JPH04100424A - Instrument and method for measuring delay time - Google Patents

Instrument and method for measuring delay time

Info

Publication number
JPH04100424A
JPH04100424A JP2218391A JP21839190A JPH04100424A JP H04100424 A JPH04100424 A JP H04100424A JP 2218391 A JP2218391 A JP 2218391A JP 21839190 A JP21839190 A JP 21839190A JP H04100424 A JPH04100424 A JP H04100424A
Authority
JP
Japan
Prior art keywords
delay time
sampling frequency
cross
peak position
correlation coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2218391A
Other languages
Japanese (ja)
Inventor
Hiroshi Irii
入井 寛
Keita Kurashima
倉島 圭太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2218391A priority Critical patent/JPH04100424A/en
Publication of JPH04100424A publication Critical patent/JPH04100424A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dc Digital Transmission (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

PURPOSE:To highly accurately find delay time in a transmitter at a high speed by providing a peak detector and detecting the peak position of the cross- correlation coefficient between input and output voice signals to the transmitter to be measured. CONSTITUTION:The input and output voice signals of a transmitter to be measured are simultaneously fetched to memories 11 and 12 at a sampling frequency fs=fso. A correlator calculates the cross-correlation coefficient between the two signals and a peak detector 16 finds the delayed position where the cross- correlation coefficient calculated by the correlator 15 becomes a peak. The sample number of the peak position is designated as n1 and the n1 is fed back to a sampling frequency converter 14. Thereafter, similar processes are repeated until the sampling frequency becomes the sampling frequency fso at the time of inputting the signals to the memories 11 and 12. Therefore, the amount of calculation for finding the cross-correlation coefficient can be reduced and highly accurate delay time can be decided at a high speed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、音声を伝送する伝送装置内の遅延時間を測定
する遅延時間測定装置および遅延時間測定方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a delay time measuring device and a delay time measuring method for measuring delay time within a transmission device that transmits audio.

伝送装置では音声のディジタル処理に伴う歪やアナログ
回路の非直線性による歪が生ずるが、その歪の測定は、
入力音声信号と出力音声信号の時間軸上での差分(波形
の違い)、あるいは周波数軸上でのパワースペクトルの
差やスペクトル包絡線の差を求めて行っている。一方、
伝送装置内では処理に伴う遅延があり、この遅延を補正
せずに入出力音声信号から上記の方法で歪測定を行うと
大きな誤差を生ずる。
In transmission equipment, distortion occurs due to digital processing of audio and distortion due to nonlinearity of analog circuits, but measurement of this distortion is
This is done by finding the difference between the input audio signal and the output audio signal on the time axis (difference in waveform), or the difference in power spectrum or spectrum envelope on the frequency axis. on the other hand,
There is a delay associated with processing within the transmission device, and if distortion is measured using the above method from the input/output audio signal without correcting this delay, a large error will occur.

したがって、伝送装置の歪測定においては、装置内の遅
延時間を求めて補正処理を行うことが不可欠になってい
る。
Therefore, when measuring distortion in a transmission device, it is essential to determine the delay time within the device and perform correction processing.

〔従来の技術〕[Conventional technology]

伝送装置における従来の遅延時間測定方法は、参照信号
として正弦波やインパルス信号を入力し、その入力信号
に対する出力信号の位相差や時間遅れを測定して遅延時
間を求めていた。
In a conventional method for measuring delay time in a transmission device, a sine wave or an impulse signal is input as a reference signal, and the delay time is determined by measuring the phase difference and time delay of an output signal with respect to the input signal.

(発明が解決しようとする課題〕 ところで、音声の冗長性を利用した音声符号化方式のコ
ーデックを内蔵した伝送装置では、正弦波やインパルス
信号が伝送できない場合があり、それらの信号を用いた
遅延時間の測定が困難になっていた。したがって、音声
信号を用いて伝送装置の遅延時間を測定し、また歪を測
定することが要求されている。
(Problem to be Solved by the Invention) By the way, a transmission device that incorporates a codec of an audio encoding method that utilizes audio redundancy may not be able to transmit sine waves or impulse signals, and it is difficult to transmit sine waves or impulse signals. It has become difficult to measure time.Therefore, it is required to measure delay time and distortion of transmission equipment using audio signals.

本発明は、音声信号を用いて伝送装置内の遅延時間を高
精度かつ高速に求めることができる遅延時間測定装置お
よび遅延時間測定方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a delay time measuring device and a delay time measuring method that can accurately and quickly determine the delay time within a transmission device using an audio signal.

〔課題を解決するための手段〕[Means to solve the problem]

請求項1に記載の遅延時間測定装置は、被試験伝送装置
の入力音声信号および出力音声信号を取り込み、所定の
サンプリング周波数でサンプリングするサンプリング手
段と、前記各サンプリング手段でそれぞれ得られた所定
数のデータの相互相関係数を求める相関器と、前記相互
相関係数からピーク位置を検出して前記被試験伝送装置
の遅延時間を算出するピーク検出器とを備えて構成する
The delay time measuring device according to claim 1 includes a sampling means for taking in an input audio signal and an output audio signal of a transmission device under test and sampling them at a predetermined sampling frequency, and a predetermined number of samples obtained by each of the sampling means. It is configured to include a correlator that calculates a cross-correlation coefficient of data, and a peak detector that detects a peak position from the cross-correlation coefficient and calculates the delay time of the transmission device under test.

請求項2に記載の遅延時間測定方法は、被試験伝送装置
の入力音声信号と出力音声信号に対して、所定の伝送周
波数帯域に比べて低い第一〇サンプリング周波数でサン
プリングし、それぞれ得られた所定数のデータの相互相
関係数を求めて第一のピーク位置を検出し、続いて、前
記第一のピーク位置を含む所定の範囲内の前記出力音声
信号に対して、前記第一のサンプリング周波数より高い
第二のサンプリング周波数でサンプリングし、得られた
所定数のデータの相互相関係数を求めて第二のピーク位
置を検出し、以下、同様の処理を所定の精度を得るまで
繰り返した後に、検出されたピーク位置とそのときのサ
ンプリング周波数から前記被試験伝送装置の遅延時間を
算出することを特徴とする。
The delay time measuring method according to claim 2 includes sampling the input audio signal and the output audio signal of the transmission device under test at a sampling frequency of 10, which is lower than a predetermined transmission frequency band, and A first peak position is detected by determining a cross-correlation coefficient of a predetermined number of data, and then the first sampling is performed on the output audio signal within a predetermined range including the first peak position. Sampling was performed at a second sampling frequency higher than the frequency, the cross-correlation coefficient of the obtained predetermined number of data was found, and the second peak position was detected, and the same process was repeated until a predetermined accuracy was obtained. The method is characterized in that the delay time of the transmission device under test is later calculated from the detected peak position and the sampling frequency at that time.

〔作 用] 請求項1に記載の遅延時間測定装置では、測定対象の伝
送装置に対する入力音声信号と出力音声信号の相互相関
係数のピーク位置を検出することにより、伝送装置内の
遅延時間を決定することができる。ただし、長い遅延時
間をもつ伝送装置に対して、測定精度を高くしようとす
ると多量の演算が必要になる。
[Function] The delay time measuring device according to claim 1 measures the delay time within the transmission device by detecting the peak position of the cross-correlation coefficient between the input audio signal and the output audio signal for the transmission device to be measured. can be determined. However, in order to increase measurement accuracy for a transmission device with a long delay time, a large amount of calculation is required.

したがって、請求項2に記載の遅延時間測定方法では、
まず伝送周波数帯域から決まる周波数より低い周波数で
サンプリングしてそのピーク位置を求め、大まかな遅延
時間を算出する。次に、サンプリング周波数を数倍に上
げて同様の操作を行うが、相互相関係数を計算するのは
前段階で求められたピーク位置(遅延時間)の近傍だけ
とすることにより、相互相関係数の演算量を削減できる
とともに、遅延時間の測定精度を高めることができる。
Therefore, in the delay time measuring method according to claim 2,
First, sampling is performed at a frequency lower than the frequency determined from the transmission frequency band, the peak position is determined, and a rough delay time is calculated. Next, increase the sampling frequency several times and perform the same operation, but calculate the cross-correlation coefficient only in the vicinity of the peak position (delay time) determined in the previous step. In addition to being able to reduce the amount of calculation, the accuracy of measuring delay time can be improved.

すなわち、遅延時間の精度向上と演算量削減に伴う高速
化を同時に達成することができる。
In other words, it is possible to simultaneously improve the accuracy of the delay time and increase the speed due to the reduction in the amount of calculations.

〔実施例] 以下、図面に基づいて本発明の実施例について詳細に説
明する。
[Example] Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図は、本発明の一実施例構成を示すブロック図であ
る。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention.

図において、メモリ11.12には、測定対象の伝送装
置の入力音声信号および出力音声信号がそれぞれ人力さ
れる。各メモリ11.12の出力は、サンプリング周波
数変換器13.14を介して相関器15に入力され、相
関器15の出力はピーク検出器16に送出される。また
、ピーク検出器16の出力は、サンプリング周波数変換
器14のサンプリング開始位置を決める制御信号として
フィードバックされる。
In the figure, input audio signals and output audio signals of the transmission device to be measured are stored in memories 11 and 12, respectively. The output of each memory 11.12 is input via a sampling frequency converter 13.14 to a correlator 15, the output of which is sent to a peak detector 16. Further, the output of the peak detector 16 is fed back as a control signal that determines the sampling start position of the sampling frequency converter 14.

以下、第2図を参照して本実施例による遅延時間測定動
作について説明する。
The delay time measuring operation according to this embodiment will be explained below with reference to FIG.

メモリ11.12には、測定対象の伝送装置の入出力音
声信号が、それぞれサンプリング周波数fs=fs。で
同時に取り込まれる(第2図(a))。
The input and output audio signals of the transmission device to be measured are stored in the memories 11 and 12, respectively, at sampling frequencies fs=fs. (Fig. 2(a)).

次に、第一段階として各メモリ11.12に対して、サ
ンプリング周波数変換器13.14により、サンプリン
グ周波数f、をf、。/ m l(m 1は正の整数)
に下げてサンプリングしたN個の値を相関器15に与え
る。相関器15では、二つの信号の相互相関係数を計算
し、ピーク検出器16では得られた相互相関係数が最大
(ピーク)となる遅れ位置を見いだす、このピーク位置
のサンプル番号をn、とする(第2図(b))。
Next, as a first step, a sampling frequency converter 13.14 converts the sampling frequency f, to f, for each memory 11.12. / ml (m 1 is a positive integer)
N values sampled at a lower value are applied to the correlator 15. The correlator 15 calculates the cross-correlation coefficient of the two signals, and the peak detector 16 finds the delayed position where the obtained cross-correlation coefficient is maximum (peak).The sample number of this peak position is set as n, (Figure 2(b)).

次に、第二段階として、サンプリング周波数変換器13
.14のサンプリング周波数f、をfso/mz (m
z<m+)に更新する。コノトキ、サンプリング周波数
変換器13から相関器15に与える信号の開始点を1と
し、個数はN個とする。
Next, as a second stage, the sampling frequency converter 13
.. 14 sampling frequency f, as fso/mz (m
Update to z<m+). It is assumed that the starting point of the signal given from the sampling frequency converter 13 to the correlator 15 is 1, and the number of signals is N.

一方、第一段階で求められたピーク位置を示すサンプル
番号n、をサンプリング周波数変換器14にフィードバ
ックし、サンプリング周波数変換器14から相関器15
に与える信号の開始点を(n+  f)・m+/mzに
ずらし、個数はN個とする(第2図(C))、ここで、
lはnlの1/4〜1/3の整数値とする。以後、第一
段階と同様の処理を繰り返し、相互相関係数のピーク位
置のサンプル番号をn、とする。この段階で、相互相関
係数の時間分解能は第一段階のときに比べてml/m、
倍になっている。
On the other hand, the sample number n indicating the peak position determined in the first step is fed back to the sampling frequency converter 14, and from the sampling frequency converter 14 the correlator 15
The starting point of the signal given to is shifted to (n+f)・m+/mz, and the number of signals is N (Fig. 2 (C)), where,
l is an integer value of 1/4 to 1/3 of nl. Thereafter, the same process as in the first stage is repeated, and the sample number at the peak position of the cross-correlation coefficient is set to n. At this stage, the time resolution of the cross-correlation coefficient is ml/m compared to the first stage.
It's doubled.

以下、相関器15に送出されるデータのサンプリング周
波数が、メモリ入力時のサンプリング周波数15゜にな
るまで、第二段階と同様の処理を繰り返す。
Thereafter, the same process as the second stage is repeated until the sampling frequency of the data sent to the correlator 15 reaches the sampling frequency of 15 degrees at the time of memory input.

なお、最終的に得られたピーク位1のサンプル番号をn
mとすれば、そのときの遅延時間τは、τ−nw/fs
In addition, the sample number of peak position 1 finally obtained is n
m, the delay time τ at that time is τ−nw/fs
.

の演算により求めることができる。It can be determined by the calculation.

(発明の効果〕 上述したように、本発明は、始めサンプリング周波数を
下げて大まかな遅延時間を算出し、次に得られた遅延時
間(ピーク位置)の近傍で、サンプリング周波数を上げ
時間分解能を高めて測定精度を向上させる。なお、計算
量は各段階で一定である。
(Effects of the Invention) As described above, the present invention first calculates a rough delay time by lowering the sampling frequency, and then increases the sampling frequency near the obtained delay time (peak position) to improve the time resolution. The amount of calculation is constant at each stage.

したがって、仮にサンプリング周波数を固定のままで長
い遅延時間を精度よく算出しようとすると、非常に多く
のサンプリング点に対して相互相関係数を演算しなけれ
ばならなかったが、本発明方式により相互相関係数を求
める計算量の削減が可能となり、精度の高い遅延時間を
高速に決定することが可能になる。
Therefore, if an attempt was made to accurately calculate a long delay time while keeping the sampling frequency fixed, it would be necessary to calculate the cross-correlation coefficients for a large number of sampling points. It becomes possible to reduce the amount of calculation required to obtain the relational coefficient, and it becomes possible to determine the delay time with high precision at high speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例構成を示すブロンク図。 第2図は本発明実施例による遅延時間測定動作を説明す
る図。 11.12・・・メモリ、13.14・・・サンプリン
グ周波数変換器、15・・・相関器、16・・・ピーク
検出器。
FIG. 1 is a bronc diagram showing the configuration of an embodiment of the present invention. FIG. 2 is a diagram illustrating a delay time measurement operation according to an embodiment of the present invention. 11.12...Memory, 13.14...Sampling frequency converter, 15...Correlator, 16...Peak detector.

Claims (2)

【特許請求の範囲】[Claims] (1)被試験伝送装置の入力音声信号および出力音声信
号を取り込み、所定のサンプリング周波数でサンプリン
グするサンプリング手段と、 前記各サンプリング手段でそれぞれ得られた所定数のデ
ータの相互相関係数を求める相関器と、前記相互相関係
数からピーク位置を検出して前記被試験伝送装置の遅延
時間を算出するピーク検出器と を備えたことを特徴とする遅延時間測定装置。
(1) A sampling means that captures the input audio signal and output audio signal of the transmission device under test and samples them at a predetermined sampling frequency, and a correlation that calculates the cross-correlation coefficient of a predetermined number of data obtained by each of the sampling means. A delay time measuring device comprising: a peak detector that detects a peak position from the cross-correlation coefficient and calculates a delay time of the transmission device under test.
(2)被試験伝送装置の入力音声信号と出力音声信号に
対して、所定の伝送周波数帯域に比べて低い第一のサン
プリング周波数でサンプリングし、それぞれ得られた所
定数のデータの相互相関係数を求めて第一のピーク位置
を検出し、 続いて、前記第一のピーク位置を含む所定の範囲内の前
記出力音声信号に対して、前記第一のサンプリング周波
数より高い第二のサンプリング周波数でサンプリングし
、それぞれ得られた所定数のデータの相互相関係数を求
めて第二のピーク位置を検出し、 以下、同様の処理を所定の精度を得るまで繰り返した後
に、検出されたピーク位置とそのときのサンプリング周
波数から前記被試験伝送装置の遅延時間を算出する ことを特徴とする遅延時間測定方法。
(2) Cross-correlation coefficients of a predetermined number of data obtained by sampling the input audio signal and output audio signal of the transmission device under test at a first sampling frequency lower than the predetermined transmission frequency band. and detecting a first peak position by determining the first peak position, and then detecting a first peak position at a second sampling frequency higher than the first sampling frequency for the output audio signal within a predetermined range including the first peak position. The second peak position is detected by sampling and calculating the cross-correlation coefficient of each obtained predetermined number of data. After repeating the same process until a predetermined accuracy is obtained, the detected peak position and A delay time measuring method comprising calculating the delay time of the transmission device under test from the sampling frequency at that time.
JP2218391A 1990-08-20 1990-08-20 Instrument and method for measuring delay time Pending JPH04100424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2218391A JPH04100424A (en) 1990-08-20 1990-08-20 Instrument and method for measuring delay time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2218391A JPH04100424A (en) 1990-08-20 1990-08-20 Instrument and method for measuring delay time

Publications (1)

Publication Number Publication Date
JPH04100424A true JPH04100424A (en) 1992-04-02

Family

ID=16719173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2218391A Pending JPH04100424A (en) 1990-08-20 1990-08-20 Instrument and method for measuring delay time

Country Status (1)

Country Link
JP (1) JPH04100424A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111613238A (en) * 2020-05-21 2020-09-01 北京百度网讯科技有限公司 Method, device and equipment for determining time delay between signals and storage medium
JP2023022130A (en) * 2018-06-26 2023-02-14 公益財団法人鉄道総合技術研究所 High accuracy position correction method and system of waveform data

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023022130A (en) * 2018-06-26 2023-02-14 公益財団法人鉄道総合技術研究所 High accuracy position correction method and system of waveform data
CN111613238A (en) * 2020-05-21 2020-09-01 北京百度网讯科技有限公司 Method, device and equipment for determining time delay between signals and storage medium
JP2021100261A (en) * 2020-05-21 2021-07-01 ベイジン バイドゥ ネットコム サイエンス テクノロジー カンパニー リミテッドBeijing Baidu Netcom Science Technology Co., Ltd. Signal-to-signal latency determination method, device, apparatus, and storage medium
CN111613238B (en) * 2020-05-21 2023-09-19 阿波罗智联(北京)科技有限公司 Method, device, equipment and storage medium for determining delay between signals

Similar Documents

Publication Publication Date Title
US11965919B2 (en) Phase frequency detector-based high-precision feedback frequency measurement apparatus and method
JP2002323556A (en) Distance measuring device
JPH0146034B2 (en)
JP3097882B2 (en) Ultrasonic transducer
JPH04100424A (en) Instrument and method for measuring delay time
JPH0666623B2 (en) Calibrator for logarithmic amplifier and calibration method
JP2003279396A (en) Ultrasonic flowmeter
JPH0339270B2 (en)
JPS63131726A (en) A/d converter testing device
JPH09102779A (en) Propagation delay time correcting method in transmission line propagation delay time measuring system
JP2001091552A (en) Method for correcting phase difference in circuit element measuring device
CN219349111U (en) Ultra-low error high-precision measurement system for dual-channel voltage signal source
JPH09145607A (en) Gas concentration measuring method
JPS5930068A (en) System for measuring occupied frequency band width in high speed spectrum analysis
CN116699495A (en) Ultra-low error high-precision measurement system and method for dual-channel voltage signal source
KR970056086A (en) Frequency offset measurement device and method of measurement in digital mobile communication system
Lapuh et al. Autocalibrating phase reference standard
JPH04248471A (en) Frequency measuring device
JP3863097B2 (en) Carrier leak measurement method for double balanced mixer
RU2027318C1 (en) Parameter measurement method for channels characterized by phase distortions
JPH0894690A (en) Servo analyzer
JPH05215831A (en) Azimuth measuring device
SU970257A1 (en) Signal phase fluctuation measuring method
JPS6344177A (en) Transmission function measuring apparatus
JPS6324450Y2 (en)