JPH0394086A - Electrochemical oxygen separator - Google Patents

Electrochemical oxygen separator

Info

Publication number
JPH0394086A
JPH0394086A JP1229033A JP22903389A JPH0394086A JP H0394086 A JPH0394086 A JP H0394086A JP 1229033 A JP1229033 A JP 1229033A JP 22903389 A JP22903389 A JP 22903389A JP H0394086 A JPH0394086 A JP H0394086A
Authority
JP
Japan
Prior art keywords
oxygen
anode
cathode
iridium
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1229033A
Other languages
Japanese (ja)
Inventor
Tatsuji Sato
佐藤 達治
Hisashi Kudo
工藤 寿士
Shuichi Sato
秀一 佐藤
Kazuhide Kamimura
一秀 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Mitsubishi Heavy Industries Ltd
Original Assignee
Japan Storage Battery Co Ltd
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd, Mitsubishi Heavy Industries Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP1229033A priority Critical patent/JPH0394086A/en
Publication of JPH0394086A publication Critical patent/JPH0394086A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To lower the voltage of an electrochemical cell and to increase its power efficiency in the separator for separating and removing only oxygen from an oxygen-contg. gaseous mixture and separating and supplying the oxygen by using iridium as the anode. CONSTITUTION:The oxygen separation cell is provided with an ion-exchange membrane 1, an anode 2, a carbon cathode 3 provided with platinum catalyst, current collecting nets 4 and 4', titanium anode and cathode current collecting plates 5 and 6 and a packing 7. Iridium low in an oxygen overvoltage is used for the anode 2. For example, iridium is bonded to one side of the membrane 1 by electroless plating, and a mixture of the carbon powder carrying platinum and polyfluoroethylene as a binder is bonded to the other side by hot pressing to obtain a bonded body which is used. When pure water is supplied from a supply port 8 and a DC voltage is impressed between the current collecting plates 5 and 6, oxygen is consumed by the cathode 3 and oxygen is generated from the anode 2. At this time, the air in which oxygen is consumed and the generated oxygen are respectively discharged from outlets 11 and 9.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は酸素を含む混合気体がら酸素のみを分離除去あ
るいは分離供給ずるための電気化学的酸素分離装置に係
わり、酸素の分離除去を目的とする場合には脱酸素装置
として、酸素の分離供給を目的とする場合には酸素富化
装置として機能する。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to an electrochemical oxygen separation device for separating and removing or separately supplying only oxygen from a mixed gas containing oxygen, and the present invention relates to an electrochemical oxygen separation device for separating and supplying only oxygen from a mixed gas containing oxygen. When the purpose is to separate and supply oxygen, it functions as an oxygen enrichment device.

従来の技術とその課題 空気から酸素を分離する方法としては深冷法,モレキュ
ラーシーブ法及び電気化学法が実用化されている。深冷
法は工業的な大規模分離に適し、モレキュラーシーブ法
と電気化学法は中,小規模分離に適している。
Conventional technologies and their challenges Cryogenic methods, molecular sieve methods, and electrochemical methods have been put into practical use as methods for separating oxygen from air. The cryogenic method is suitable for large-scale industrial separations, while the molecular sieve method and electrochemical method are suitable for medium- to small-scale separations.

特に電気化学法は装置の小形化が可能なこと、電力効率
が大きいこと、空気中に含まれる他のカスの影響を受け
にくいこと、分離されたカスが純酸素であること、騒音
が小さいことなどの理由から最近とみに注目されるよう
になった。
In particular, the electrochemical method has the following advantages: it is possible to miniaturize the device, it has high power efficiency, it is not easily affected by other dust contained in the air, the separated dust is pure oxygen, and there is little noise. For these reasons, it has recently started to attract attention.

この電気化学的酸素分離装殴はイオン交換膜の片面に陰
極を、他面に陽極を接合した電気化学セルの陽極開に純
水を供給し、陰極測に空気を供給しながら両電極間に直
流電圧を印加すると陰極で02 (空気中) + 4 
H ++ 4 e →2 H 2 0陽極で2H20−
02(純酸素)+4H4+4e全体で02(空気中)→
02(純酸素)なる反応が起こり、陰極測の酸素のみが
陽極側に移動するもので、陰極での酸素消費を利用すれ
ば脱酸素装置として、また陽極での酸素発生を利用ずれ
ば酸素富化装置として機能ずる。
This electrochemical oxygen separation equipment supplies pure water to the anode opening of an electrochemical cell, which has a cathode on one side of an ion exchange membrane and an anode on the other, and air between the two electrodes while supplying air to the cathode. When DC voltage is applied, the voltage at the cathode is 02 (in air) + 4
H ++ 4 e → 2H20- with 2H20 anode
02 (pure oxygen) + 4H4 + 4e total 02 (in air) →
02 (pure oxygen) reaction occurs, and only the oxygen measured at the cathode moves to the anode side.If the oxygen consumption at the cathode is used, it can be used as a deoxidizer, and if the oxygen generation at the anode is used, it can be used as an oxygen enrichment device. It functions as a conversion device.

この時、電気化学セル還元すれば酸素分離セルでの酸素
発生量は両電極間に流れた電流値に比例し、IAh当り
210cc  ( 0℃,1気圧)である。
At this time, if electrochemical cell reduction is performed, the amount of oxygen generated in the oxygen separation cell is proportional to the value of the current flowing between both electrodes, and is 210 cc (0° C., 1 atm) per IAh.

一方セル電圧は、白金などの触媒金属を担持したカーボ
ンを陰極とし、多孔性の白金を陽極とする従来の酸素分
離セルの場合、電流密度が20On+A/cm2のとき
約1.45Vである。すなわち、単位電力量当りの酸素
発《L量は144.8cc/旧)(0℃,1気圧)であ
る。かかる装置を用いて空気から酸素を分離する場合上
述の単位電力量当りの酸素発生量すなわち電力効率は装
置のランニンクコストを左右ずる極めて重要な因子であ
る。
On the other hand, in the case of a conventional oxygen separation cell in which carbon supporting a catalyst metal such as platinum is used as a cathode and porous platinum is used as an anode, the cell voltage is about 1.45 V when the current density is 20 On+A/cm2. That is, the oxygen output per unit electric energy (L amount is 144.8 cc/old) (0° C., 1 atmosphere). When such an apparatus is used to separate oxygen from air, the above-mentioned amount of oxygen generated per unit electric power, that is, power efficiency, is an extremely important factor that influences the running cost of the apparatus.

本発明は電気化学セルのセル電圧を低くすることによっ
て電力効率を高めた電気化学的酸素分離装置を提供せん
とずるしのである。
The present invention seeks to provide an electrochemical oxygen separation device with increased power efficiency by lowering the cell voltage of the electrochemical cell.

課題を解決ずるための手段 前述した如く、従来の酸素分離セルの陽極はイオン交換
膜の片面に無電解メッキ法で接合した多孔・tJI:の
自金車極であったが、セル電圧の低下を1」的とする本
発明では、陽極として酸素過電圧の低いイリジウムを用
いる。電気化学セルの陽極にイリジウムを用いた例とし
ては、水素と酸素を得る目的の水電解セルにおいて、例
えは特開昭57−134586号や特開昭60−162
780号などにみられるが、空気から酸素を分離する目
的の酸素分離セルに採用された例はない。
Means for Solving the Problems As mentioned above, the anode of the conventional oxygen separation cell was a porous tJI self-metallic electrode bonded to one side of the ion exchange membrane by electroless plating, but this caused a drop in cell voltage. In the present invention, which aims at 1', iridium, which has a low oxygen overvoltage, is used as the anode. Examples of using iridium in the anode of an electrochemical cell include JP-A-57-134586 and JP-A-60-162 in water electrolysis cells for the purpose of obtaining hydrogen and oxygen.
No. 780, but there is no example of this being used in an oxygen separation cell for the purpose of separating oxygen from air.

白金にくらべてイリジウムは酸素の過電圧か300へ−
40On+V小さいため、イリジウムを用いた酸素分離
セルは白金を用いたセルより300〜400+nVの省
電力が可能となる。
Compared to platinum, iridium has an oxygen overvoltage of 300 -
Since it is 40 On+V smaller, an oxygen separation cell using iridium can save power by 300 to 400+ nV compared to a cell using platinum.

実施例 以下本発明の一実施例について詳述する。Example An embodiment of the present invention will be described in detail below.

まず、大きさか150 x150  (nun)のイオ
ン交換膜(商品名ナフィオン−117)の片面に、特開
昭57−134586号実施例3の場合と同様無電解メ
ッキによりイリジウムを100 x100(tnm)の
大きさで0.5〜4.0IIlg/CII12になるよ
うに接合した後、他面に白金を担持させたカーホン粉末
と結着剤としてのボリテ1〜ラフルオ)]エチレンとの
混合物を熟プレスによりゃはり100 X100(IT
ITI1)の大きさで接合した電極一イオン交換膜接合
体を製作した。この接合体を用いた酸素分離セルの断面
構造を第1図に示す。図において1はイオン交換膜、2
は陽極となるイリジウム電極、3は陰極となる白金触媒
イ・1カーホン電極、4,4′は集電網、5はチタン製
の陽極集電板、6はチタン製の陰極集電板、7はパッキ
ンである。
First, 100 x 100 (tnm) of iridium was applied to one side of an ion exchange membrane (trade name: Nafion-117) with a size of 150 x 150 (nun) by electroless plating as in Example 3 of JP-A-57-134586. After bonding so that the size is 0.5 to 4.0 IIlg/CII12, a mixture of carphone powder with platinum supported on the other side and ethylene as a binder is pressed using a dry press. Jahari 100 X100 (IT
An electrode-ion-exchange membrane assembly with a size of ITI1) was fabricated. The cross-sectional structure of an oxygen separation cell using this assembly is shown in FIG. In the figure, 1 is an ion exchange membrane, 2
is an iridium electrode that serves as an anode, 3 is a platinum catalyst I.1 carbon electrode that is a cathode, 4 and 4' are current collection networks, 5 is an anode current collector plate made of titanium, 6 is a cathode current collector plate made of titanium, and 7 is a cathode current collector plate made of titanium. It's the packing.

純水供給口8から純水を、空気供給口10から空気を供
給しながら陽極集電板5と陰極集電板6との間に直流電
圧を印加すると陰極3で酸素が消費され陽極2で酸素が
発生ずる。このとき酸素を消費された陰極開の空気は空
気導出口11から、また、陽極で発生した酸素は水と共
に酸素導出口9からそれぞれ系外へ排出される。
When a DC voltage is applied between the anode current collector plate 5 and the cathode current collector plate 6 while supplying pure water from the pure water supply port 8 and air from the air supply port 10, oxygen is consumed at the cathode 3 and oxygen is consumed at the anode 2. Oxygen is generated. At this time, the cathode-open air that has consumed oxygen is discharged to the outside of the system from the air outlet 11, and the oxygen generated at the anode is discharged from the oxygen outlet 9 together with water.

第2図は本発明酸素分離セルAの電流・電圧特牲を従来
の白金電極を用いたセルBの特性と比較して示した図で
ある。第2図から陽極にイリジウムを用いたセル八の電
圧は従来の白金を用いたセルI3にくらべて約400+
++V低くなることがわかる。
FIG. 2 is a diagram showing the current/voltage characteristics of oxygen separation cell A of the present invention in comparison with the characteristics of cell B using a conventional platinum electrode. From Figure 2, the voltage of cell 8 using iridium for the anode is about 400+ compared to cell I3 using conventional platinum.
It can be seen that ++V becomes lower.

5 発明の効果 上述した如く、陽極にイリジウムを採用した酸素分離セ
ルは低電圧で作動ずるため、このセルを用いた電気化学
的酸素分離装置は従来装置にくらべて大幅な省電力とな
る。
5. Effects of the Invention As mentioned above, since the oxygen separation cell employing iridium for the anode operates at low voltage, an electrochemical oxygen separation device using this cell can achieve significant power savings compared to conventional devices.

例えは電流密度か20On+^/c+n2の場合、セル
電圧は1.05Vとなり、そのときの単位電力量当りの
酸素発生量は200cc/Whとなる。ずなわち従来の
装置の144.8cc/Whに比較して38%の効率ア
ップとなる。
For example, if the current density is 20On+^/c+n2, the cell voltage will be 1.05V, and the amount of oxygen generated per unit electric energy will be 200cc/Wh. That is, the efficiency is increased by 38% compared to 144.8cc/Wh of the conventional device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明酸素分離セルの断面図、第2図は本発明
酸素分離セルにおける電流密度と端子電圧の関係を従来
の白金電極使用の場合と比較して示した図である。 1・・イオン交換膜、2・・・イリジウム陽極、3・・
・力−ボン陰極、4,4′・・・集電網、5・・・陽極
集電板、6・・・陰極集電板、7・・・パッキン、8・
・・純水供給]]、9・・・酸素導出口、10・・・空
気供給口、11・・・空気導出口。 6
FIG. 1 is a sectional view of the oxygen separation cell of the present invention, and FIG. 2 is a diagram showing the relationship between current density and terminal voltage in the oxygen separation cell of the present invention in comparison with a conventional case using platinum electrodes. 1...Ion exchange membrane, 2...Iridium anode, 3...
・Force-Bon cathode, 4, 4'... Current collector network, 5... Anode current collector plate, 6... Cathode current collector plate, 7... Packing, 8.
...Pure water supply]], 9...Oxygen outlet, 10...Air supply port, 11...Air outlet. 6

Claims (1)

【特許請求の範囲】[Claims] 1、酸素の電解還元に有効な陰極と固体電解質となるイ
オン交換膜と酸素発生に有効な陽極とを一体に接合して
なる電気化学セルの陰極に酸素を含む混合気体を供給し
ながら両電極間に直流電圧を印加し陽極で発生する酸素
を前記混合気体から分離するようにした電気化学的酸素
分離装置において、電気化学セルの陽極材料としてイリ
ジウムを用いたことを特徴とする電気化学的酸素分離装
置。
1. While supplying a mixed gas containing oxygen to the cathode of an electrochemical cell, which is made by integrally joining a cathode effective for electrolytic reduction of oxygen, an ion exchange membrane serving as a solid electrolyte, and an anode effective for oxygen generation, both electrodes An electrochemical oxygen separation device in which oxygen generated at an anode is separated from the mixed gas by applying a DC voltage between the electrodes, characterized in that iridium is used as an anode material of the electrochemical cell. Separation device.
JP1229033A 1989-09-04 1989-09-04 Electrochemical oxygen separator Pending JPH0394086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1229033A JPH0394086A (en) 1989-09-04 1989-09-04 Electrochemical oxygen separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1229033A JPH0394086A (en) 1989-09-04 1989-09-04 Electrochemical oxygen separator

Publications (1)

Publication Number Publication Date
JPH0394086A true JPH0394086A (en) 1991-04-18

Family

ID=16885693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1229033A Pending JPH0394086A (en) 1989-09-04 1989-09-04 Electrochemical oxygen separator

Country Status (1)

Country Link
JP (1) JPH0394086A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113426261A (en) * 2021-08-26 2021-09-24 湖南大学 Method for electrochemically removing oxygen in mixed gas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136101A (en) * 1979-04-09 1980-10-23 Toray Ind Inc Solid electrolyte oxygen pump
JPS5937754A (en) * 1982-08-26 1984-03-01 Nec Corp Multiple address calling device with overflow control
JPS6112033A (en) * 1984-06-27 1986-01-20 Sony Corp Semiconductor device
JPS6352119A (en) * 1986-08-22 1988-03-05 Ricoh Co Ltd Liquid crystal element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136101A (en) * 1979-04-09 1980-10-23 Toray Ind Inc Solid electrolyte oxygen pump
JPS5937754A (en) * 1982-08-26 1984-03-01 Nec Corp Multiple address calling device with overflow control
JPS6112033A (en) * 1984-06-27 1986-01-20 Sony Corp Semiconductor device
JPS6352119A (en) * 1986-08-22 1988-03-05 Ricoh Co Ltd Liquid crystal element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113426261A (en) * 2021-08-26 2021-09-24 湖南大学 Method for electrochemically removing oxygen in mixed gas

Similar Documents

Publication Publication Date Title
US6994929B2 (en) Electrochemical hydrogen compressor for electrochemical cell system and method for controlling
Amendola et al. A novel high power density borohydride-air cell
US4620914A (en) Apparatus for purifying hydrogen
Williams et al. Low temperature fuel cells: Interactions between catalysts and engineering design
JPS6120114B2 (en)
JP7325082B2 (en) Carbon dioxide reduction device and carbon dioxide reduction method
US4414092A (en) Sandwich-type electrode
US3733221A (en) Gas diffusion electrode
CN100470910C (en) Fuel regeneratable fuel cell, system and method for power generation, and fuel regenerating method
CN101325266B (en) Power supply system for minisize composite regenerative fuel battery
JP4428774B2 (en) Manufacturing method of fuel cell electrode
JPH0394086A (en) Electrochemical oxygen separator
JPH10208757A (en) Fuel cell generating set
JP2516750Y2 (en) Assembly of solid polymer electrolyte membrane and electrode
JPS6259184B2 (en)
JPS60114325A (en) Dehumidifying method
US20040084302A1 (en) Water electrolysis system
JPH06231773A (en) Fuel cell
CN216947232U (en) Separate power supply type hydrogen enriching, purifying and pressurizing electrochemical hydrogen pump system
JPH0649129B2 (en) Dehumidifier
DE3814160C2 (en)
JPS5691805A (en) Electrochemical device with oxygen electrode
JPS634639B2 (en)
JP2019514190A (en) Rechargeable electrochemical device for electrical energy generation
JPH10270054A (en) Fuel cell electrode and its manufacture