JPH04104213A - Lens for optical scanning and optical scanning optical system - Google Patents

Lens for optical scanning and optical scanning optical system

Info

Publication number
JPH04104213A
JPH04104213A JP22321890A JP22321890A JPH04104213A JP H04104213 A JPH04104213 A JP H04104213A JP 22321890 A JP22321890 A JP 22321890A JP 22321890 A JP22321890 A JP 22321890A JP H04104213 A JPH04104213 A JP H04104213A
Authority
JP
Japan
Prior art keywords
deflection
curvature
radius
light
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22321890A
Other languages
Japanese (ja)
Inventor
Osamu Endo
理 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP22321890A priority Critical patent/JPH04104213A/en
Publication of JPH04104213A publication Critical patent/JPH04104213A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To excellently compensate curvature of field in a main-scanning and a subscanning direction although single-lens constitution is employed by making an object-side surface concave and using a convex toroidal surface as an image-side surface. CONSTITUTION:The object-side surface in a deflecting surface is represented by an aspherical surface curve which has a radius R1m of on-axis curvature and a cone constant K, and the image-side surface has a radius R2m of curvature. In this surface, the object-side surface has the radius R1m of curvature and the image-side surface has the radius R4d2m of curvature; and the radius of on-axis curvature and radius of curvature satisfy large/small relations ¦R1m¦ > ¦R1a¦ and ¦R2m¦, and ¦R1m¦ > R2a¦ and ¦R1a¦ > ¦R2a¦ when R1m <0, R1a<0, and R2m<0. Then the object-side surface is a concave surface obtained by rotating the aspherical surface curve which has the radius R1m of on-axis curvature and the cone constant K and is in a plane of deflection around an axis which crosses the optical axis in the plane of deflection at right angles and is at a distance R1m from a light spherical curve on the optical axis. Further, the image-side surface is the convex toroidal surface obtained by rotating an arc which has a radius R2a and is in an orthogonal plane of deflection around an axis J which crosses the optical axis in the orthogonal plane of deflection at right angles and is at a distance R2m from the arc on the optical axis. Consequently, the curvature of field is excellently compensated in the main-scanning and subscanning directions.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は光走査用レンズ及び光走査光学系に関する。[Detailed description of the invention] [Industrial application fields] The present invention relates to an optical scanning lens and an optical scanning optical system.

[従来の技術] 等角速度的に偏向される集束光束を更に集束させて被走
査面上に光スポットとして結像せしめ。
[Prior Art] A focused light beam deflected at a constant angular velocity is further focused and imaged as a light spot on a surface to be scanned.

被走査面を略等速的に光走査させる光走査用レンズが知
られている。
2. Description of the Related Art An optical scanning lens that optically scans a surface to be scanned at approximately constant speed is known.

[発明が解決しようとする課題] 光走査装置では光走査用レンズの像面湾曲が主・副走査
方向に就いて良好に補正されていないと光スポツト径が
光スポットの像高により変化して良好な光走査を実現8
来ない。
[Problem to be solved by the invention] In an optical scanning device, if the field curvature of the optical scanning lens is not well corrected in the main and sub-scanning directions, the diameter of the optical spot will change depending on the image height of the optical spot. Achieves good optical scanning8
do not come.

上記光走査用レンズは、主・副走査方向の像面湾曲を同
時に良好に補正することが困難であり、通常は主走査方
向の像面湾曲を良好に補正し、副走査方向の像面湾曲に
就いては長尺シリンダーレンズ等で補正することが行わ
れている。このため光走査光学系の光学系要素が多くな
り光走査装置の複雑化・高コスト化を招来していた。
It is difficult for the above-mentioned optical scanning lenses to satisfactorily correct the curvature of field in the main and sub-scanning directions at the same time.Usually, the curvature of field in the main scanning direction is corrected well, and the curvature of field in the sub-scanning direction is corrected well. This is corrected using a long cylinder lens or the like. For this reason, the number of optical system elements in the optical scanning optical system increases, leading to an increase in the complexity and cost of the optical scanning device.

本発明は上述した事情に鑑みてなされたものであって、
単レンズ構成でありながら主・副走査方向の像面湾曲を
良好に補正した新規な光走査用レンズ及びこのレンズを
用いる光走査光学系の提供を目的とする。
The present invention was made in view of the above-mentioned circumstances, and
The object of the present invention is to provide a novel optical scanning lens that satisfactorily corrects field curvature in the main and sub-scanning directions despite having a single lens configuration, and an optical scanning optical system using this lens.

[課題を解決するための手段] 本発明の光走査用レンズは「光偏向装置の偏向反射面に
より等角速度的に偏向される集束光束を更に集束させて
被走査面上に光スポットとして結像せしめ、上記被走査
面を略等速的に光走査させるだめのレンズ」であり、単
レンズとして構成される。
[Means for Solving the Problems] The optical scanning lens of the present invention further converges a focused light beam that is deflected at a constant angular velocity by a deflection reflection surface of an optical deflection device and forms an image as a light spot on a scanned surface. This is a lens for scanning the surface to be scanned with light at a substantially constant speed, and is configured as a single lens.

理想的に偏向される集束光束の主光線の掃引により形成
される面を「偏向面」、光軸を通り偏向面に直交する面
を「偏向直交面」と称する。
A plane formed by sweeping the principal ray of a convergent beam that is ideally deflected is called a "deflection plane", and a plane passing through the optical axis and perpendicular to the deflection plane is called a "deflection orthogonal plane".

第2図に於いて(A)は本発明の光走査用レンズの偏向
面内での形状、即ち偏向面による断面形状を示している
。偏向面内に於いて物体側の面は軸上曲率半径R1mと
円錐定数Kを有する非球面曲線である。像側面は曲率半
径R2+aを有する。同図(B)は偏向直交面内でのレ
ンズ形状を示している。この面内で物体側面は曲率半径
R1mを持ち、像側面は曲率半径R2nを持つ、これら
軸上曲率半径・曲率半径は R1m 〈01 Rl a 〈01 R21−< 01
 R2m< 0でlR++++llR+a  +  R
2−1〉IR2nl且つ1r++、l>lr+z−1,
lR+−> Rlmの大小関係を満足する。
In FIG. 2, (A) shows the shape within the deflection plane of the optical scanning lens of the present invention, that is, the cross-sectional shape by the deflection plane. In the deflection plane, the object side surface is an aspherical curve having an axial radius of curvature R1m and a conic constant K. The image side surface has a radius of curvature R2+a. The figure (B) shows the lens shape within the plane perpendicular to the deflection. In this plane, the object side surface has a radius of curvature R1m, and the image side surface has a radius of curvature R2n.
R2m< 0 and lR++++llR+a + R
2-1>IR2nl and 1r++, l>lr+z-1,
The magnitude relationship lR+->Rlm is satisfied.

これから明らかなように、光走査レンズは偏向面内・偏
向直交面内とも物体側(第2図左方)に凹面を向けた正
のメニスカスレンズとしての機能を持つ。
As is clear from this, the optical scanning lens functions as a positive meniscus lens with its concave surface facing the object side (left side in FIG. 2) both in the deflection plane and in the plane orthogonal to the deflection plane.

物体側面は[光軸上曲率半径R1゜・円錐定数Kを持ち
偏向面内に在る非球面曲線」を「偏向面内で光軸に直交
し上記非球面曲線と光軸上でR1−Rれた軸」の回りに
回転して得られる凹面である。
The side surface of the object is an aspherical curve with a radius of curvature R1° on the optical axis and a conic constant K that lies within the deflection plane. It is a concave surface obtained by rotating around an axis.

上記「非球面曲線」とは、光軸方向の座標をX、光軸直
交方向の座標をY、光軸上曲率半径をR9円錐定数をに
、高次の非球面係数をA2+^3. とするときX=[
Y2/(R+  R−]+K Y”)]+A2Y2+A
3Y3+、、 、      (1)で表される曲線で
ある。本発明の光走査用レンズの物体側面は偏向面内上
の断面形状が、(1)式のRをR3,とじて得られる非
球面曲線となっている。
The above-mentioned "aspherical curve" means the coordinate in the optical axis direction as X, the coordinate in the direction perpendicular to the optical axis as Y, the radius of curvature on the optical axis as R9, the conic constant, and the higher-order aspherical coefficient as A2+^3. When X=[
Y2/(R+ R-]+K Y")]+A2Y2+A
This is a curve represented by 3Y3+, , (1). The cross-sectional shape of the object side surface of the optical scanning lens of the present invention on the inside of the deflection plane is an aspherical curve obtained by dividing R in equation (1) by R3.

像側面は「半径R2nで偏向直交面内に在る円弧」を「
偏向直交面内で光軸に直交し、上記円弧から光軸上でR
22nはなれた軸」の回りに回転して得られる凸のトロ
イダル面である。
The image side surface is a circular arc with radius R2n that lies in the plane orthogonal to the deflection plane.
perpendicular to the optical axis in the plane orthogonal to deflection, and R on the optical axis from the above circular arc.
22n is a convex toroidal surface obtained by rotating around a separate axis.

偏向反射面から、この偏向反射面により偏向された集束
光束の自然集光点までの距離をSとするとき、本発明の
光走査用レンズは (I)    −35,0(R1,/K  <  −1
3,0(II)   −7,0X10’  <  S−
R,、<  −2n5X10’(III)     1
.3   <  R+a/Rza   <  2.1な
る条件を特徴する 請求項2の光走査光学系は「光源装置と、光源装置から
の光束を集束光束化する集束光学系と。
When the distance from the deflection-reflection surface to the natural focal point of the focused light beam deflected by the deflection-reflection surface is S, the optical scanning lens of the present invention has the following formula: (I) −35,0(R1,/K < -1
3,0(II) -7,0X10'< S-
R,,<-2n5X10'(III) 1
.. The light scanning optical system according to claim 2, characterized by the condition 3<R+a/Rza<2.1, includes: "a light source device; and a focusing optical system that converges a light beam from the light source device."

集束光学系による集束光束を等角速度的に偏向させる偏
向装置と、偏向装置により偏向された集束光束をさらに
集束させて被走査面上に光スポットとして結像せしめ、
被走査面を略等速的に光走査させる光走査用レンズと」
を有する。
a deflection device that deflects the focused light beam by the focusing optical system at a constant angular velocity; further focuses the focused light beam deflected by the deflection device to form an image as a light spot on the scanned surface;
An optical scanning lens that scans the surface to be scanned with light at approximately constant velocity.
has.

光走査用レンズとしては請求項1の光走査用レンズが使
用される。
The optical scanning lens according to claim 1 is used as the optical scanning lens.

本発明の光走査用レンズは偏向反射面の所謂1面倒れ」
を補正する鍜止を持たない。そこで光走査装置の偏向装
置としては、面倒れを生じない「ピラミダルミラー(回
転軸を軸に45度傾けて切断し、切断面を鏡面とした偏
向装fit) Jを用いる(請求項3)か、或は[面倒
れに就き精度の良い回転多面鏡」を用いる(請求項4)
のが好ましい。
The optical scanning lens of the present invention has a so-called one-sided tilt of the polarizing reflection surface.
It does not have a stop to compensate for this. Therefore, as the deflection device of the optical scanning device, a "pyramidal mirror (deflection device fit, which is cut at a 45 degree inclination around the rotation axis and whose cut surface is a mirror surface)" that does not cause surface tilt is used (Claim 3). , or use a "rotating polygon mirror with good surface tilt accuracy" (Claim 4)
is preferable.

なお、上に於いて「被走査面を略等速的に光走査させる
」とは、本発明による光走査用レンズにより実現される
光走査と理想的な等迷光走査とのずれが、電気的に補正
可能な程度であることを意味する。
In addition, in the above, "the surface to be scanned is optically scanned at approximately constant speed" means that the deviation between the optical scanning achieved by the optical scanning lens according to the present invention and the ideal uniform stray optical scanning is caused by electrical This means that it can be corrected to the extent that

[作  用] 第1図は本発明の光走査光学系の1例を説明図的に示し
ている。即ちこの図は、光源装置Qから被走査面6まで
を光路に沿って展開し、主走査方向が上下方向に対応す
るようにして描いた図である。光源装置Qとしては半導
体レーザーが想定されている。
[Function] FIG. 1 schematically shows an example of the light scanning optical system of the present invention. That is, this figure is a diagram developed along the optical path from the light source device Q to the surface to be scanned 6, and drawn so that the main scanning direction corresponds to the vertical direction. As the light source device Q, a semiconductor laser is assumed.

光源装置Qからの光束は集光光学系としての集光レンズ
2により集束光束に変換され、偏向装置の偏向反射面3
により反射され、偏向装置により偏向反射面の向きが回
転されることにより偏向される。偏向された集光光束は
、光走査用レンズ5に入射するが、もし光走査用レンズ
5がなければ自然集光点Q′に集光し、偏向に伴い自然
集光点Q′は円弧に近い軌跡4を描く、偏向装置として
ピラミダルミラーを用いれば軌跡4は円弧になる。
The light flux from the light source device Q is converted into a focused light flux by a condensing lens 2 as a condensing optical system, and the light flux is converted into a condensed light flux by a condensing lens 2 as a condensing optical system.
and is deflected by rotating the direction of the deflection reflection surface by a deflection device. The deflected condensed light beam enters the optical scanning lens 5, but if the optical scanning lens 5 were not present, it would be condensed at the natural focal point Q', and due to the deflection, the natural focal point Q' would become an arc. If a pyramidal mirror is used as a deflection device to draw a close trajectory 4, the trajectory 4 becomes an arc.

光走査用レンズ5は入射集束光束を更に集束させて被走
査面7上に光スポットとして結像せしめる。集束光束の
偏向に伴い光スポットは被走査面6上を略等速的に移動
して光走査を行う。
The optical scanning lens 5 further focuses the incident focused light beam and forms an image on the scanned surface 7 as a light spot. As the focused light beam is deflected, the light spot moves substantially uniformly on the surface to be scanned 6 to perform optical scanning.

このように光走査用レンズ5は、理想的には、自然集光
点Q′の軌跡4を虚光源物体位置とし、これと被走査面
6とを共役関係に結び付けるように構成される。
In this way, the optical scanning lens 5 is ideally configured to take the locus 4 of the natural condensing point Q' as the virtual light source object position, and to link this to the surface to be scanned 6 in a conjugate relationship.

さて本発明の光走査用レンズは主走査方向の像面湾曲を
良好に補正するために、物体側面に「非球面曲線Jを回
転して得られる特殊な凹面を採用した。この凹面は前述
の如く「偏向面上に在り、光軸上の曲率半径がR,で円
錐定数Kを有する非球面曲線」を偏向面内で光軸に直交
する軸の回りに回転して得られる。この回転軸と物体側
面とは光軸上でR1+iだけ離れている。
Now, in order to satisfactorily correct field curvature in the main scanning direction, the optical scanning lens of the present invention employs a special concave surface obtained by rotating the aspherical curve J on the object side. It is obtained by rotating "an aspherical curve existing on the deflection plane, having a radius of curvature R on the optical axis and a conic constant K" around an axis perpendicular to the optical axis within the deflection plane. This axis of rotation and the side surface of the object are separated by R1+i on the optical axis.

この物体側面に就いてはRlmとにとが、条件(I)を
満足する。R1,(Oであるのでに〉0である。
Regarding this object side surface, Rlm and Nito satisfy condition (I). R1, (Since it is O,>0.

条件(I)の下限を越えると主走査方向の像面湾曲はア
ンダー側に倒れ、上限を越えるとオーバー側に倒れる。
When the lower limit of condition (I) is exceeded, the curvature of field in the main scanning direction falls to the under side, and when the upper limit is exceeded, it falls to the over side.

従って条件(1)の範囲が適当である。Therefore, the range of condition (1) is appropriate.

像側面には副走査方向の像面湾曲を良好に補正するため
にトロイダル面を採用した。
A toroidal surface is used on the image side to properly correct field curvature in the sub-scanning direction.

本発明のレンズ面構成では像側面は副走査方向に関して
、物体側面で集束傾向を弱められた集束光束に対して強
い集束傾向を与える作用を持つ。
In the lens surface configuration of the present invention, the image side surface has the effect of imparting a strong focusing tendency to a convergent light beam whose focusing tendency has been weakened at the object side surface in the sub-scanning direction.

即ち、像側面は光スポットの結像位置を光走査用レンズ
側へ近づける作用を持つ。一般に偏向角が大きくなるに
従い、像側面の副走査方向の曲率が強くなり上記[光ス
ポットの結像位置を光走査用レンズ側へ近づける作用」
も強くなり、偏向角犬なるところでは自然集光点が被走
査面に近づくことと相まって大きな負の像面湾曲を副走
査方向に発生させ易い。そこで本発明では偏向角の増大
に伴う副走査方向の曲率の増大傾向の少ないトロイダル
面を像側面に採用した。
That is, the image side surface has the effect of bringing the imaging position of the light spot closer to the optical scanning lens side. In general, as the deflection angle increases, the curvature of the image side surface in the sub-scanning direction becomes stronger, and as described above [effect of bringing the imaging position of the light spot closer to the optical scanning lens side].
When the deflection angle increases, the natural focal point approaches the scanned surface, and this tends to cause a large negative field curvature in the sub-scanning direction. Therefore, in the present invention, a toroidal surface whose curvature tends not to increase in the sub-scanning direction as the deflection angle increases is employed on the image side surface.

像側面に関しては条件(II)が満足される。Regarding the image side surface, condition (II) is satisfied.

条件(II)の下限を越えると副走査方向の像面湾曲が
アンダー側に倒れ、上限を越えるとオーバー側に倒れる
。従って条件(II)の範囲が適当である。
When the lower limit of condition (II) is exceeded, the field curvature in the sub-scanning direction falls to the underside, and when the upper limit is exceeded, the field curvature falls to the overside. Therefore, the range of condition (II) is appropriate.

また条件(III)は非点収差を良好にするための条件
である。
Condition (III) is a condition for improving astigmatism.

条件(III)の下限を越えると副走査方向における光
スポツト結像位置が光走査用レンズ側へずれ、上限を越
えると反対側へずれる。従って条件(III)の範囲を
外れると非点収差が大きくなってしまう。
When the lower limit of condition (III) is exceeded, the optical spot imaging position in the sub-scanning direction shifts toward the optical scanning lens, and when the upper limit is exceeded, it shifts toward the opposite side. Therefore, outside the range of condition (III), astigmatism becomes large.

[実施例コ 以下、具体的な実施例を挙げる。[Example code] Specific examples will be given below.

第3図に示すように物体側面の曲率半径を偏向面内(主
走査方向に対応)に就き11+−(光軸上曲率半径)、
偏向直交面内(副走査方向に対応)に就きR1,。
As shown in Figure 3, the radius of curvature of the side surface of the object in the deflection plane (corresponding to the main scanning direction) is 11 + - (radius of curvature on the optical axis).
R1 in the plane perpendicular to the deflection (corresponding to the sub-scanning direction).

像側面の曲率半径を偏向面内に就きR21、偏向直交面
内に就きR2n、光軸上のレンズ肉厚をd8、レンズ材
料の屈折率をn、偏向反射面3と物体側面との光軸上距
離をd。、像側面と被走査面との光軸上距離をDとする
The radius of curvature of the image side surface is R21 in the deflection plane, R2n is in the plane perpendicular to the deflection, the lens thickness on the optical axis is d8, the refractive index of the lens material is n, and the optical axis between the deflection reflection surface 3 and the object side surface is The upper distance is d. , the distance on the optical axis between the image side surface and the surface to be scanned is D.

また第1図に即して説明したように偏向反射面位置から
計って自然集光点Q′までの距離をSとする。偏向反射
面から光源装置側は与えられたSを実現するように適宜
構成できる。なお偏向装置としては各実施例ともピラミ
ダルミラーを想定している。
Further, as explained with reference to FIG. 1, the distance from the position of the deflecting reflection surface to the natural light convergence point Q' is defined as S. The light source device side from the deflection reflection surface can be configured as appropriate to realize the given S. Note that a pyramidal mirror is assumed as the deflection device in each embodiment.

実施例1 s=990.o         d、=30.0R’
7==−400,ORt、”−82nOd、=15.O
n=1.5721R1,=−aa、o  R1−=−4
2nOD =124.594物体側面の円錐定数:=2
8.0 条件値 R1,/に=−14,29,5−Rx、=−6,7x 
10’、R1,/Rz、=1.95有効主走査長:21
6.6.リニアティ:17.3%以下実施例2 S=390.0         da =30.0R
’i−”−320,ORt−”−55,2dt”15.
o  rFl、5721R2−”−82n5Rz−”−
38,OD =126.041物体側面の円錐定数:=
11.0 条件値 Rt、/に=−29,09,S−R,、=−3,2x 
10’、R,、/Rt、=1.45有効主走査長:21
7.7.リニアティ:23.8%以下実施例3 S=790.0        d。=30.0Ri’
、ニー400.OR,、=−72n2d、:15.On
=1.5721Rz、”−70,OR2−”−40,O
D ”124.092物体側面の円錐定数:=25.0 条件値 Rt、/に=−16,0、s−R,、=−s、sX 1
0’、Rt、/Rz、=1.81有効主走査長:216
.6.リニアティ:I7.8%以下実施例4 S=630.Odo”30.0 Rj、ニー320.OR,、=−69,Od、=15.
o  n=1.5721R2n=−70,OR,、=−
40,0D=124.195物体側面の円錐定数:=1
0.0 条件値 R,、/バ=−32.0 、5−R2n=−4,4XI
O’、R,、/R□=1.725有効主走査長:218
.7.リニアティ:20.6%以下実施例5 S=790.0         d、=30.0R’
i−”−320,ORt−”−72n2d、=ts、o
  n=1.5721Rz−”−68,0Rx−”−4
0,40=225.892物体側面の円錐定数:=13
.0 条件値 R1ヨ/に=−24,6、S−R,、=−5,4xlO
’、Rt、/R2n=1.79有効主走査長:214.
O,リニアティ: 19.6%以下第4図乃至第8図に
それぞれ実施例1〜5に関する像面湾曲図(破線は主走
査方向、実線は副走査方向)を示す。
Example 1 s=990. o d,=30.0R'
7==-400,ORt,"-82nOd,=15.O
n=1.5721R1,=-aa,o R1-=-4
2nOD = 124.594 Conic constant of object side: = 2
8.0 Condition value R1, /=-14,29,5-Rx,=-6,7x
10', R1, /Rz, = 1.95 effective main scanning length: 21
6.6. Linearity: 17.3% or less Example 2 S = 390.0 da = 30.0R
'i-"-320, ORt-"-55, 2dt"15.
o rFl, 5721R2-"-82n5Rz-"-
38, OD = 126.041 Conic constant of the object side: =
11.0 Condition value Rt, /=-29,09,SR,,=-3,2x
10', R, , /Rt, = 1.45 effective main scanning length: 21
7.7. Linearity: 23.8% or less Example 3 S=790.0 d. =30.0Ri'
, knee 400. OR,,=-72n2d,:15. On
=1.5721Rz,”-70,OR2-”-40,O
D "124.092 Conic constant of object side: = 25.0 Condition value Rt, / to = -16,0, s-R,, = -s, sX 1
0', Rt, /Rz, = 1.81 effective main scanning length: 216
.. 6. Linearity: I7.8% or less Example 4 S=630. Odo”30.0 Rj, Knee 320.OR,,=-69,Od,=15.
o n=1.5721R2n=-70,OR,,=-
40,0D=124.195 Conic constant of object side:=1
0.0 Condition value R,,/bar=-32.0, 5-R2n=-4,4XI
O', R, , /R□=1.725 Effective main scanning length: 218
.. 7. Linearity: 20.6% or less Example 5 S = 790.0 d, = 30.0 R'
i-”-320,ORt-”-72n2d,=ts,o
n=1.5721Rz-”-68,0Rx-”-4
0,40=225.892 Conic constant of object side:=13
.. 0 Condition value R1yo/to = -24,6, S-R,, = -5,4xlO
', Rt, /R2n=1.79 Effective main scanning length: 214.
O, linearity: 19.6% or less FIGS. 4 to 8 show field curvature diagrams for Examples 1 to 5, respectively (the broken line indicates the main scanning direction, and the solid line indicates the sub scanning direction).

各実施例とも主・副走査方向の像面湾曲が極めてバラン
ス良く補正されている。またリニアリティも良好で、電
気的に十分補正できる範囲内である。なお上記実施例に
於いて物体面を規定する非球面曲線で高次の非球面係数
は全てOであるが、これら高次の係数を用いた非球面曲
線を利用するとより精細に像面湾曲補正を行いうる。
In each embodiment, the curvature of field in the main and sub-scanning directions is corrected in an extremely well-balanced manner. The linearity is also good and within a range that can be sufficiently corrected electrically. In the above embodiment, all the high-order aspherical coefficients in the aspherical curve that defines the object surface are O, but if you use the aspherical curve using these high-order coefficients, you can correct the field curvature more precisely. can be done.

[発明の効果コ 以上、本発明に依れば新規な光走査用レンズ及び装置を
提供できる。
[Effects of the Invention] As described above, according to the present invention, a novel optical scanning lens and device can be provided.

この光走査用レンズ・光走査光学系は上記の如き構成と
なっているから、単レンズ構成ながら主・副走査方向の
像面湾曲を良好に補正して良好な光走査を実現できる。
Since this light scanning lens/light scanning optical system has the above-described configuration, it is possible to satisfactorily correct field curvature in the main and sub-scanning directions and realize good light scanning even though it is a single lens structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光走査光学系を説明するための図、第
2図は本発明の光走査用レンズを説明するための図、第
3図は実施例を説明するための図。 第4図乃至第8図は各実施例に関する像面湾曲図である
。 301.偏向反射面、501.光走査用レンズ、608
.被34因 と裏方−例4) 杏5図 (9JE:);!=・ノ Z) 杢6回 (寅光P)δ)
FIG. 1 is a diagram for explaining a light scanning optical system of the present invention, FIG. 2 is a diagram for explaining a light scanning lens of the present invention, and FIG. 3 is a diagram for explaining an embodiment. FIGS. 4 to 8 are field curvature diagrams for each embodiment. 301. Polarized reflective surface, 501. Optical scanning lens, 608
.. 34 causes and behind the scenes - Example 4) Anzu 5 (9JE:);! =・ノ Z) 6 times heather (Torako P) δ)

Claims (1)

【特許請求の範囲】 1、光偏向装置の偏向反射面により等角速度的に偏向さ
れる集束光束を更に集束させて被走査面上に光スポット
として結像せしめ、上記被走査面を略等速的に光走査さ
せるためのレンズであって、単レンズとして構成され、 理想的に偏向される集束光束の主光線の掃引により形成
される面を偏向面、光軸を通り偏向面に直交する面を偏
向直交面とするとき、偏向面内に於ける物体側面の光軸
上曲率半径:R_1_m、像側面の曲率半径:R_2_
m、偏向直交面内に於ける物体側面の曲率半径:R_1
_n、像側面の曲率半径:R_2_nが、R_1_m<
0、R_1_n<0、R_2_m<0、R_2_n<0
で|R_1_m|>|R_1_n|、|R_2_m|>
|R_2_n|且つ|R_1_m|>|R_2_m|、
|R_1_n|>|R_2_n|の大小関係を満足し、 物体側面は、光軸上曲率半径R_1_m・円錐定数Kで
偏向面内に在る非球面曲線を、偏向面内で光軸に直交し
上記非球面曲線と光軸上でR_1_n離れた軸の回りに
回転して得られる凹面であり、 像側面は、半径R_2_nで偏向直交面内に在る円弧を
偏向直交面内で光軸に直交し、上記円弧から光軸上でR
_2_m離れた軸の回りに回転して得られる凸のトロイ
ダル面であり、 偏向反射面から、この偏向反射面により偏向された集束
光束の自然集光点までの距離をSとするとき、 ( I )−35.0<R_1_m/K<−13.0(II
)−7.0×10^4<S・R_2_m<−2.5×1
0^4(III)1.3<R_1_n/R_2_n<2.
1なる条件を満足することを特徴とする光走査用レンズ
。 2、光源装置と、この光源装置からの光束を集束光束化
する集束光学系と、この集束光学系による集束光束を等
角速度的に偏向させる偏向装置と、この偏向装置により
偏向された集束光束をさらに集束させて被走査面上に光
スポットとして結像せしめ、上記被走査面を略等速的に
光走査させる光走査用レンズとを有し、 上記光走査用レンズが請求項1の光走査用レンズである
ことを特徴とする光走査光学系。3、請求項2に於いて
、 偏向装置がピラミダルミラーであることを特徴とする光
走査光学系。 4、請求項2に於いて、 偏向装置が面倒れに就き精度の良い回転多面鏡であるこ
とを特徴とする光走査光学系。
[Claims] 1. A focused light beam deflected at a constant angular velocity by a deflection reflecting surface of a light deflection device is further focused and imaged as a light spot on a surface to be scanned, so that the surface to be scanned is moved at a substantially constant velocity. It is a lens for optically scanning light, and is configured as a single lens.The surface formed by sweeping the principal ray of a converged beam that is ideally deflected is the deflection surface, and the surface that passes through the optical axis and is orthogonal to the deflection surface. When is the plane orthogonal to deflection, the radius of curvature on the optical axis of the object side surface in the deflection plane: R_1_m, the radius of curvature of the image side surface: R_2_
m, radius of curvature of the object side in the plane orthogonal to deflection: R_1
_n, radius of curvature of image side surface: R_2_n, R_1_m<
0, R_1_n<0, R_2_m<0, R_2_n<0
So |R_1_m|>|R_1_n|, |R_2_m|>
|R_2_n| and |R_1_m|>|R_2_m|,
Satisfying the magnitude relationship of |R_1_n|>|R_2_n|, the object side surface has an aspherical curve existing in the deflection plane with a radius of curvature R_1_m on the optical axis and a conic constant K, and is perpendicular to the optical axis in the deflection plane. It is a concave surface obtained by rotating around an axis R_1_n apart on the optical axis from the aspherical curve, and the image side surface is obtained by rotating an arc with radius R_2_n in the plane orthogonal to deflection to the plane orthogonal to the optical axis in the plane orthogonal to deflection. , R on the optical axis from the above circular arc
It is a convex toroidal surface obtained by rotating around an axis _2_m apart, and when the distance from the deflection-reflection surface to the natural convergence point of the focused beam deflected by this deflection-reflection surface is S, (I )-35.0<R_1_m/K<-13.0(II
)-7.0×10^4<S・R_2_m<-2.5×1
0^4(III)1.3<R_1_n/R_2_n<2.
An optical scanning lens characterized by satisfying the following condition. 2. A light source device, a focusing optical system that converts the light beam from this light source device into a focused light beam, a deflection device that deflects the focused light beam by this focusing optical system at a constant angular velocity, and a focused light beam deflected by this deflection device. The light scanning lens further comprises a light scanning lens that focuses the light to form a light spot on the surface to be scanned and scans the light on the surface to be scanned at a substantially uniform speed, the light scanning lens being the light scanning lens of claim 1. An optical scanning optical system characterized in that it is a lens for use. 3. The optical scanning optical system according to claim 2, wherein the deflection device is a pyramidal mirror. 4. The optical scanning optical system according to claim 2, wherein the deflection device is a rotating polygon mirror with good surface tilt accuracy.
JP22321890A 1990-08-24 1990-08-24 Lens for optical scanning and optical scanning optical system Pending JPH04104213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22321890A JPH04104213A (en) 1990-08-24 1990-08-24 Lens for optical scanning and optical scanning optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22321890A JPH04104213A (en) 1990-08-24 1990-08-24 Lens for optical scanning and optical scanning optical system

Publications (1)

Publication Number Publication Date
JPH04104213A true JPH04104213A (en) 1992-04-06

Family

ID=16794644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22321890A Pending JPH04104213A (en) 1990-08-24 1990-08-24 Lens for optical scanning and optical scanning optical system

Country Status (1)

Country Link
JP (1) JPH04104213A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0702256A1 (en) 1994-09-06 1996-03-20 Canon Kabushiki Kaisha Optical scanning apparatus including a lens having aspherical surfaces on both sides
US5619362A (en) * 1993-12-17 1997-04-08 Fuji Xerox Co., Ltd. Scanning lens and optical scanner using the same
US5812181A (en) * 1996-03-29 1998-09-22 Canon Kabushiki Kaisha Scanning optical apparatus
US5995131A (en) * 1996-12-19 1999-11-30 Canon Kabushiki Kaisha Imaging lens system of scanning optical apparatus
US6133935A (en) * 1996-12-19 2000-10-17 Canon Kabushiki Kaisha Optical scanning apparatus
EP2182400A1 (en) 1995-02-28 2010-05-05 Canon Kabushiki Kaisha Scanning optical apparatus
US7817321B2 (en) 1994-09-06 2010-10-19 Canon Kabushiki Kaisha Scanning optical apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619362A (en) * 1993-12-17 1997-04-08 Fuji Xerox Co., Ltd. Scanning lens and optical scanner using the same
US5757533A (en) * 1993-12-17 1998-05-26 Fuji Xerox Co., Ltd. Scanning lens and optical scanner using the same
US8213068B1 (en) 1994-09-06 2012-07-03 Canon Kabushiki Kaisha Scanning optical apparatus
EP0702256A1 (en) 1994-09-06 1996-03-20 Canon Kabushiki Kaisha Optical scanning apparatus including a lens having aspherical surfaces on both sides
US5818505A (en) * 1994-09-06 1998-10-06 Canon Kabushiki Kaisha Optical scanning apparatus including a lens having aspherical surfaces on both sides
US8681406B2 (en) 1994-09-06 2014-03-25 Canon Kabushiki Kaisha Scanning optical apparatus
US8610984B2 (en) 1994-09-06 2013-12-17 Canon Kabushiki Kaisha Scanning optical apparatus
US7817321B2 (en) 1994-09-06 2010-10-19 Canon Kabushiki Kaisha Scanning optical apparatus
US7898711B2 (en) 1994-09-06 2011-03-01 Canon Kabushiki Kaisha Scanning optical apparatus
US8068265B2 (en) 1994-09-06 2011-11-29 Canon Kabushiki Kaisha Scanning optical apparatus
US8115981B2 (en) 1994-09-06 2012-02-14 Canon Kabushiki Kaisha Scanning optical apparatus
EP2182400A1 (en) 1995-02-28 2010-05-05 Canon Kabushiki Kaisha Scanning optical apparatus
US5812181A (en) * 1996-03-29 1998-09-22 Canon Kabushiki Kaisha Scanning optical apparatus
US6133935A (en) * 1996-12-19 2000-10-17 Canon Kabushiki Kaisha Optical scanning apparatus
US5995131A (en) * 1996-12-19 1999-11-30 Canon Kabushiki Kaisha Imaging lens system of scanning optical apparatus

Similar Documents

Publication Publication Date Title
JP3072061B2 (en) Optical scanning device
JPH0627904B2 (en) Laser beam scanning optics
JPH06118325A (en) Optical scanner
JPS5893021A (en) 2-group ftheta lens having fall compensating effect of deflected surface
JPH07146449A (en) Image forming mirror to scan constant velocity light and light scanner
US4925279A (en) Telecentric f-θ lens system
JP2004138822A (en) Retina scanning type display apparatus
JPH04104213A (en) Lens for optical scanning and optical scanning optical system
JP2865009B2 (en) Scanning lens and optical scanning device
JP3191538B2 (en) Scanning lens and optical scanning device
JPH0192717A (en) Optical scanner
JPS63204214A (en) Ftheta lens for light beam scanner
JP2567929B2 (en) Optical scanning lens and optical scanning device
JP3627781B2 (en) Laser scanner
JP3421704B2 (en) Scanning imaging lens and optical scanning device
JPH03174113A (en) Scanning type optical device
JP3452294B2 (en) Optical scanning lens, scanning imaging lens, and optical scanning device
JPS61175607A (en) Scanning optical system
JPS63142317A (en) Light beam scanner
JPH0545580A (en) Lens for optical scanning and optical scanning device
JPH04149405A (en) Lens for optical scanning and device therefor
JP3558837B2 (en) Scanning optical system and optical scanning device
JP3386164B2 (en) Optical scanning device
JPH11125777A (en) Optical scanner
JPH10288745A (en) Optical scanning lens and optical scanner