JPH0393422A - Multi-output earth leakage relay - Google Patents

Multi-output earth leakage relay

Info

Publication number
JPH0393422A
JPH0393422A JP1228357A JP22835789A JPH0393422A JP H0393422 A JPH0393422 A JP H0393422A JP 1228357 A JP1228357 A JP 1228357A JP 22835789 A JP22835789 A JP 22835789A JP H0393422 A JPH0393422 A JP H0393422A
Authority
JP
Japan
Prior art keywords
earth leakage
output
threshold
circuit
setting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1228357A
Other languages
Japanese (ja)
Inventor
Yukio Suzuki
幸男 鈴木
Tomiyoshi Kiryu
桐生 富義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Techno Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Techno Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Techno Engineering Co Ltd
Priority to JP1228357A priority Critical patent/JPH0393422A/en
Publication of JPH0393422A publication Critical patent/JPH0393422A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To enable system protection, including preventive protection, over a wide range by setting a plurality of earth leakage thresholds for the secondary output of a single zero-phase current transformer independently or in specific relation thereby reducing the relative error between respective outputs. CONSTITUTION:When the leak current is above an operation curve B and below an operation curve A, differential amplifier 31a of earth leakage detecting IC 31 picks up an input signal and triggers a thyristor 34 thus closing the contacts 4B, 41. A threshold setting circuit 2 is set at the operation curve A through the contact 41 and the output remains at 4B. If the leak current is above the operation curve A, a switching circuit 33 is interlocked with the contacts 4B, 41 and switched as shown on the drawing. The differential amplifier 31a. picks up the level A threshold. The output closes the contact 4A through a time delay circuit 32. By such arrangement, preventive protection can be carried out and accidents can be surely prevented.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は漏電継電器に係り、特に過負荷、漏電の複数の
設定値に対する出力手段を有する汎用部品の誤差対策に
好適な予知機能付き漏電継電器に関するものである. 〔従来の技術J 漏電保護に関しては、設備の予防保全の見地に加えて一
層精密な保護強調二−ズが高まりつつある。これは、現
在の漏電遮断器、漏電継電器のJIS規格が動作感度電
流設定値に対して広い誤差範囲を許容されていることに
も起因している。 特願昭63−16523号公報に開示された先行発明は
、複数の電路に対する漏電保護のため、各回路に対応す
る零相変流器からの信号に基づいて漏電検出を行なう複
数の検出ユニットを集合設置することにより、保護装置
または警報装置を選択的に作動させるように構成したも
のである。 〔発明が解決しようとする課題〕 上記先行発明は、同一回路(主回路もしくは分岐回路)
における複数部位の漏電検出のためにしきい値を設定し
、各設定値に応じて複数出力を発することについては配
慮がされておらず、同一回路における異なる漏電電流し
きい値の設定、検出、出力は不可能であることから、出
力の選択は、例えば遮断もしくは警報のいずれか1つに
限定しなければならないという問題点があった。 また遮断、警報の両出力を得るために、例えば零相変流
器を2台設置し、各々に漏電継電器を接続したとしても
、例えばJIS C8374 r漏電継電器」の感度電
流、動作時間の許容値は第4図斜線部の範囲に示される
ように、2つの零相変流器および漏電継電器の相対誤差
は大きく、個々の特性を事前に測定し相対値を補正する
ための煩雑さがあり、また設置数増加によるコストアッ
プを生ずる等の問題点があった。 本発明は、任意の異なる漏電電流設定値に対し独立した
異なる出力値を得ることにより、予防保全を含めて広範
囲にわたる系統保護を可能にする多出力漏電継電器を提
供することを目的としている。
The present invention relates to an earth leakage relay, and more particularly to an earth leakage relay with a predictive function suitable for error countermeasures for general-purpose components that have output means for multiple set values for overload and earth leakage. [Prior Art J] Regarding earth leakage protection, in addition to the viewpoint of preventive maintenance of equipment, the need for more precise protection is increasing. This is also due to the fact that the current JIS standards for earth leakage circuit breakers and earth leakage relays allow a wide error range for the operating sensitivity current setting value. The prior invention disclosed in Japanese Patent Application No. Sho 63-16523 has a plurality of detection units that perform leakage detection based on signals from zero-phase current transformers corresponding to each circuit in order to protect a plurality of electric circuits from leakage. It is configured so that protective devices or alarm devices can be selectively activated by installing them together. [Problem to be solved by the invention] The above prior invention is based on the same circuit (main circuit or branch circuit).
No consideration has been given to setting thresholds for detecting earth leakage at multiple locations in the circuit and emitting multiple outputs according to each set value, and setting, detection, and output of different earth leakage current thresholds in the same circuit is not considered. Since this is not possible, there is a problem in that the selection of output must be limited to, for example, either shutdown or alarm. Also, in order to obtain both cutoff and alarm outputs, for example, even if two zero-phase current transformers are installed and a ground leakage relay is connected to each, the permissible values of sensitivity current and operating time of, for example, JIS C8374 r ground leakage relay. As shown in the shaded area in Figure 4, the relative errors between the two zero-phase current transformers and the earth leakage relay are large, and it is complicated to measure the individual characteristics in advance and correct the relative values. There were also problems such as increased costs due to an increase in the number of installations. An object of the present invention is to provide a multi-output earth leakage relay that enables a wide range of system protection including preventive maintenance by obtaining different independent output values for arbitrary different earth leakage current settings.

【課題を解決するための手段】[Means to solve the problem]

上記目的を達成するための構成は特許請求の範囲に記載
されている。すなわち、特許請求の範囲第1項は、同一
零相変流器の2次出力に対する複数のしきい値を設定す
る手段を備え、これら複数の各設定値に対応して動作す
る出力手段すなわち電路の遮断、ランプ若しくはブザー
等の各種警報器に接続するものである。また第2項、第
3項に記載のように、最大しきい値を決定しその他のし
きい値は最大値に対する所定の比率で変化させるもの、
最大しきい値の時延時間を設定し,その他のしきい値に
対応する動作時間は、前記時延時間に対する所定の比率
で設定されるもの等の態様がある。第4項に記載のよう
に、複数のしきい値のうち、最大のしきい値に対する設
定動作時間は時延とし、その他は短時に設定してもよい
。 〔作用〕 漏電継電器は同一零相変流器の2次出力に対する複数の
漏電しきい値の設定は、各々独立にもしくは所定の相対
関係をもって設定され、これによって各出力の相対誤差
を小さくすることができ適確な動作協調をとることがで
きる. 【実施例J 以下,本発明の一実施例を第1図乃至第3図により説明
する。 第3図は、本発明により実現しようとする漏電継電器の
動作特性の一例を示す特性図である。動作特性AからD
まで感度を示す漏電電流値は順次小さくなっており、ま
た、動作特性Aは時延型、C〜Dは高速型となっている
。 次に第2図は、回路ブロック図を示しておりその構成は
、零相変流器lの2次出力としきい値設定回路2と漏電
検出部・時延部3と出力部4、しきい値設定回路2のそ
れぞれ2A〜2Dに各々対応する接点4A〜4Dよりな
る。本図の動作は、零相変流器1の複数の2次出力が各
々のしきい値設定回路2に入力され、漏電検出部3にお
いて、設定しきい値より大きければ、所定の時延をもっ
て出力部4に信号を出すものである。このとき、しきい
値設定回路2に対応した出力接点:例えば2Aに対して
は4Aが応動する。 次に、本実施例の構成の詳細を第1図の回路図により説
明する。但し第2図と同一箇所は同一符号で示し説明は
省略する。aはロータリスイツチ等外部からの人為操作
が可能なスイッチで、切換接点は直列接続された抵抗2
D〜2Aの各接続点に接続されている。また該直列接続
抵抗2D〜2Aの一端は外部から人為操作可能なスイッ
チbを介してZCTの他端に接続されており、該スイ・
ごチbは図示しない複数のしきい値設定手段の選Aのた
めにに使用される。次に漏電検出部・時延自3は、汎用
の!iI電継電器、遮断器用IC(例:[立製1{A 
I6636等)であり、スイッチング素子を中心にして
構威される高速一時延切換回路33を介して、その検出
出力を後段の高速動作用サイリスタ34または時延回路
32に接続されている。 一方、出力接点4Bと連動する接点41は、該接抗器2
A、2Bの接続点とI C31の非反転入力螺子と接続
されている。なお第1図には説明を簡綿するために出力
接点は4A,4Bについてのみ不してある。 次にその動作について説明する。なお各スイッチa,b
および切換回路内スイッチは図示の位酒に設定されてい
るものとする。 今、漏電電流が第3図の動作曲線B以上で、獣作曲線A
未満であったとすると漏電検出用I C31の差動増幅
器31aは入力信号をビックアップし、該I C31の
動作時間内(数尖り秒程度)でサイリスタ34をトリガ
し、接点4B,41は閉路する。このとき、しきい値設
定回路2は,該接点4lにより動作曲線Aレベルに設定
変更されており、漏電電流はビックアップ値以下となる
ため、出力は4Bのみのままである. 次に,漏電電流が第3図の動作曲線A以上の場合の動作
を説明する.接点4B、4l閉路までの動作は既述の通
りであるため説明は省略する。切換回路33は接点4B
,41に連動して図示の他方へと切換られるよう構成さ
れている。接点4l閉路により、しきい値設定は第3図
動作曲線Aレベルに設定変更されているため、差動増幅
器31aはしきい値Aレベルとしてビックアップする。 そしてその出力は時延回路32を介して接点4Aを閉路
する。 この時延期間以前に漏電がしきい値以下になった場合は
4Aの閉路は行なわれない。 ところで、汎用漏電継電器、遮断器用ICは10社近く
の半導体メーカから発売されているが、ビックアップ値
(動作値)はいずれも30〜40%の誤差を含んでおり
、漏電検出はその絶対電流が例えば、5mA、30mA
と小さく、従ってこれの検出もパーマロイ製コア等を使
用した零相変流器を使用せざるを得ない。この場合2次
出力の直線性を良くするため、VAは小さくする必要が
あり、一般の差動増幅器で許容できる数mVのオフセッ
ト電圧も無視できなくなる。上記汎用ICのピックアッ
プ電圧は10数mVが一般的な値である。 本実施例によれば、各設定しきい値の相対誤差は第1図
記載の抵抗2A〜2Dの誤差に止まり、継電器の動作値
誤差の最大因子であるとされる汎用I C31のビック
アップ誤差は、動作値誤差因子として入らなくなるため
、精度の良い第3図の動作特性を実現でき、また、高価
なI C31を複数個使用する必要がないのでコストダ
ウンが可能である。 次に他の実施例について第5図乃至第6図により説明す
る。 第5図は、回路ブロック図であり、しきい値設定回路2
A,2Bの後段に各々漏電検出・時延回路3A,3Bを
接続してある。 次に第6図により回路の詳細を説明する。但し第5図と
重複する箇所は省略する。IC31Bと3!Aは共にビ
ックアップ値が所定の相対誤差範囲内にあるよう選定さ
れていることを条件とし、31Bを中心に構成される回
路3Bと、31Aを中心に構成される回路3Aは、図示
の如く第3図動作特性B,Aのビックアップ値に設定さ
れたしきい値設定回路2に接続されている。 今、第3図動作曲線B以上A未満の漏電があったとする
とIC31Bのみが動作し、接点4Bのみが閉路する。 また動作曲線A以上の漏電に対しては、4Bが閉路する
と共に、IC31A.時延回路32が動作し、接点4A
も閉路する。 本実施例によれば、しきい値設定回路に許容される誤差
範囲内で確実に第3図の動作特性を実現することができ
る。 他の実施例を第71!Iで説明する。本実施例はしきい
値設定回路を示したものであり、スイッチbにより第3
図動作曲線A−Dの相対比率を保存したまま、その各々
の絶対値を設定することができるものである。また、ス
イッチaにより、第3図AとBの相対比率を変化させる
ことができるものである。 第8図は本発明の一実施例の模式図であって、最大しき
い値設定の出力は、配線用遮断器の引き外しコイルに接
続して電路を遮断し、他方のしきい値設定出力は、警報
用としてランプ、ブザー等の負荷に接続されるものであ
る。 本実施例によれば、複数の絶対設定値および相対設定値
について、各々独立に設定できる効果がある. 〔発明の効果〕 本発明の実施により、同一零相変流器の2次出力信号入
力により、任意の絶対値、相対値を有するしきい値設定
が可能で、各々の設定値に対応した複数の出力が可能と
なるので、予訪保全の実施が可能で事故防止を確実にし
かも安価に達成することができる.
Structures for achieving the above object are described in the claims. In other words, the first claim provides means for setting a plurality of threshold values for the secondary output of the same zero-phase current transformer, and an output means that operates in accordance with each of the plurality of set values. It is connected to various alarm devices such as electric circuit interrupters, lamps, and buzzers. Further, as described in the second and third sections, the maximum threshold value is determined and the other threshold values are changed at a predetermined ratio with respect to the maximum value,
There is a mode in which the maximum threshold delay time is set, and the operation times corresponding to the other thresholds are set at a predetermined ratio to the delay time. As described in Section 4, the setting operation time for the maximum threshold value among the plurality of threshold values may be set to a longer time, and the others may be set to shorter times. [Function] In the earth leakage relay, multiple earth leakage thresholds for the secondary output of the same zero-phase current transformer are set independently or with a predetermined relative relationship, thereby reducing the relative error of each output. This allows for accurate movement coordination. [Embodiment J] An embodiment of the present invention will be described below with reference to FIGS. 1 to 3. FIG. 3 is a characteristic diagram showing an example of the operating characteristics of the earth leakage relay to be realized by the present invention. Operating characteristics A to D
The leakage current value showing the sensitivity is gradually decreasing, and the operating characteristics A is of the time-delay type, and the operating characteristics C to D are of the high-speed type. Next, Fig. 2 shows a circuit block diagram, and its configuration consists of the secondary output of the zero-phase current transformer l, the threshold setting circuit 2, the leakage detection section/time delay section 3, the output section 4, and the threshold setting circuit 2. It consists of contacts 4A to 4D corresponding to 2A to 2D of the value setting circuit 2, respectively. The operation shown in this diagram is such that multiple secondary outputs of the zero-phase current transformer 1 are input to each threshold setting circuit 2, and in the earth leakage detection section 3, if the voltage is larger than the set threshold, the output is output after a predetermined time delay. It outputs a signal to the output section 4. At this time, the output contact corresponding to the threshold setting circuit 2: for example, 4A responds to 2A. Next, details of the configuration of this embodiment will be explained with reference to the circuit diagram of FIG. However, the same parts as in FIG. 2 are indicated by the same reference numerals and the explanation will be omitted. A is a switch that can be manually operated from the outside, such as a rotary switch, and the switching contact is a resistor 2 connected in series.
It is connected to each connection point of D to 2A. Further, one end of the series-connected resistors 2D to 2A is connected to the other end of the ZCT via a switch b that can be manually operated from the outside.
Terminal b is used for selection A of a plurality of threshold setting means (not shown). Next, the earth leakage detection part/Tokinobu 3 is a general-purpose! iI electric relay, IC for circuit breaker (example: [stand made 1 {A
I6636, etc.), and its detection output is connected to a subsequent high-speed operation thyristor 34 or a time delay circuit 32 via a high-speed temporary delay switching circuit 33 that is structured around switching elements. On the other hand, the contact 41 interlocking with the output contact 4B is connected to the contact 2
It is connected to the connection point of A and 2B and the non-inverting input screw of IC31. In FIG. 1, only output contacts 4A and 4B are shown for simplicity of explanation. Next, its operation will be explained. Note that each switch a, b
It is assumed that the switch in the switching circuit is set to the position shown in the figure. Now, if the leakage current is above the operating curve B in Figure 3, and the operating curve A is
If it is below, the differential amplifier 31a of the earth leakage detection IC 31 will surprise the input signal, trigger the thyristor 34 within the operating time of the IC 31 (about a few cusp seconds), and the contacts 4B and 41 will close. . At this time, the threshold setting circuit 2 has been changed to the operating curve A level by the contact 4l, and the leakage current is below the surprise value, so the output remains only 4B. Next, we will explain the operation when the leakage current exceeds the operating curve A in Figure 3. The operation up to the closing of the contacts 4B and 4l is as described above, so a description thereof will be omitted. Switching circuit 33 is contact 4B
, 41 to switch to the other shown in the figure. By closing the contact 4l, the threshold setting is changed to the A level of the operating curve in FIG. 3, so the differential amplifier 31a jumps up as the threshold A level. The output then passes through the delay circuit 32 to close the contact 4A. If the current leakage falls below the threshold before this time period, the 4A circuit will not be closed. By the way, general-purpose earth leakage relays and circuit breaker ICs are sold by nearly 10 semiconductor manufacturers, but the big-up values (operating values) all contain an error of 30 to 40%, and earth leakage detection is based on the absolute current. For example, 5mA, 30mA
Therefore, detection of this requires the use of a zero-phase current transformer using a core made of permalloy or the like. In this case, in order to improve the linearity of the secondary output, it is necessary to reduce VA, and the offset voltage of several mV, which is allowable with a general differential amplifier, cannot be ignored. The pick-up voltage of the above-mentioned general-purpose IC is generally 10-odd mV. According to this embodiment, the relative error of each set threshold value is limited to the error of the resistors 2A to 2D shown in FIG. is not included as an operating value error factor, so the operating characteristics shown in FIG. 3 with high accuracy can be achieved, and it is not necessary to use a plurality of expensive ICs 31, so costs can be reduced. Next, another embodiment will be described with reference to FIGS. 5 and 6. FIG. 5 is a circuit block diagram, in which the threshold setting circuit 2
Leakage detection/time delay circuits 3A and 3B are connected to the rear stages of A and 2B, respectively. Next, the details of the circuit will be explained with reference to FIG. However, parts that overlap with those in FIG. 5 are omitted. IC31B and 3! The condition is that both A and B are selected so that the big-up value is within a predetermined relative error range, and the circuit 3B that is constructed around 31B and the circuit 3A that is constructed around 31A are as shown in the figure. It is connected to a threshold setting circuit 2 which is set to the surprise value of the operating characteristics B and A in FIG. Now, if there is a current leakage greater than or equal to B and less than A in the operating curve of FIG. 3, only IC 31B operates and only contact 4B closes. In addition, in case of a leakage exceeding the operating curve A, 4B is closed and IC31A. The time delay circuit 32 operates and the contact 4A
is also closed. According to this embodiment, the operating characteristics shown in FIG. 3 can be reliably realized within the error range allowed for the threshold setting circuit. Another example is the 71st! I will explain. This embodiment shows a threshold setting circuit, in which the third threshold value is set by switch b.
It is possible to set the absolute value of each of the graph movement curves A-D while preserving the relative ratio thereof. Further, the relative ratio between A and B in FIG. 3 can be changed by switch a. FIG. 8 is a schematic diagram of an embodiment of the present invention, in which the maximum threshold setting output is connected to the tripping coil of the molded circuit breaker to interrupt the electric circuit, and the other threshold setting output is connected to the trip coil of the molded circuit breaker. is connected to a load such as a lamp or buzzer for alarm purposes. According to this embodiment, there is an effect that a plurality of absolute setting values and relative setting values can be set independently. [Effects of the Invention] By implementing the present invention, it is possible to set threshold values having arbitrary absolute values and relative values by inputting the secondary output signal of the same zero-phase current transformer, and it is possible to set threshold values with arbitrary absolute values and relative values. Since multiple outputs are possible, preventive maintenance can be carried out and accidents can be prevented reliably and at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第l図は本発明の一実施例の回路図、第2図は第1図の
ブロック図、第3図は第1図〜第2図が実現しようとす
る動作特性曲線、第4図はJIS C8374で規制さ
れた動作許容範囲、第5図は本発明の他の実施例の回路
ブロック図、第6図は第5図の回路図、第7図は他の実
施例のしきい値設定回路図、第8図は本発明の実施例の
模式図である。 l・・・零相変流器    2・・・しきい値設定回路
3・・・漏電検出部・時延部 4・・・出力部 3l・・・漏電継電器・遮断器用IC
Fig. 1 is a circuit diagram of an embodiment of the present invention, Fig. 2 is a block diagram of Fig. 1, Fig. 3 is an operating characteristic curve to be realized in Figs. 1 and 2, and Fig. 4 is a JIS The operating range regulated by C8374, FIG. 5 is a circuit block diagram of another embodiment of the present invention, FIG. 6 is a circuit diagram of FIG. 5, and FIG. 7 is a threshold setting circuit of another embodiment. FIG. 8 is a schematic diagram of an embodiment of the present invention. l...Zero-phase current transformer 2...Threshold setting circuit 3...Earth leakage detection section/time delay section 4...Output section 3l...Earth leakage relay/IC for circuit breaker

Claims (1)

【特許請求の範囲】 1、主回路零相電流を検出する零相変流器の2次出力信
号を入力し、該信号が所定のしきい値を超えるとき出力
を発生する漏電継電器において、複数のしきい値を設定
する手段と、前記しきい値に対応した出力手段とを有す
ることを特徴とする漏電継電器。 2、前記複数のしきい値設定手段は、最大しきい値を独
立に可変とし、その他のしきい値は、前記最大しきい値
に対する所定の比率で変化して設定されることを特徴と
する特許請求の範囲第1項記載の漏電継電器。 3、前記複数のしきい値設定手段は、最大しきい値の時
延時間の設定は独立に可変とし、その他のしきい値に対
応する動作時間は、前記時延時間に対する所定の比率で
設定されることを特徴とする特許請求の範囲第1項記載
の漏電継電器。 4、前記複数のしきい値設定手段は、最大しきい値の時
延時間の設定は独立に可変とし、その他のしきい値に対
応する動作時間は、前記最大しきい値に対応する動作時
間より短時で動作とすることを特徴とする特許請求の範
囲第1項記載の漏電継電器。 5、前記複数のしきい値のうち、最大しきい値に対応す
る出力は遮断器の引き外しコイルに接続されていること
を特徴とする特許請求の範囲第1項記載の漏電継電器。
[Claims] 1. An earth leakage relay that receives a secondary output signal of a zero-sequence current transformer that detects a main circuit zero-sequence current and generates an output when the signal exceeds a predetermined threshold; 1. An earth leakage relay comprising means for setting a threshold value, and output means corresponding to the threshold value. 2. The plurality of threshold setting means are characterized in that the maximum threshold value is independently variable, and the other threshold values are set while changing at a predetermined ratio with respect to the maximum threshold value. An earth leakage relay according to claim 1. 3. In the plurality of threshold setting means, the setting of the maximum threshold delay time is independently variable, and the operation times corresponding to the other thresholds are set at a predetermined ratio to the delay time. The earth leakage relay according to claim 1, characterized in that: 4. In the plurality of threshold setting means, the setting of the delay time of the maximum threshold value is independently variable, and the operation time corresponding to the other threshold values is the operation time corresponding to the maximum threshold value. The earth leakage relay according to claim 1, characterized in that it operates in a shorter time. 5. The earth leakage relay according to claim 1, wherein the output corresponding to the maximum threshold among the plurality of thresholds is connected to a tripping coil of a circuit breaker.
JP1228357A 1989-09-05 1989-09-05 Multi-output earth leakage relay Pending JPH0393422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1228357A JPH0393422A (en) 1989-09-05 1989-09-05 Multi-output earth leakage relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1228357A JPH0393422A (en) 1989-09-05 1989-09-05 Multi-output earth leakage relay

Publications (1)

Publication Number Publication Date
JPH0393422A true JPH0393422A (en) 1991-04-18

Family

ID=16875193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1228357A Pending JPH0393422A (en) 1989-09-05 1989-09-05 Multi-output earth leakage relay

Country Status (1)

Country Link
JP (1) JPH0393422A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327666A (en) * 2004-05-17 2005-11-24 Fuji Electric Fa Components & Systems Co Ltd Ground fault interrupter
WO2012008088A1 (en) * 2010-07-13 2012-01-19 パナソニック株式会社 Leakage breaker
US8941957B2 (en) 2010-07-30 2015-01-27 Panasonic Intellectual Property Management Co., Ltd. Battery charger for an electrically-driven vehicle and method of confirming earth leakage applicable thereto
WO2018008074A1 (en) * 2016-07-04 2018-01-11 三菱電機株式会社 Station-building power supply device and charge detection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6185008A (en) * 1984-10-01 1986-04-30 光商工株式会社 Current alarm appliance
JPS63144717A (en) * 1986-12-09 1988-06-16 エナジーサポート株式会社 Grounding protection relay

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6185008A (en) * 1984-10-01 1986-04-30 光商工株式会社 Current alarm appliance
JPS63144717A (en) * 1986-12-09 1988-06-16 エナジーサポート株式会社 Grounding protection relay

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327666A (en) * 2004-05-17 2005-11-24 Fuji Electric Fa Components & Systems Co Ltd Ground fault interrupter
WO2012008088A1 (en) * 2010-07-13 2012-01-19 パナソニック株式会社 Leakage breaker
JP5834184B2 (en) * 2010-07-13 2015-12-16 パナソニックIpマネジメント株式会社 Earth leakage breaker
US8941957B2 (en) 2010-07-30 2015-01-27 Panasonic Intellectual Property Management Co., Ltd. Battery charger for an electrically-driven vehicle and method of confirming earth leakage applicable thereto
WO2018008074A1 (en) * 2016-07-04 2018-01-11 三菱電機株式会社 Station-building power supply device and charge detection method
JPWO2018008074A1 (en) * 2016-07-04 2018-12-20 三菱電機株式会社 Station building power supply device and charging detection method
US10889206B2 (en) 2016-07-04 2021-01-12 Mitsubishi Electric Corporation Station building power supply device and charged-state detection method

Similar Documents

Publication Publication Date Title
US5077627A (en) Solid-state trip device for a protective circuit breaker of a three-phase mains system, enabling the type of fault to be detected
US5818671A (en) Circuit breaker with arcing fault detection module
US4344100A (en) Ground fault circuit breaker with ground fault trip indicator
US5164876A (en) Static trip device comprising an earth protection desensitization system
US6697238B2 (en) Ground fault circuit interrupter (GFCI) with a secondary test switch contact protection
CA2409145C (en) Sensitive ground fault detection system for use in compensated electric power distribution networks
JPH01126129A (en) Solid tripper of molded case breaker
CA2387811A1 (en) Improved restraint-type differential relay
AU749406B2 (en) Electrical switching apparatus employing interlocks for first and second trip functions
US6377055B1 (en) Arc fault detector device with two stage arc sensing
JPH07118255B2 (en) Selective trip unit combined with current limiting circuit breaker
EP0219790B1 (en) Transformer protection system
US5969921A (en) Ground fault electrical switching apparatus for coordinating tripping with a downstream ground fault switch
US4096366A (en) Means for detecting a loss of vacuum in vacuum-type circuit interrupters used in polyphase a.c. vacuum circuit breaker
US20020158633A1 (en) Method for operating an electronic overcurrent trip of a power circuit breaker
JPH0393422A (en) Multi-output earth leakage relay
US20050162788A1 (en) Differential protection device with simplified protection parameter adjustment means
US3976918A (en) False triggering protection for ground fault sensor
JPH0564355A (en) Reverse power protection method for network power distribution
GB2305556A (en) Power-line trip circuit
AU2019447727B2 (en) Electric line (L) protection device for detecting a leakage fault, a short-circuit, fault, an overcurrent fault and an arc fault
CA1036670A (en) Ground fault detector circuit with high current inhibit
JP2000503517A (en) Connection device for load network
US11698392B2 (en) Low-voltage power switch and arc fault detection unit
ITMI20011327A1 (en) DIFFERENTIAL SWITCH FOR PROTECTION AGAINST EARTH LEAKAGE CURRENTS