JPH04106229A - Excavated depth detector of excavator - Google Patents

Excavated depth detector of excavator

Info

Publication number
JPH04106229A
JPH04106229A JP2222473A JP22247390A JPH04106229A JP H04106229 A JPH04106229 A JP H04106229A JP 2222473 A JP2222473 A JP 2222473A JP 22247390 A JP22247390 A JP 22247390A JP H04106229 A JPH04106229 A JP H04106229A
Authority
JP
Japan
Prior art keywords
excavator
excavation depth
depth
ground
excavation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2222473A
Other languages
Japanese (ja)
Inventor
Takeshi Aritake
有竹 猛
Noboru Tatekawa
竪川 登
Yukio Aoyanagi
青柳 幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2222473A priority Critical patent/JPH04106229A/en
Publication of JPH04106229A publication Critical patent/JPH04106229A/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/437Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like providing automatic sequences of movements, e.g. linear excavation, keeping dipper angle constant
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

PURPOSE:To accurately excavate ground, by providing a laser emitter at a specified position of the ground base and a laser receiver on the excavator obtaining the excavated depth by computation respectively and by computing the excavated depth of the ground base and the machine body base to excavate the ground basing on the ground base. CONSTITUTION:Angle sensors 12, 13, 14, an inclined angle sensor 15, and a laser receiver 23 are equipped on an excavator 1 like a shovel or so and a computing means is equipped to compute the excavated depth of the excavator body base according to the detected data of respective sensors. On the other hand, a laser emitter 10 is equipped at a specified position basing on the ground and an absolute objective excavating depth is set. And an objective excavating depth is computed in accordance with the laser receiving position and at the same time, the excavating depth of the excavator body base is computed to correspond to the above depth. In this way, the working efficiency can be increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、掘削機で地面を掘削するとき、その掘削深さ
を検出する掘削機の掘削深さ検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an excavation depth detection device for an excavator that detects the excavation depth when excavating the ground with an excavator.

〔従来の技術〕[Conventional technology]

掘削機を用いて地面に溝等を掘削する場合、目標とする
深さに掘削する必要があり、そのためには掘削中の現在
の掘削深さを知らなければならない。その最も単純な方
法は、作業員が掘削位置に棒を立てて測定する方法であ
るが、人手を要するという欠点がある。従来、この欠点
を避けるため、レーザレベラを用いる手段が採用されて
いた。これを図により説明する。
When excavating a trench or the like in the ground using an excavator, it is necessary to excavate to a target depth, and in order to do so, the current excavation depth during excavation must be known. The simplest method is for a worker to set up a rod at the excavation location and measure it, but it has the disadvantage of requiring manual labor. Conventionally, in order to avoid this drawback, a method using a laser leveler has been adopted. This will be explained using a diagram.

第5図は従来の掘削深さの検出手段を示す側面図である
。図で、1は掘削機、2は掘削機1の本体、3は本体2
に可回動に取付けられたフロントである。フロント3は
第1のアーム4、第2のアーム5およびパケット6で構
成されている。7は第2のアームに取付けられた支持体
、8は支持体7に滑動可能に支持された受光器である。
FIG. 5 is a side view showing a conventional excavation depth detection means. In the figure, 1 is the excavator, 2 is the main body of the excavator 1, and 3 is the main body 2
The front is rotatably mounted on the front. The front 3 is composed of a first arm 4, a second arm 5 and a packet 6. 7 is a support attached to the second arm, and 8 is a light receiver slidably supported by the support 7.

Goは絶対目標掘削深さの基準となる地面、Aは掘削す
べき溝、Hlは掘削機1の設置面と目標掘削位置との間
の距離を示す。10は地面G0に設置されたレーザレベ
ラであり、レーザ光vABを水平方向に出力する。
Go indicates the ground serving as a reference for the absolute target excavation depth, A indicates the groove to be excavated, and Hl indicates the distance between the installation surface of the excavator 1 and the target excavation position. 10 is a laser leveler installed on the ground G0, which outputs laser light vAB in the horizontal direction.

掘削に先立ち、掘削機のオペレータは目標掘削位置と同
−深さの穴を掘削し、フロント3を図示の姿勢としく第
2アーム5およびパケット6は垂直)、受光器8を丁度
レーザレベラ10からのレーザ光vABを受光する位置
に調節固定する。次いでオペレータは掘削作業を実施し
、目標掘削位置近くまで掘削したとき、−旦、フロント
3を上記と同一姿勢となるよう操作する。このとき、受
光器8がレーザ光線Bを受光しでいなければ、オペレー
タは再度掘削を行い、ある程度掘削した後再びフロント
3を上記の姿勢として受光器8の受光の有無をチエツク
する。このような動作が受光器8の受光まで繰返され、
受光がブザー等により確認されたとき、オペレータは掘
削が目標掘削位置に達したのを知ることとなる。
Prior to excavation, the operator of the excavator excavates a hole of the same depth as the target excavation position, positions the front 3 in the illustrated position (with the second arm 5 and packet 6 vertical), and places the receiver 8 just above the laser leveler 10. Adjust and fix the position to receive the laser beam vAB. Next, the operator performs the excavation work, and when the excavation has reached near the target excavation position, the operator operates the front 3 so that it assumes the same posture as described above. At this time, if the light receiver 8 does not receive the laser beam B, the operator excavates again, and after digging to a certain extent, sets the front 3 in the above-mentioned position again and checks whether the light receiver 8 is receiving light. This operation is repeated until the light receiver 8 receives the light.
When the reception of light is confirmed by a buzzer or the like, the operator will know that the excavation has reached the target excavation position.

この方法は、受光器8の位置の調節作業が面倒であり、
また、掘削作業中フロント3に上記姿勢を繰返し採らせ
ねばならず、さらに、掘削深さが深い場合レーザ光線B
の位置が受光器8の取付は位置外となり測定不可能とな
る、という欠点があった。
In this method, adjusting the position of the light receiver 8 is troublesome;
In addition, during excavation work, the front 3 must take the above posture repeatedly, and furthermore, if the excavation depth is deep, the laser beam B
There is a drawback that the position of the light receiver 8 is outside the mounting position, making measurement impossible.

この欠点を避けるため、演算による検出手段が提案され
ている。これを図により説明する。第6図は演算による
検出手段を説明する側面図である。
In order to avoid this drawback, arithmetic detection means have been proposed. This will be explained using a diagram. FIG. 6 is a side view illustrating the calculation-based detection means.

図で、第5図に示す部分と同一または等価な部分には同
一符号が付しである。12は第1アーム4の回動支点に
取付けられて回動角θ、を検出する角度センサ、13は
第2アーム5の回動支点に取付けられて回動角θ2を検
出する角度センサ、14はパケット6の回動支点に取付
けられて回動角θ3を検出する角度センサ、15は本体
2に取付けられて掘削機1の傾斜角θ9を検出する角度
センサである。なお、上記各角度は時計方向を正、反時
計方向を負とする。
In the figure, parts that are the same or equivalent to those shown in FIG. 5 are given the same reference numerals. An angle sensor 12 is attached to the pivot point of the first arm 4 and detects the rotation angle θ, 13 is an angle sensor attached to the pivot point of the second arm 5 and detects the rotation angle θ2, and 14 An angle sensor 15 is attached to the pivot point of the packet 6 to detect the rotation angle θ3, and an angle sensor 15 is attached to the main body 2 to detect the inclination angle θ9 of the excavator 1. Note that each of the above angles assumes that the clockwise direction is positive and the counterclockwise direction is negative.

ここで、掘削機1が設置された地面から第1のアーム4
の回動支点までの距離を1゜、この回動支点と第2のア
ームの回動支点との距離を11、この回動支点とパケッ
ト6の回動支点との距離を12、パケット6の長さをI
3とすると、第1のアームの回動支点からパケット6の
先端までの間の掘削深さ(掘削腕深さ)Hfは、 H,=1.S in (θ+et) +l、sin (θ、+θ2−8.) +I、5in(θ1 +02−03−θ、)・・・・・
・・・・・・・(1) で表される。
Here, the first arm 4 is removed from the ground where the excavator 1 is installed.
The distance to the rotation fulcrum of the second arm is 1°, the distance between this rotation fulcrum and the rotation fulcrum of the second arm is 11, the distance between this rotation fulcrum and the rotation fulcrum of the packet 6 is 12, and the distance of the rotation fulcrum of the packet 6 is 1°. length I
3, the excavation depth (excavation arm depth) Hf from the pivot point of the first arm to the tip of the packet 6 is H,=1. S in (θ+et) +l, sin (θ, +θ2-8.) +I, 5in (θ1 +02-03-θ,)...
......(1) Represented by:

また、掘削機1が設置された地面とパケット6の先端ま
での間の実掘削深さH,は、 H−=Ht   I。cosθ9・・・・・・・・・・
・・(2)で表される。
Further, the actual excavation depth H between the ground where the excavator 1 is installed and the tip of the packet 6 is H-=HtI. cosθ9・・・・・・・・・・
...It is expressed as (2).

第7図は上記演算(1)、(2)を用いた検出装置のブ
ロック図である。図で、12〜15は第6図に示す角度
センサ、17は上記(1)、(2)式の演算を行う演算
装置、18は掘削機1が設置された地面からの目標掘削
深さHlを設定する設定器、19は演算装置17の出力
H,と設定器18の出力H2とを比較する比較器、20
はブザー、21は表示装置である。
FIG. 7 is a block diagram of a detection device using the above calculations (1) and (2). In the figure, 12 to 15 are angle sensors shown in FIG. 6, 17 is a calculation device that calculates the above equations (1) and (2), and 18 is a target excavation depth Hl from the ground where the excavator 1 is installed. 19 is a comparator that compares the output H of the arithmetic unit 17 with the output H2 of the setter 18; 20
is a buzzer, and 21 is a display device.

演算装置17は、角度センサ12〜15の検出値e、−
e、に基づいて(1)、(2)式の演算を行い、実掘削
深さH,を出力する。比較器19は当該実掘削深さH,
と目標掘削深さHtとを比較し、両者が一致したときブ
ザー20の駆動信号を出力する。また、上記各個H,,
H,は表示装置21に表示される。オペレータは表示装
置21を見て残りの掘削深さを把握しながら掘削を行い
、ブザー20の作動により、または表示装置21を見て
、掘削が目標深さに達したことを知る。
The calculation device 17 calculates the detected values e, - of the angle sensors 12 to 15.
Equations (1) and (2) are calculated based on e, and the actual excavation depth H is output. The comparator 19 calculates the actual excavation depth H,
and the target excavation depth Ht, and when the two match, a drive signal for the buzzer 20 is output. In addition, each of the above H,,
H, is displayed on the display device 21. The operator excavates while understanding the remaining excavation depth by looking at the display device 21, and knows that the excavation has reached the target depth by operating the buzzer 20 or by looking at the display device 21.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記演算手段による検出装置は、第5図に示す装置の欠
点を解消する優れた装置である。しかし、(i)掘削機
1が設置される地面の高さは掘削機1の移動毎に変化す
るので、その都度、値H2を把握し設定しなければなら
ず、作業効率が低下する、(11)溝Aに勾配(紙面に
垂直な方向の勾配)を付ける必要がある場合、仮に、掘
削機1が同一水平面を移動しながら作業をするとしても
、上記(ii)と同様、値Htの把握および設定替えが
必要となる、(iii )上記値Htは掘削機10零体
2を基準とした(機械基準の)移動座標で設定されるた
め、本来の目標掘削深さを設定する地面を基準とした(
地面基準の)絶対座標から見ると掘削の過少が生じ、そ
の修正掘削が必要となる、という問題があった。
The detection device using the above calculation means is an excellent device that eliminates the drawbacks of the device shown in FIG. However, (i) the height of the ground where the excavator 1 is installed changes every time the excavator 1 moves, so the value H2 must be grasped and set each time, which reduces work efficiency. 11) If it is necessary to add a slope to groove A (a slope in the direction perpendicular to the plane of the paper), even if excavator 1 works while moving on the same horizontal plane, as in (ii) above, the value Ht (iii) The above value Ht is set in the movement coordinates (machine standard) based on the excavator 10 zero body 2, so it is necessary to understand and change the setting. Based on (
There was a problem in that when viewed from the absolute coordinates (based on the ground), there was insufficient excavation, and corrective excavation was required.

本発明の目的は、上記従来技術における課題を解決し、
地面基準の目標掘削深さに掘削することができる掘削機
の掘削深さ検出装置を提供するにある。
The purpose of the present invention is to solve the problems in the above-mentioned prior art,
An object of the present invention is to provide an excavation depth detection device for an excavator that can excavate to a target excavation depth based on ground standards.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するため、本発明は一1掘削機のフロ
ント機構を構成する各腕の回動角を検出する角度センサ
と、掘削機本体の傾斜を検出する角度センサと、これら
各角度センサの検出値に基づいて掘削機本体基準の掘削
深さを演算する演算手段とを備えた掘削機の掘削深さ検
出装置において、地面基準の絶対目標掘削深さを設定す
る設定器と、地面基準の設定位置に設置されたレーザ発
光器と、前記掘削機本体に取付けられるとともに、掘削
深さ方向に配列されて前記レーザ発光器からの光線を受
光する受光素子群より成る受光器と、前記設定器に設定
された値と前記受光器の受光位置とに基づいて、掘削機
本体上の所定位置からの前記絶対目標掘削深さを演算す
る他の演算手段とを設けたことを特徴とする。
In order to achieve the above object, the present invention provides an angle sensor for detecting the rotation angle of each arm constituting the front mechanism of an excavator, an angle sensor for detecting the inclination of the excavator body, and each of these angle sensors. In an excavation depth detection device for an excavator, the excavation depth detection device includes a calculation means for calculating an excavation depth based on the excavator main body based on a detected value of a laser emitter installed at a setting position; a light receiver comprising a group of light receiving elements attached to the excavator body and arranged in the excavation depth direction to receive the light beam from the laser emitter; and the setting position. The present invention is characterized by further comprising another calculating means for calculating the absolute target excavation depth from a predetermined position on the excavator main body based on a value set in the excavator and a light receiving position of the light receiver.

また、他の発明は、上記構成に加えて、前記演算手段お
よび前記他の演算手段により得られた各演算値を比較し
て両者が一致したとき信号を出力する比較手段を設けた
ことを特徴とする。
Further, another invention is characterized in that, in addition to the above configuration, a comparing means is provided for comparing each calculated value obtained by the calculating means and the other calculating means and outputting a signal when the two match. shall be.

さらに他の発明は、最初の発明に加えて、前記演算手段
および前記他の演算手段により得られた各演算値を表示
する表示器を設けたことを特徴とする。
Still another invention is characterized in that, in addition to the first invention, a display is provided for displaying each calculation value obtained by the calculation means and the other calculation means.

〔作用〕[Effect]

まず、地面を基準として所定位置にレーザ発光器を設置
し、また、地面を基準とした絶対目標掘削深さを設定器
に設定する。この設定器から出力される値と受光器のレ
ーザ光受光位置とに基づいて掘削機本体上の所定位置か
らの絶対目標掘削深さを演算する。そして、この演算さ
れた絶対目標掘削深さと他方の演算手段により演算され
た掘削機本体を基準とした掘削深さとを出力する。
First, a laser emitter is installed at a predetermined position with the ground as a reference, and an absolute target excavation depth with the ground as a reference is set in a setting device. An absolute target excavation depth from a predetermined position on the excavator body is calculated based on the value output from this setting device and the laser beam receiving position of the light receiver. Then, the calculated absolute target excavation depth and the excavation depth based on the excavator body calculated by the other calculation means are output.

上記他の発明では、上記2つの出力を比較手段により比
較し、両者が一致したとき信号を出力する。
In the other invention described above, the two outputs are compared by the comparing means, and a signal is output when the two match.

さらに、他の発明は、上記2つの出力を表示器に表示さ
せる。
Furthermore, another invention displays the above two outputs on a display.

〔実施例〕〔Example〕

以下、本発明を図示の実施例に基づいて説明する。 Hereinafter, the present invention will be explained based on illustrated embodiments.

第1図は本発明の実施例に係る掘削機の掘削深さ検出装
置の側面図である。図で、第6図に示す部分と同一部分
には同一符号を付して説明を省略する。10は第5図に
示すものと同じレーザレベラであり、基準となる地面G
0に設置されている。
FIG. 1 is a side view of an excavation depth detection device for an excavator according to an embodiment of the present invention. In the figure, parts that are the same as those shown in FIG. 6 are given the same reference numerals, and explanations thereof will be omitted. 10 is the same laser leveler as shown in Fig. 5, and the reference ground G is
It is set to 0.

H,は溝Aの真の目標掘削深さ、HL は地面G。H, is the true target excavation depth of trench A, and HL is ground G.

よりレーザレベラ10から出力されるレーザ光線Bまで
の垂直距離を示す。23は掘削機本体2に取付けられた
リニア受光器であり、レーザ光線Bを受光してその受光
位置を出力する。このリニア受光器23を図により説明
する。
This shows the vertical distance to the laser beam B output from the laser leveler 10. 23 is a linear light receiver attached to the excavator main body 2, which receives the laser beam B and outputs the light receiving position. This linear light receiver 23 will be explained with reference to the drawings.

第2図(a)、(b)はリニア受光器23の側面図およ
び正面図である。fは縦方向に列状に配列された光フア
イバ群、Cは各光ファイバの端部に結合された受光素子
群を示す。光フアイバ群fの各光ファイバは第2図(b
)に示すように千鳥状に2列に配列されている。各光フ
ァイバには、基準となる光ファイバ(後述する)にfo
、次いでf、 、f、 、・・・・・・・・・・・・f
、1と上方に順に符号が付され、また、下方にも順に符
号が付されている。
FIGS. 2(a) and 2(b) are a side view and a front view of the linear light receiver 23. f indicates a group of optical fibers arranged in a row in the vertical direction, and C indicates a group of light receiving elements coupled to the end of each optical fiber. Each optical fiber of the optical fiber group f is shown in FIG.
) are arranged in two rows in a staggered manner. Each optical fiber has a reference optical fiber (described later) with fo
, then f, , f, , ・・・・・・・・・・・・f
.

下方の光ファイバの符号の前には下方を意味する負号(
−)が付しである。Mは受光器23の受光範囲を示し、
pば隣接する光ファイバのピンチを示す。
The sign for the downward optical fiber is preceded by a negative sign (
-) is attached. M indicates the light receiving range of the light receiver 23;
p indicates a pinch between adjacent optical fibers.

ここで、第1図に戻り、第1のアーム4の回動支点から
目標掘削位置までの垂直距離をHoとし、また、当該回
動支点からレーザ光線Bまでの垂直距離をHxとすると
、 H,+1(L=Ho 十Hx −−−−−−−−−−−
−(3)であるから、 He =H,,+l(、−)(x  ・・・・・・・・
・・・・(4)となる。
Here, returning to FIG. 1, let Ho be the vertical distance from the rotational fulcrum of the first arm 4 to the target excavation position, and let Hx be the vertical distance from the rotational fulcrum to the laser beam B, H ,+1(L=Ho 10Hx −−−−−−−−−−−
-(3), so He =H,,+l(,-)(x...
...(4).

即ち、(4)式は第1のアーム4の回動支点から目標掘
削位置までの垂直距離を地面G0を基準として表した絶
対目標掘削深さの弐である。したがって、掘削中、掘削
器1の上記回動支点から掘削位置までの掘削距離H,と
(4)式で得られた値H0とを比較していれば、真の目
標掘削深さに達したか否かを知ることができる。なお、
値Heは前記(1)式の演算により得られる。
That is, equation (4) is the absolute target excavation depth expressed by the vertical distance from the pivot point of the first arm 4 to the target excavation position with respect to the ground G0. Therefore, during excavation, if the excavation distance H from the rotation fulcrum of the excavator 1 to the excavation position is compared with the value H0 obtained by equation (4), the true target excavation depth will be reached. You can know whether it is or not. In addition,
The value He is obtained by calculating the above equation (1).

上記(3)、(4)式中、値Hxはリニア受光器23の
出力により求められる。これを図により説明する。第3
図は値H8の演算を説明する線図である。図で、Pは第
1のアームの回動支点を示す。光ファイバf0は回動支
点Pに対して垂直位置にある光ファイバであり、この光
ファイバf0が基準の光ファイバとなる。光ファイバf
。と回動支点Pの位置関係は、本体2の傾斜の如何にか
かわらず固定された関係にある。ここで、光ファイバf
0と回動支点Pとの間の距離をし、レーザ光線Bが入射
している光ファイバをf8、回動支点Pを通る水平線上
にある光ファイバをf、とすると、光ファイバf、、f
、間の距離は値pX+となり、また、光ファイバf、、
f、間の距離は値pxjとなる。したがって、値H,は
、H,= (pXi+pXj)cosθ9・・・・・・
・・・・・・(5) ところで、値pxjは、1tane、であるから、結局
、値Hxは、 Hz = (pXi+Ltanθg)cosθ9・・・
・・・・・・・・・(6) となり、既知の値p、L、検出角eg、検出数値iに基
づき算出することができる。
In the above equations (3) and (4), the value Hx is determined from the output of the linear light receiver 23. This will be explained using a diagram. Third
The figure is a diagram explaining the calculation of the value H8. In the figure, P indicates the pivot point of the first arm. The optical fiber f0 is an optical fiber located perpendicular to the pivot point P, and this optical fiber f0 serves as a reference optical fiber. optical fiber f
. The positional relationship between the rotation support point P and the pivot point P is fixed regardless of the inclination of the main body 2. Here, the optical fiber f
0 and the rotational fulcrum P, the optical fiber on which the laser beam B is incident is f8, and the optical fiber on the horizontal line passing through the rotational fulcrum P is f, then the optical fiber f,... f
, the distance between them is the value pX+, and the optical fibers f, ,
The distance between f and is the value pxj. Therefore, the value H, is H,= (pXi+pXj)cosθ9...
(5) By the way, since the value pxj is 1tane, the value Hx is Hz = (pXi+Ltanθg)cosθ9...
(6) It can be calculated based on the known values p, L, the detected angle eg, and the detected numerical value i.

第4図は本実施例の掘削深さ検出装置のブロック図であ
る0図で、第7図に示す部分と同一部分には同一符号が
付しである。17′は演算装置、18’は設定器である
。設定器18′には、値(H(+HR)が設定される。
FIG. 4 is a block diagram of the excavation depth detection device of this embodiment, and the same parts as shown in FIG. 7 are given the same reference numerals. 17' is an arithmetic unit, and 18' is a setting device. The value (H (+HR)) is set in the setter 18'.

次に、本実施例の動作を説明する。まず、基準となる地
面G0にレーザレベラ10が設置され、レーザ光Bが放
射される。このとき、値(HL  +Hh)が測定され
、その測定値が設定器18′に設定される。掘削機1が
所定の位置に載置されると、傾斜角センサ15から値θ
9が出力され、かつ、受光器23から値(pxi)が出
力される。
Next, the operation of this embodiment will be explained. First, the laser leveler 10 is installed on the ground G0 serving as a reference, and the laser beam B is emitted. At this time, the value (HL +Hh) is measured and the measured value is set in the setting device 18'. When the excavator 1 is placed in a predetermined position, the inclination angle sensor 15 outputs the value θ.
9 is output, and the value (pxi) is output from the light receiver 23.

掘削が開始されると角度センサ12.13.14から値
θ1、e2、θ3が出力される。
When excavation is started, values θ1, e2, and θ3 are output from the angle sensors 12, 13, and 14.

演算装置17′はこれらの値を人力し、(1)式により
値H7を、(2)式により値H1を、さらに(6)式お
よび(4)式により値H0を算出し出力する。これらの
値は適宜表示装置21に表示され、掘削機」のオペレー
タはこの表示を見てどの程度掘削が進行したか、または
、あとどの程度掘削する必要があるかを知ることができ
る。−方、演算装置17′から出力された値Ht 、H
aは比較器19に入力され、掘削作業中、常に両者が一
致したか否かが比較される。両者が一致したとき、比較
器19から信号が出力され、ブザー20が作動する。掘
削機1のオペレータはこのブザ−20の動作により掘削
が目標掘削深さに達したことを知り、掘削を中止する。
The arithmetic unit 17' inputs these values manually, calculates and outputs the value H7 using equation (1), the value H1 using equation (2), and the value H0 using equations (6) and (4). These values are appropriately displayed on the display device 21, and the operator of the excavator can see how much excavation has progressed or how much more excavation is required. - On the other hand, the values Ht and H output from the arithmetic unit 17'
a is input to the comparator 19, and during the excavation work, the two are constantly compared to see if they match. When the two match, a signal is output from the comparator 19 and the buzzer 20 is activated. The operator of the excavator 1 knows from the operation of the buzzer 20 that the excavation has reached the target excavation depth, and stops the excavation.

このように、本実施例では、レーザ発光器および受光器
を用いたので、現掘削深さと比較すべき目標掘削深さを
地面を基準とした値とすることができ、正確な掘削が可
能となる。また、掘削機の移動毎に掘削機側に目標掘削
深さを設定する必要がなく、手間を省き作業効率を向上
させることができる。
In this way, in this example, since a laser emitter and a light receiver are used, the target excavation depth to be compared with the current excavation depth can be set as a value based on the ground, and accurate excavation is possible. Become. Further, there is no need to set a target excavation depth on the excavator side each time the excavator moves, which saves time and improves work efficiency.

なお、上記実施例の説明では、フロントが第1のアーム
、第2のアームおよびバケットで構成されている例につ
いて説明したが、これに限ることはなく、どのようなフ
ロントの構成に対しても適用可能である。また、リニア
受光器は光ファイバを用いずCOD素子等を直接配列す
ることもできる。
In addition, in the explanation of the above embodiment, an example was explained in which the front is composed of a first arm, a second arm, and a bucket, but the present invention is not limited to this, and the present invention can be applied to any front configuration. Applicable. Moreover, the linear light receiver can also directly arrange COD elements and the like without using optical fibers.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明では、レーザ発光器および受
光器を用いたので、現掘削深さと比較すべき目標掘削深
さを地面を基準とした値とすることができ、正確な掘削
が可能となる。また、掘削機の移動毎に掘削機側に目標
掘削深さを設定する必要がなく、手間を省き作業効率を
向上させることができる。
As described above, in the present invention, since a laser emitter and a light receiver are used, the target excavation depth to be compared with the current excavation depth can be set as a value based on the ground, and accurate excavation is possible. becomes. Further, there is no need to set a target excavation depth on the excavator side each time the excavator moves, which saves time and improves work efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る掘削機の掘削深さ検出装
置の側面図、第2図(a)、(b)は第1図に示す受光
器の側面図および正面図、第3図は演算式を説明するた
めの線図、第4図は掘削深さ検出装置のブロック図、第
5図および第6図は従来の掘削深さ検出装置の側面図、
第7図は第6図に示す掘削深さ検出装置のブロック図で
ある。 1・・・・・・掘削機、2・・・・・・掘削機本体、l
O・・・・・・レーザ発光器、12.13.14・・・
・・・角度センサ、15・・・・・・傾斜角センサ、2
3・・・・・・受光器。 第1図 10  レーサゝレヘ1ラ   23°ヅと先暑番−1
2,13,14°鮪を週、A溝 第3図 第4図 第5図 第6図 第7図
1 is a side view of an excavation depth detection device for an excavator according to an embodiment of the present invention, FIGS. 2(a) and 2(b) are a side view and a front view of the receiver shown in FIG. The figure is a diagram for explaining the calculation formula, Figure 4 is a block diagram of the excavation depth detection device, Figures 5 and 6 are side views of the conventional excavation depth detection device,
FIG. 7 is a block diagram of the excavation depth detection device shown in FIG. 6. 1...excavator, 2...excavator main body, l
O... Laser emitter, 12.13.14...
... Angle sensor, 15 ... Tilt angle sensor, 2
3... Light receiver. Figure 1 10 Racer Rehe 1 Ra 23°zu and Sakiban-1
2, 13, 14° tuna, A groove, Figure 3, Figure 4, Figure 5, Figure 6, Figure 7.

Claims (3)

【特許請求の範囲】[Claims] (1)掘削機のフロント機構を構成する各腕の回動角を
検出する角度センサと、掘削機本体の傾斜を検出する角
度センサと、これら各角度センサの検出値に基づいて掘
削機本体基準の掘削深さを演算する演算手段とを備えた
掘削機の掘削深さ検出装置において、地面基準の絶対目
標掘削深さを設定する設定器と、地面基準の設定位置に
設置されたレーザ発光器と、前記掘削機本体に取付けら
れるとともに掘削深さ方向に配列されて前記レーザ発光
器からの光線を受光する受光素子群より成る受光器と、
前記設定器に設定された値と前記受光器の受光位置とに
基づいて掘削機本体上の所定位置からの前記絶対目標掘
削深さを演算する他の演算手段とを設けたことを特徴と
する掘削機の掘削深さ検出装置。
(1) An angle sensor that detects the rotation angle of each arm that makes up the front mechanism of the excavator, an angle sensor that detects the inclination of the excavator body, and a standard for the excavator body based on the detected values of these angle sensors. An excavation depth detection device for an excavator, comprising: a setting device for setting an absolute target excavation depth based on a ground reference; and a laser emitter installed at a setting position based on the ground reference. and a light receiver comprising a group of light receiving elements that are attached to the excavator body and arranged in the excavation depth direction to receive the light beam from the laser emitter;
The excavator is characterized by further comprising another calculating means for calculating the absolute target excavation depth from a predetermined position on the excavator main body based on the value set in the setting device and the light receiving position of the light receiver. Excavator excavation depth detection device.
(2)請求項(1)記載の掘削機の掘削深さ検出装置に
おいて、前記演算手段および前記他の演算手段により得
られた各演算値を比較して両者が一致したとき出力を発
生する比較手段を設けたことを特徴とする掘削機の掘削
深さ検出装置。
(2) In the excavation depth detecting device for an excavator according to claim (1), each calculation value obtained by the calculation means and the other calculation means is compared and an output is generated when the two match. An excavation depth detection device for an excavator, characterized in that it is provided with a means.
(3)請求項(1)において、前記演算手段および前記
他の演算手段により得られた各演算値を表示する表示器
を設けたことを特徴とする掘削機の掘削深さ検出装置。
(3) The excavation depth detection device for an excavator according to claim (1), further comprising a display that displays each calculated value obtained by the calculation means and the other calculation means.
JP2222473A 1990-08-27 1990-08-27 Excavated depth detector of excavator Pending JPH04106229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2222473A JPH04106229A (en) 1990-08-27 1990-08-27 Excavated depth detector of excavator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2222473A JPH04106229A (en) 1990-08-27 1990-08-27 Excavated depth detector of excavator

Publications (1)

Publication Number Publication Date
JPH04106229A true JPH04106229A (en) 1992-04-08

Family

ID=16782967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2222473A Pending JPH04106229A (en) 1990-08-27 1990-08-27 Excavated depth detector of excavator

Country Status (1)

Country Link
JP (1) JPH04106229A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998010147A1 (en) * 1996-09-04 1998-03-12 Shin Caterpillar Mitsubishi Ltd. Construction machine with laser measuring instrument
EP0902131A4 (en) * 1997-02-13 2000-06-07 Hitachi Construction Machinery Slope excavation controller of hydraulic shovel, target slope setting device and slope excavation forming method
WO2001025549A1 (en) * 1999-10-01 2001-04-12 Hitachi Construction Machinery Co., Ltd. Target excavation surface setting device for excavation machine, recording medium therefor and display unit
KR100916638B1 (en) * 2007-08-02 2009-09-08 인하대학교 산학협력단 Device for Computing the Excavated Soil Volume Using Structured Light Vision System and Method thereof
JP2020101008A (en) * 2018-12-21 2020-07-02 株式会社東芝 Device, method and program for measuring excavation depth

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997401A (en) * 1973-01-24 1974-09-14
JPS56105030A (en) * 1980-01-22 1981-08-21 Komatsu Ltd Automatic controller for working machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997401A (en) * 1973-01-24 1974-09-14
JPS56105030A (en) * 1980-01-22 1981-08-21 Komatsu Ltd Automatic controller for working machine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998010147A1 (en) * 1996-09-04 1998-03-12 Shin Caterpillar Mitsubishi Ltd. Construction machine with laser measuring instrument
US6209232B1 (en) 1996-09-04 2001-04-03 Shin Caterpillar Mitsubishi Ltd. Construction machine with function of measuring finishing accuracy of floor face smoothed thereby
EP0902131A4 (en) * 1997-02-13 2000-06-07 Hitachi Construction Machinery Slope excavation controller of hydraulic shovel, target slope setting device and slope excavation forming method
WO2001025549A1 (en) * 1999-10-01 2001-04-12 Hitachi Construction Machinery Co., Ltd. Target excavation surface setting device for excavation machine, recording medium therefor and display unit
EP1186720A1 (en) * 1999-10-01 2002-03-13 Hitachi Construction Machinery Co., Ltd. Target excavation surface setting device for excavation machine, recording medium therefor and display unit
US6532409B1 (en) 1999-10-01 2003-03-11 Hitachi Construction Machinery Co., Ltd. Target excavation surface setting device for excavation machine, recording medium therefor and display unit
EP1186720A4 (en) * 1999-10-01 2008-11-19 Hitachi Construction Machinery Target excavation surface setting device for excavation machine, recording medium therefor and display unit
KR100916638B1 (en) * 2007-08-02 2009-09-08 인하대학교 산학협력단 Device for Computing the Excavated Soil Volume Using Structured Light Vision System and Method thereof
JP2020101008A (en) * 2018-12-21 2020-07-02 株式会社東芝 Device, method and program for measuring excavation depth

Similar Documents

Publication Publication Date Title
US10697759B2 (en) All-in-one integrated sensing device for machine control
US6691437B1 (en) Laser reference system for excavating machine
US5848485A (en) System for determining the position of a tool mounted on pivotable arm using a light source and reflectors
EP0288314B1 (en) Apparatus and method for controlling a hydraulic excavator
US5682311A (en) Apparatus and method for controlling a hydraulic excavator
US4726682A (en) Depth measuring apparatus for a dredger
JP2012233353A (en) Calibration system for hydraulic shovel and calibration method for the hydraulic shovel
KR20130111199A (en) Measuring apparatus for excavating and similar equipment
EP1914352A2 (en) Control and method of control for an earthmoving system
US6480289B1 (en) Position measuring apparatus and optical deflection angle measuring apparatus for underground excavators
JP4545818B2 (en) Excavation support apparatus and excavation support method
JPH04106229A (en) Excavated depth detector of excavator
JP3429046B2 (en) Position measurement light emitting device and light emitting device mounting structure
US6536142B2 (en) Excavator for a ditch and excavating method therefor
KR20160034563A (en) Coordinate Measuring System for Excavating Work and Method Thereof
JP2003262090A (en) Position measuring device for tunnel excavator
JP2003082990A (en) Position measuring device of tunnel boring machine
JP4477209B2 (en) Direction angle measuring device for construction machinery
JP2769412B2 (en) Small caliber thruster
JPH0461929B2 (en)
JPH01137093A (en) Excavation monitor
JPH10293028A (en) Device for measuring position of underground digging machine
US20230417026A1 (en) Determination of an excavator swing boom angle based on intermittent first interim swing boom angles
JPH10221070A (en) Apparatus for measuring verticality of excavator
JP2926010B2 (en) Survey method of curved tunnel