新型転換炉発電プラントを例にとって説明する。[Conventional technology] The following is an explanation using a new converter reactor power plant as an example.

新型転換炉発電プラントにおける蒸気ドラムは、原子炉
から生じる蒸気と水の混合した冷却材を集めて気水分離
し、蒸気のみをタービン系へ送り、水はタービン系から
戻ってきた給水と混合して再び原子炉へ送り込む役割を
もつ機器である。この時、原子炉の中の燃料の除熱を確
保するとともに、タービンへの水のキャリーオーバを防
ぐ意味から、蒸気ドラム水位は適切な範囲に保たれてい
なければならない。そのため、蒸気ドラム水位を設定値
に維持するように給水流量を制御している。この水位を
一定に制御するには、原理的には気水分離された蒸気の
流量と給水の流量が合致するように給水調節弁によって
給水流量を制御すればよい。ところでタービン系から蒸
気ドラムに至る給水系には、通常、容量の異なる2種の
給水調節弁が並列に設置されており、原子炉出力に応じ
てこれら2種の弁か使い分けられている。このうち、原
子炉出力約18%以上の高出力領域(高流量領域)では
、水位信号、蒸気流量信号、及び給水流量信号の三要素
を精度良く測定できるため、主給水調節弁(容量の大き
な方の給水調節弁)は三要素PI(比例積分)制御方式
が採用されている。
The steam drum in the new converter reactor power plant collects the coolant mixture of steam and water generated from the nuclear reactor, separates the steam and water, and sends only the steam to the turbine system, while the water is mixed with the feed water returned from the turbine system. This is a device whose role is to feed the reactor back into the reactor. At this time, the steam drum water level must be maintained within an appropriate range in order to ensure heat removal from the fuel in the reactor and to prevent water carryover to the turbine. Therefore, the water supply flow rate is controlled to maintain the steam drum water level at a set value. In order to control this water level to be constant, in principle, the flow rate of the water supply should be controlled by the water supply control valve so that the flow rate of the separated steam matches the flow rate of the water supply. By the way, in the water supply system from the turbine system to the steam drum, two types of water supply control valves with different capacities are usually installed in parallel, and one of these two types of valves is used depending on the reactor output. Among these, in the high power region (high flow region) where the reactor output is approximately 18% or more, the three elements of the water level signal, steam flow rate signal, and feed water flow rate signal can be measured with high accuracy. The three-element PI (proportional-integral) control system is adopted for the water supply control valve (one water supply control valve).

しかし、原子炉出力18%以下の低出力領域(低流量領
域)では低流量給水ms弁(容量の小さい方の給水調節
弁)は蒸気ドラム水位信号のみによる一要素PI制御方
式か用いられている。これは主として、蒸気流量及び給
水流量を精度良く測定できないこと、及び蒸気流量以外
の蒸気ドラムからの流出流量が相対的に大きいために蒸
気流量と給水流量を等しいと見なせないこと、のためで
ある。
However, in the low power region (low flow region) where the reactor output is 18% or less, the low flow water supply ms valve (smaller capacity water supply control valve) uses a one-element PI control method using only the steam drum water level signal. . This is mainly due to the inability to measure the steam flow rate and feed water flow rate with high accuracy, and the fact that the flow rate outflow from the steam drum other than the steam flow rate is relatively large, so the steam flow rate and the feed water flow rate cannot be considered equal. be.

[発明が解決しようとする課題] 上記のような蒸気ドラム水位信号のみによる一要素PI
制御方式では、蒸気ドラム水位が変化した後てないと給
水調節弁の開度調整動作か行われないため、原子炉出力
か変化した場合等に大きな水位変動か生じる傾向がある
[Problem to be solved by the invention] One element PI using only the steam drum water level signal as described above
In the control system, the opening of the feedwater control valve is not adjusted until after the steam drum water level has changed, so large water level fluctuations tend to occur when the reactor output changes.

そのため原子炉出力変更速度に一定の制限を設けたり、
運転員が必要に応じて手動調整を加えるなどして対応し
ていた。つまり熟練した運転員が常に原子炉出力や各種
弁開度などを監視しなから適切に手動補正を行う必要が
あった。
For this reason, certain limits are set on the rate of change in reactor output,
Operators responded by making manual adjustments as necessary. In other words, it was necessary for skilled operators to constantly monitor the reactor output and various valve openings, and then make appropriate manual corrections.

例えば給水調節弁を切り換える時には、主給水調節弁を
操作した後にすぐ低流量給水調節弁をそれに見合う分だ
け操作して給水流量が変化しないようにしている。この
時、仮に原子炉出力が変化すれば、その加減も加えて操
作することになる。
For example, when switching the water supply control valve, after operating the main water supply control valve, the low flow rate water control valve is immediately operated by the corresponding amount to prevent the water supply flow rate from changing. At this time, if the reactor output changes, it will be necessary to adjust it accordingly.

本発明の目的は、従来運転員が行っていた蒸気ドラム水
位制御の手法をファジィ推論を用いて自動制御化するこ
とにより、プラント運転制御性能を向上させるとともに
、運転員の負担軽減及び省力化を図ることにある。
The purpose of the present invention is to improve plant operation control performance, reduce the burden on operators, and save labor by automatically controlling the steam drum water level control method that was conventionally performed by operators using fuzzy reasoning. It's about trying.

[課題を解決するための手段] 本発明は、炉から生じる蒸気と水との混合流体を気水分
離し、蒸気のみをタービン系へ送り、水はタービン系か
ら給水調節弁を通って戻ってくる給水と混合して再び炉
へ送り込む蒸気ドラムにおいて、低流量領域での水位を
、ファジィ制御の手法を用いて前記給水調節弁の開度を
調整することにより制御する方法である。
[Means for Solving the Problems] The present invention separates a mixed fluid of steam and water generated from a furnace, sends only the steam to a turbine system, and returns water from the turbine system through a water supply control valve. In this method, the water level in the low flow rate region of the steam drum, which is mixed with incoming feed water and sent to the furnace again, is controlled by adjusting the opening degree of the feed water control valve using a fuzzy control method.

上記の目的を達成するため本発明では、前記給水調節弁
の開度調整量を、蒸気ドラム水位偏差及び水位変化率に
基づ(第1のファジィ推論部と、給水−蒸気流量偏差に
基づく第2のファジィ推論部と、炉出力に基づく第3の
ファジィ推論部とで個別に推論し、プラント状態に応じ
た重み付けを行い合成演算して決定しており、この点に
特徴がある。
In order to achieve the above object, the present invention adjusts the opening degree adjustment amount of the feedwater control valve based on the steam drum water level deviation and the water level change rate (a first fuzzy inference part and a first fuzzy inference part based on the feedwater-steam flow rate deviation). The second fuzzy inference section and the third fuzzy inference section based on the reactor output perform separate inferences, weighting according to the plant state, and performing a composite calculation to determine the results.

なお、本発明において「蒸気トラムJとは蒸気と水との
混合流体を気水分離する装置のことを言い、原子炉の蒸
気ドラムの他、それに類似した各種冷却系における気水
分離器、蒸気発生器なども含まれる。
In addition, in the present invention, "steam tram J" refers to a device that separates steam and water from a mixed fluid of steam and water, and is used in steam drums of nuclear reactors, as well as steam separators and steam separators in various similar cooling systems. This also includes generators.

[作用コ 低流量領域では給水流量や蒸気流量か精度良く測定でき
ないため、蒸気ドラム水位か変化しないように給水調節
弁の開度を調整する操作は全て運転員の勘や多くのパラ
メータの総合評価によって達成されてきた。本発明で用
いるファジィ制御方式は、このような運転員の知識や経
験に基づく制御のノウハウをうまく取り入れた制御系を
作るのに適している。
[Effect: Since it is not possible to accurately measure the feed water flow rate or steam flow rate in the low flow rate region, the operation of adjusting the opening degree of the feed water control valve so as not to change the steam drum water level is all done by the operator's intuition or by comprehensive evaluation of many parameters. has been achieved by. The fuzzy control method used in the present invention is suitable for creating a control system that effectively incorporates such control know-how based on the knowledge and experience of operators.

本発明におけるようなプラントでは、蒸気ドラム水位を
はじめ、いくつかのプロセスデータか入力されるが、こ
れらの条件入力に対して漏れなく制御ルールを作成する
と非常に多くのルールが必要となる。そこでファジィ推
論部を三つの推論部に分割して個々に推論を行い、それ
それの推論結果をプラント状態に応じた重み付けを行っ
て合成演算し、最適な結論を導き出している。
In a plant like the one in the present invention, several process data including the steam drum water level are input, but if control rules are to be created for all of these condition inputs, a very large number of rules will be required. Therefore, the fuzzy inference section is divided into three inference sections and inference is performed individually, and the inference results of each section are weighted according to the plant state and combined, and an optimal conclusion is drawn.

[実施例] 第1図は新型転換炉プラントに本発明方法を適用した制
郊システムの一例を示す概念図である。先ずプラント全
体の構成について概略説明する。
[Example] Fig. 1 is a conceptual diagram showing an example of a subdivision system in which the method of the present invention is applied to a new type converter plant. First, the overall configuration of the plant will be briefly explained.

原子炉10で発生した蒸気と水との混合冷却材は蒸気ド
ラム12に入り気水分離される。分離された蒸気は、蒸
気隔離弁14を通り、蒸気止弁16及び蒸気加減弁18
を通ってタービン20に入り発電機22を駆動し、復水
器24に至る。蒸気隔離弁14からの蒸気の一部は、タ
ービンバイパス弁26を通って復水器24に至る。復水
器24の水は、復水ポンプ28、給水加熱器30、給水
ポンプ32、給水調節弁34を通って蒸気ドラム12に
戻る。この給水は蒸気トラム12で分離された水と混合
され、再循環ポンプ36により下部ヘッダ38を通って
原子炉10へ戻る。ここで給水調節弁34は低流量給水
調節弁であり、説明を簡略化するため、それと並列に設
けられている主給水調節弁については図示していない。
A coolant mixture of steam and water generated in the nuclear reactor 10 enters the steam drum 12 and is separated from air and water. The separated steam passes through a steam isolation valve 14, a steam stop valve 16 and a steam control valve 18.
It passes through the turbine 20, drives the generator 22, and reaches the condenser 24. A portion of the steam from steam isolation valve 14 passes through turbine bypass valve 26 to condenser 24 . Water in the condenser 24 returns to the steam drum 12 through a condensate pump 28, a feedwater heater 30, a feedwater pump 32, and a feedwater control valve 34. This feed water is mixed with the separated water in the steam tram 12 and returned to the reactor 10 through the lower header 38 by a recirculation pump 36. Here, the water supply control valve 34 is a low-flow water supply control valve, and to simplify the explanation, the main water supply control valve provided in parallel thereto is not shown.

本実施例では原子炉10の出力を測定する中性子検出器
40、蒸気トラム12の水位を測定するドラム水位検出
器42、及びファジィ制御部44を設ける。ファジィ制
御部44へは蒸気ドラム水位信号、タービンバイパス弁
開度信号、給水調節弁開度信号、原子炉出力信号などが
入力し、ファジィ制御部44からの出力(給水調節弁開
度要求信号)で給水調節弁34の開度を制御する。
In this embodiment, a neutron detector 40 for measuring the output of the nuclear reactor 10, a drum water level detector 42 for measuring the water level of the steam tram 12, and a fuzzy control section 44 are provided. A steam drum water level signal, a turbine bypass valve opening signal, a feedwater control valve opening signal, a reactor output signal, etc. are input to the fuzzy control unit 44, and an output from the fuzzy control unit 44 (feedwater control valve opening request signal) to control the opening degree of the water supply control valve 34.

本発明によるファジィ制御系の演算フローを第2図に示
す。本発明では給水調節弁34の開度調整量を三つのフ
ァジィ推論部で個別に推論する。プラントからの前記の
ような各種プロセス信号をデータ処理し、蒸気ドラム水
位偏差及び水位変化率に基づく蒸気ドラム系の第1のフ
ァジィ推論部51と、給水−蒸気流量偏差に基づく給水
−蒸気流量系の第2のファジィ推論部52と、炉出力に
基づ(原子炉出力系の第3のファジィ推論部53とで、
それぞれの制御ルールベース54,55.56によって
個別に推論し、プラント状態に応じた重み付けを行い合
成演算する。
FIG. 2 shows the calculation flow of the fuzzy control system according to the present invention. In the present invention, the opening degree adjustment amount of the water supply control valve 34 is individually inferred by three fuzzy inference parts. A first fuzzy inference unit 51 for the steam drum system which processes the various process signals as described above from the plant based on the steam drum water level deviation and water level change rate, and a feed water-steam flow rate system based on the feed water-steam flow rate deviation. Based on the reactor power (a third fuzzy inference part 53 of the reactor power system),
Inference is made individually using the respective control rule bases 54, 55, and 56, weighting is performed according to the plant state, and a composite calculation is performed.

第1〜第3のファジィ推論部51.・・、53における
制御ルールの内容は次のとおりである。
First to third fuzzy inference units 51. The contents of the control rules in . . . , 53 are as follows.

なお、これらの制御ルールは幾つ設定してもよく、ファ
ジィ推論法についても一般に知られている何れの推論法
を用いてもよい。
Note that any number of these control rules may be set, and any generally known inference method may be used as the fuzzy inference method.

蒸気ドラム系の第1のファジィ推論部51は、蒸気ドラ
ム水位偏差(実水位−設定水位)及び水位変化率を入力
すると次のような制御ルールにより弁操作量を推論する
When the steam drum water level deviation (actual water level - set water level) and water level change rate are input, the first fuzzy inference unit 51 of the steam drum system infers the valve operation amount according to the following control rule.

・もし水位偏差が正で大きく、水位変化率か正で大きい
ならば、弁を大きく閉める。
・If the water level deviation is positive and large, and the water level change rate is positive and large, close the valve.

・もし水位偏差が正で大きく、水位変化率が零ならば、
弁を少し閉める。
・If the water level deviation is positive and large and the water level change rate is zero,
Close the valve slightly.

・もし水位偏差が正で大きく、水位変化率か負て大きい
ならば、弁は動かさない。
- If the water level deviation is positive and large and the water level change rate is negative and large, the valve will not operate.

蒸気−給水流量系の第2のファジィ推論部52は、主要
弁開度等から評価した流量偏差(給水流量−蒸気流量)
を入力すると次のような制御ルールにより弁操作量を推
論する。
The second fuzzy inference unit 52 of the steam-feed water flow rate system calculates the flow rate deviation (feed water flow rate - steam flow rate) evaluated from the main valve opening degree, etc.
When input, the valve operation amount is inferred using the following control rule.

・もし流量偏差がやや給水過剰ならば、弁を少し閉める
・If the flow rate deviation is slightly excessive, close the valve slightly.

・もし流量偏差が零ならば、弁は動かさない。- If the flow deviation is zero, the valve will not move.

・もし流量偏差がかなり給水不足ならば、弁を大きく開
ける。
・If the flow rate deviation is significantly insufficient for water supply, open the valve wide.

原子炉出力が上昇すれば、蒸気発生量が増えるため給水
流量を増やす必要がある。一般に原子炉出力に対する適
切な給水流量は原子炉出力と比例関係にある。そこで原
子炉出力系の第3のファジィ推論部53は、原子炉出力
から評価した最適給水流量と実際の給水流量との流量偏
差(給水流量−最適給水流量)を入力すると次のような
制御ルールにより弁操作量を推論する。
If the reactor power increases, the amount of steam generated will increase, so it is necessary to increase the flow rate of water supply. Generally, the appropriate feed water flow rate for the reactor power is proportional to the reactor power. Therefore, when the third fuzzy inference unit 53 of the reactor power system inputs the flow rate deviation between the optimum feed water flow rate evaluated from the reactor output and the actual feed water flow rate (feed water flow rate - optimal feed water flow rate), the following control rule is created. The amount of valve operation is inferred by

・もし流量偏差かかなり給水過剰ならば、弁を大きく閉
める。
・If there is a flow deviation or a significant excess of water supply, close the valve wide.

・もし流量偏差が零ならば、弁は動かさない。- If the flow deviation is zero, the valve will not move.

・もし流量偏差かやや給水不足ならば、弁を少し開ける
・If there is a flow deviation or a slight shortage of water supply, open the valve slightly.

ここで、蒸気流量と給水流量は精度良く測定できないた
め、例えば第3図に示す2つの給水−蒸気系統(Aルー
プ、Bループという)をもつ新型転換炉プラントの場合
、以下のようにして計算により算出する。
Here, since the steam flow rate and feed water flow rate cannot be measured with high accuracy, for example, in the case of a new converter plant with two feed water-steam systems (referred to as A loop and B loop) shown in Figure 3, calculations are performed as follows. Calculated by

第2の推論部において使用するのは給水流量と蒸気流量
など蒸気ドラムからの流出流量との偏差である。その流
量偏差をΔF2A(t)とすれば、(1)式のように表
すことができる。
The second inference part uses the deviation between the feedwater flow rate and the output flow rate from the steam drum, such as the steam flow rate. If the flow rate deviation is ΔF2A(t), it can be expressed as in equation (1).

ΔF2A (t) =FEEDA (t) 十CUWR
A(t) +RCPSA(t)−TBA(t) −CO
W A(t)     ・・・ (11ここで、 FEEDA(t)  : Aループ給水流量CUWRA
(t)  : Aループ炉浄化系戻り流量RCPSA(
t)  : Aループ再循環ポンプシール注水流量 TBA(t)   :タービンバイパス弁流量のうちの
Aループ側からの蒸気流量 C[JW A(t)  : Aループからの炉浄化系取
水流量 である。このうち、CUWRA(t) 、TBA(t)
及びCIJIV A(t)は測定されていないものであ
る。しかし、AループとBループ間の不平衡を無視すれ
ば(])式は次のように簡略化される。
ΔF2A (t) =FEEDA (t) 1CUWR
A(t) +RCPSA(t)-TBA(t)-CO
W A (t) ... (11 Here, FEEDA (t): A loop water supply flow rate CUWRA
(t): A-loop reactor purification system return flow rate RCPSA (
t): A-loop recirculation pump seal water injection flow rate TBA(t): Steam flow rate from the A-loop side of the turbine bypass valve flow rate C[JW A(t): Furnace purification system water intake flow rate from the A-loop. Among these, CUWRA(t), TBA(t)
and CIJIV A(t) are not measured. However, if the unbalance between the A loop and the B loop is ignored, the equation (]) can be simplified as follows.

ΔF2A(i) =FEED、 (t) −(TB(t
)+BLOW(t、)) /2           
    ・・・ (2)ここで、 TB(t)   :タービンバイパス弁流量BLOW(
t) :炉浄化系から復水器へのブローダウン流量 である。(2)式のうちBLOW(t)は測定されてい
るがTB(t)は測定されていない。またFEBDA(
t)は測定精度が悪いため使用できない。そこで、FE
EDA(t)及びTB(t)は各弁開度から次式により
求めることとする。
ΔF2A(i) = FEED, (t) −(TB(t
)+BLOW(t,)) /2
... (2) Here, TB(t): Turbine bypass valve flow rate BLOW(
t): Blowdown flow rate from the furnace purification system to the condenser. In equation (2), BLOW(t) has been measured, but TB(t) has not. Also, FEBDA (
t) cannot be used due to poor measurement accuracy. Therefore, F.E.
EDA(t) and TB(t) are determined from each valve opening using the following formula.

FEEDA (t) =FFLov (FV LovA
(t))+FFp*+ (FV□+A(t))    
         ・・・ (3)TB(t) =FL
(TVI(t))+FL(TV2(t))  −(4)
ここで、 FFt、ov (FV LovA(t)) : Aルー
プの低流量給水調節弁開度FVLovA(t)に対する
給水流量を与える関数 PPp*+ (FV pt+A(t)) : A ルー
プの主給水調節弁開度FV□1A(1)に対する給水流
量を与える関数 FL(TVI(t))、 FL(TV2(t)) :タ
ービンバイパス弁l及び2の開度TVI(t)及びTV
2(t)に対する蒸気流量を与える関数 である。上記の弁開度から流量を与える関数は、両者の
相関データを基に最適フィッティング曲線を求めて使用
すればよい。但し、給水流量に関しては給水調節弁前後
の差圧がプラントの起動とともに大きく変化するため、
上記の一種類の関数ではフィッティング不可能である。
FEEDA (t) = FFLov (FV LovA
(t))+FFp*+ (FV□+A(t))
... (3) TB(t) = FL
(TVI(t))+FL(TV2(t))−(4)
Here, FFt, ov (FV LovA(t)): Function that gives the water supply flow rate for the A-loop low-flow water supply control valve opening FVLovA(t) PPp*+ (FV pt+A(t)): A-loop main water supply Functions that give the water supply flow rate for the control valve opening FV□1A (1) FL (TVI (t)), FL (TV2 (t)): Opening degrees TVI (t) and TV of turbine bypass valves 1 and 2
2(t). The above-mentioned function that gives the flow rate from the valve opening degree may be used by determining an optimal fitting curve based on the correlation data between the two. However, regarding the water supply flow rate, the differential pressure before and after the water supply control valve changes greatly as the plant starts up.
Fitting is impossible with the above one type of function.

そこて、他の方法として、弁の07曲線を用いて次式に
より流量を求める方法がある。
Therefore, as another method, there is a method of calculating the flow rate using the following equation using the 07 curve of the valve.

FEBDA(t’) =ρX (P、−P、−P、−P
、)”” X (CVLONIA(FV LovA(t
)) + CVPRIA(FV PRIA(1))) 
             ・・・ (3)′ここで、 ρ  流体密度 P、:給水ポンプ出口圧力 P2 :蒸気ドラム圧力 P2 、蒸気ドラム中心から給水調節弁までの静水頭 P4 給水調節弁から蒸気ドラムまでの流体摩擦損失 CVLowA(FV 、、owA(t)) : A )
Lt−ブの低流量給水調節弁開度FVLovA(t)に
対するov値を与える関数 CVPIIA(FV p*IA(t)) : A ルー
プの主給水調節弁開度FVpi+A(t)に対するov
値を与える関数である。即ち、(3)式若しくは(3)
′式及び(4)式を(2)式に適用して、給水流量と蒸
気流量の偏差を計算により推定することかできる。
FEBDA(t') = ρX (P, -P, -P, -P
,)””X (CVLONIA(FV LovA(t
)) + CVPRIA(FV PRIA(1)))
... (3)' where, ρ fluid density P, : feed water pump outlet pressure P2 : steam drum pressure P2 , hydrostatic head from the center of the steam drum to the feed water control valve P4 fluid friction loss from the feed water control valve to the steam drum CVLowA(FV,,owA(t)): A)
Function CVPIIA (FV p*IA(t)) that gives the ov value for the low flow rate water supply control valve opening FVLovA(t) of Lt-bu: ov for the main water supply control valve opening FVpi+A(t) of the A loop
It is a function that gives a value. That is, equation (3) or (3)
By applying equations ' and (4) to equation (2), the deviation between the feed water flow rate and the steam flow rate can be estimated by calculation.

次に第3の推論部で行われる原子炉出力による低流量給
水調節弁開度の操作量の推論は、過去に良好な蒸気ドラ
ム水位制御か行われたケースにおける原子炉出力と給水
流量の相関の実績データから最適フィッティング曲線を
求め、その曲線を用いて、入力された原子炉出力に見合
う最適給水流量を設定し、それと実際の給水流量との偏
差に基づいて前述の制御ルールに従って行われる。即ち
、実際の給水流量と最適給水流量の偏差ΔF3A(t)
は次式により求める。
Next, the third inference section infers the operation amount of the low flow rate feed water control valve opening based on the reactor output, which is based on the correlation between the reactor output and the feed water flow rate in cases where good steam drum water level control has been performed in the past. An optimal fitting curve is determined from the actual data, and this curve is used to set the optimal water supply flow rate commensurate with the input reactor output, and this is done according to the control rules described above based on the deviation between this and the actual water supply flow rate. That is, the deviation ΔF3A(t) between the actual water supply flow rate and the optimal water supply flow rate
is calculated using the following formula.

ΔF3A(t) =FEEDA(t) −FF3 Lo
v(PO(t))・・・ (5) ここで、 FF3 Lo、 (PO(t))  :原子炉出力PO
(t)に対する最適給水流量を与える関数 である。
ΔF3A(t) =FEEDA(t) −FF3 Lo
v(PO(t))... (5) Here, FF3 Lo, (PO(t)): Reactor output PO
(t) is a function that gives the optimal water supply flow rate.

このように本発明では、蒸気ドラム水位制御に対して最
も注目すべき三つの側面からそれぞれ独自の推論を行い
、確定値W1.W2 、W2を得、それらを重み付き合
成演算によって統合して出力し、給水調節弁の開度を制
御するものである(第2図参照)。ここで、重み付き合
成演算の際の各推論部の重みゲイン(m + + m 
! +mz)は、原子炉核加熱時のように蒸気流量の変
化か小さい領域では蒸気ドラム水位系の重みを大きくし
、定格圧力到達以降のように蒸気流量や給水流量の変化
か大きい領域では給水−蒸気流量系及び原子炉出力系の
重みを大きくするように自動的に設定する等、上位のメ
タルールによってプラントの状態に応じて切り換えるこ
とにより、多種の特性を自在に設定することができる。
In this way, in the present invention, independent inferences are made from the three most noteworthy aspects regarding steam drum water level control, and the determined value W1. The system obtains W2 and W2, integrates them by weighted composition calculation, and outputs them to control the opening degree of the water supply control valve (see Fig. 2). Here, the weight gain (m + + m
! + mz) increases the weight of the steam drum water level system in areas where the change in steam flow rate is small, such as during reactor core heating, and increases the weight of the steam drum water level system in areas where changes in steam flow rate or feed water flow rate are large, such as after reaching rated pressure. By automatically setting the weights of the steam flow rate system and the reactor power system to be large, it is possible to freely set a variety of characteristics by switching according to the state of the plant using upper-level meta rules.

新型転換炉プラントにおける本発明方法の機能確認試験
の結果を第4図に示す。これは蒸気ドラム水位信号のみ
の一要素入力によるPIコントローラにより自動制御さ
れた蒸気ドラムB水位と、本発明方法の推論結果の情報
により制御された蒸気トラムA水位とを比較したもので
ある。これにより本発明方法により制御された蒸気トラ
ムAの方か水位変動をより小さく抑える良好な制御性を
示すことが確認された。
Figure 4 shows the results of a functional confirmation test of the method of the present invention in a new converter plant. This is a comparison between the steam drum B water level which is automatically controlled by a PI controller based on one-element input of only the steam drum water level signal, and the steam tram A water level which is controlled based on the information of the inference results of the method of the present invention. This confirmed that steam tram A controlled by the method of the present invention exhibited better controllability in suppressing water level fluctuations to a smaller level.

[発明の効果] 本発明は上記のようなファジィ制御による蒸気ドラム水
位制御方法であるから、従来三要素PI制御方式を採用
できず一要素PI制御にたよってきた低流量領域でも蒸
気ドラム水位変動幅を従来技術の約1/2〜1/6に低
減でき、制御性能が大幅に向上する。
[Effects of the Invention] Since the present invention is a steam drum water level control method using fuzzy control as described above, steam drum water level fluctuations can be prevented even in low flow areas where conventional three-element PI control methods could not be adopted and one-element PI control was relied upon. The width can be reduced to about 1/2 to 1/6 of that of the conventional technology, and control performance is significantly improved.

また本発明では、三種類の側面から推論した結果を、プ
ラントの状態に応じて重み付けを変えて合成演算するた
め、制御ルール数を少なくでき、またプラントの状態毎
に、それに適した特性を容易に制御系に持たせることか
できる。
In addition, in the present invention, the results of inference from three types of aspects are combined and calculated by changing the weighting according to the state of the plant, so the number of control rules can be reduced, and characteristics suitable for each state of the plant can be easily determined. It is possible to have it in the control system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を適用した新型転換炉プラントの一
例を示す概念図、第2図はファジィ制御系の演算フロー
線図、第3図は新型転換炉プラントの一例の給水−蒸気
系統概略図、第4図はファジィ制御システム機能確認結
果を示すグラフである。 10・・・原子炉、12・・・蒸気ドラム、20・・・
タービン、34・・・給水調節弁、40・・・中性子検
出器、42・・・ドラム水位検出器、44・・・ファジ
ィ制御部、51・・・第1のファジィ推論部、52・・
・第2のファジィ推論部、53・・・第3のファジィ推
論部。 特許出願人 動力炉・核燃料開発事業団化  理  人 茂  見 穣 間(分) 手続補正書(,8) l。 2゜ 3゜ 4゜ 事件の表示 平成2年特許願第235108号 発明の名称 蒸気ドラム水位のファジィ制御方法 補正をする者 事件との関係  特許出願人 住所東京都港区赤坂1丁目9番13号 名称 動力炉・核燃料開発事業団 代  理  人 住所 ・105東京都港区芝公園2丁目10番4号小野
塚ビル2階  電話433−37997、補正の内容 (1)明細書第14頁第3行〜第5行の式(3)′ を
次のように補正する。 rFEEDA(t) =ρX  (PI  −P2 −
P3 −P4 )”2X (CVLowx(FV 、、
ovA(j)) +CVIIIIA(FV PRIA(
t))) /1.17          °−(31
j以上
Fig. 1 is a conceptual diagram showing an example of a new type converter plant to which the method of the present invention is applied, Fig. 2 is a calculation flow diagram of the fuzzy control system, and Fig. 3 is a schematic diagram of the water supply-steam system of an example of the new type converter plant. 4 are graphs showing the fuzzy control system function confirmation results. 10...Nuclear reactor, 12...Steam drum, 20...
Turbine, 34... Water supply control valve, 40... Neutron detector, 42... Drum water level detector, 44... Fuzzy control unit, 51... First fuzzy inference unit, 52...
- Second fuzzy inference section, 53...Third fuzzy inference section. Patent Applicant Power Reactor and Nuclear Fuel Development Corporation Ri Hitoshige Miyuma (Min) Procedural Amendment (,8) l. 2゜3゜4゜Indication of the case Patent application No. 235108 of 1990 Name of the invention Fuzzy control method for steam drum water level Relationship to the case Patent applicant address 1-9-13 Akasaka, Minato-ku, Tokyo Name: Representative, Power Reactor and Nuclear Fuel Development Corporation Address: 2nd floor, Onozuka Building, 2-10-4 Shibakoen, Minato-ku, Tokyo 105 Phone: 433-37997 Contents of amendment (1) Line 3, page 14 of the specification Equation (3)' on the fifth line is corrected as follows. rFEEDA(t) = ρX (PI −P2 −
P3-P4)”2X (CVLowx(FV,,
ovA(j)) +CVIIIA(FV PRIA(
t))) /1.17 °−(31
j or more

Claims (1)

【特許請求の範囲】[Claims] 1、炉から生じる蒸気と水との混合流体を気水分離し、
蒸気のみをタービン系へ送り、水はタービン系から給水
調節弁を通って戻ってくる給水と混合して再び炉へ送り
込む蒸気ドラムの低流量領域での水位を、前記給水調節
弁の開度を調整することにより制御する方法において、
前記給水調節弁の開度調整量を、蒸気ドラム水位偏差及
び水位変化率に基づく第1のファジィ推論部と、給水−
蒸気流量偏差に基づく第2のファジィ推論部と、炉出力
に基づく第3のファジィ推論部とで個別に推論し、プラ
ント状態に応じた重み付けを行い合成演算して決定する
ことを特徴とする蒸気ドラム水位のファジィ制御方法。
1. Separate the mixed fluid of steam and water generated from the furnace,
Only the steam is sent to the turbine system, and the water is mixed with the feed water that returns from the turbine system through the feed water control valve and sent back to the furnace. In a method of controlling by adjusting,
The opening adjustment amount of the feed water control valve is determined by a first fuzzy inference unit based on the steam drum water level deviation and the water level change rate;
A second fuzzy inference unit based on a steam flow rate deviation and a third fuzzy inference unit based on a reactor output perform separate inferences, perform weighting according to the plant state, and perform a combined calculation to determine the steam. Fuzzy control method for drum water level.
JP2235108A 1990-09-05 1990-09-05 Fuzzy control method of steam drum water level Expired - Fee Related JPH0816718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2235108A JPH0816718B2 (en) 1990-09-05 1990-09-05 Fuzzy control method of steam drum water level

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2235108A JPH0816718B2 (en) 1990-09-05 1990-09-05 Fuzzy control method of steam drum water level

Publications (2)

Publication Number Publication Date
JPH04115195A true JPH04115195A (en) 1992-04-16
JPH0816718B2 JPH0816718B2 (en) 1996-02-21

Family

ID=16981176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2235108A Expired - Fee Related JPH0816718B2 (en) 1990-09-05 1990-09-05 Fuzzy control method of steam drum water level

Country Status (1)

Country Link
JP (1) JPH0816718B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7621141B2 (en) 2004-09-22 2009-11-24 York International Corporation Two-zone fuzzy logic liquid level control
CN107272526A (en) * 2017-08-17 2017-10-20 宝鸡文理学院 A kind of fuzzy controller for industrial boiler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7621141B2 (en) 2004-09-22 2009-11-24 York International Corporation Two-zone fuzzy logic liquid level control
US7784295B2 (en) 2004-09-22 2010-08-31 York International Corporation Two-zone fuzzy logic liquid level control
CN107272526A (en) * 2017-08-17 2017-10-20 宝鸡文理学院 A kind of fuzzy controller for industrial boiler

Also Published As

Publication number Publication date
JPH0816718B2 (en) 1996-02-21

Similar Documents

Publication Publication Date Title
CA2159790C (en) Control of prime mover in hvac distribution system
US4478783A (en) Nuclear power plant feedwater controller design
CN110467145A (en) A kind of petroleum vapor recovery on-line monitoring system and monitoring method
US5410470A (en) Process control method and system with employment of fuzzy inference
JPH04115195A (en) Fuzzy method for controlling water level of steam drum
US6017193A (en) Distribution pressure control apparatus
EP1471397A2 (en) Adaptive fuzzy logic temperature control
CN107543141A (en) Steam generator analogue body water supply system and control method during increasing temperature and pressure
JP2599026B2 (en) Steam drum water level control method when water supply control valve is switched
JPH10122506A (en) Controller for water supply of steam generator
JPS58129511A (en) Temperature controlling device
JPH0330761B2 (en)
Aikman Frequency-response analysis and controllability of a chemical plant
Zhang Modified Smith prediction compensation control method for temperature control of deformation test equipment
JPS58219982A (en) Connecting plant of nuclear power installation and sea water desalting apparatus
CN115507357A (en) Water replenishing system of recoverer of boiler and water level control method and device thereof
SU916888A1 (en) Method of automatic control of medium condition at superheater outlet
JP2811662B2 (en) Alkali metal engine control device
JPH0460709A (en) Equal flow rate controller for mutual interference system by fuzzy inference
JPH04143801A (en) Controller for dam flow rate adverse adjusting gate
JP3218383B2 (en) Steam generator pressure controller
Yurkevich Control principles for reactors with regulatable coolant circulation
JPH02138604A (en) Fuzzy control device
JPS5892797A (en) Water level controlling device for condenser
JPH06281106A (en) Water supplying control device of steam generating plant

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees