JPH039088A - Three-stage compressor - Google Patents

Three-stage compressor

Info

Publication number
JPH039088A
JPH039088A JP14204089A JP14204089A JPH039088A JP H039088 A JPH039088 A JP H039088A JP 14204089 A JP14204089 A JP 14204089A JP 14204089 A JP14204089 A JP 14204089A JP H039088 A JPH039088 A JP H039088A
Authority
JP
Japan
Prior art keywords
compression chamber
compression
piston
block
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14204089A
Other languages
Japanese (ja)
Inventor
Yoshiaki Wada
和田 良昭
Tsunesaku Itabane
板羽 常作
Koichiro Kasahara
笠原 浩一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP14204089A priority Critical patent/JPH039088A/en
Publication of JPH039088A publication Critical patent/JPH039088A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PURPOSE:To increase gas compression efficiency by housing a mono-piston block having the first to third piston planes within a cylinder block having the first to third cylinder planes, and enabling the compression of gas in three stages with the reciprocating motion of the piston block. CONSTITUTION:A piston block 32 having the first to third piston planes 51 to 53 for forming the first to third compression chambers 41 to 43 together with cylinder planes 35 to 37, is housed within a cylinder block 31 having the aforesaid planes planes 35 to 37. In addition, when the piston block 32 is raised within the cylinder block 31, air in the first compression chamber 41 is compressed and fed to the second compression chamber 42 through an exhaust valve 93, a cooling machine 94 and an intake valve 95. Concurrently, air within the third compression chamber 43 is compressed and discharged through a pipe line 102 and an exhaust valve 101. Then, when the piston block 34 is in downward stroke, air compressed in the sec ond compression chamber 42 is fed to the third compression chamber 43. According to the aforesaid construction, three stage air compression is carried out.

Description

【発明の詳細な説明】 童深e氷腎 本発明は、圧縮機、特に小型化の3段圧縮機に関する。[Detailed description of the invention] doshin e ice kidney The present invention relates to a compressor, and particularly to a compact three-stage compressor.

従」1支権 従来より、多種類の多段圧縮機が市販されており、これ
らの多段圧縮機は一般に高圧で比較的流量が多い。第2
図は小流量で小型の3段圧縮機の一例を示す。
BACKGROUND OF THE INVENTION Many types of multi-stage compressors have been commercially available, and these multi-stage compressors generally have high pressures and relatively high flow rates. Second
The figure shows an example of a small three-stage compressor with a small flow rate.

この3段圧縮機は第一の圧縮機1と第二の圧縮機2を有
する。第一の圧縮機1と第二の圧縮機2のピストン10
.20はそれぞれコンロッド1a、2aを介してクラン
クシャフト3に連結され、クランクシャフト3の回転に
より往復運動を行う。
This three-stage compressor has a first compressor 1 and a second compressor 2. Pistons 10 of the first compressor 1 and the second compressor 2
.. 20 are connected to the crankshaft 3 via connecting rods 1a and 2a, respectively, and perform reciprocating motion as the crankshaft 3 rotates.

この場合、ピストン10が下降し、ピストン2゜が上昇
する行程では、第一の圧縮機1の第1段圧縮室12及び
第2段圧縮室13に吸気されると共に、第二の圧縮機2
の第1段圧縮室22及び第2段圧縮室23では圧縮が行
なわれる。
In this case, in the stroke in which the piston 10 descends and the piston 2° rises, air is drawn into the first stage compression chamber 12 and second stage compression chamber 13 of the first compressor 1, and the air is sucked into the second compressor 2.
Compression is performed in the first stage compression chamber 22 and second stage compression chamber 23.

この時、第一の圧縮機1の第1段圧縮室12では、吸入
弁14が開き、外気が導入される。同時に吸入弁16が
開き、第2段圧縮室13内に冷却機18を含む管路内の
空気が供給される。冷却機18を含む管路内には前の行
程において第一の圧縮機1の第1段圧縮室12から排出
された圧縮空気が保持されており、第二の圧縮機2の第
1段圧縮室22から排気弁25を通り圧縮空気が供給さ
れる。
At this time, the suction valve 14 is opened in the first stage compression chamber 12 of the first compressor 1, and outside air is introduced. At the same time, the suction valve 16 opens, and air in the pipe line including the cooler 18 is supplied into the second stage compression chamber 13. The compressed air discharged from the first stage compression chamber 12 of the first compressor 1 in the previous stroke is held in the pipe line including the cooler 18, and the compressed air is discharged from the first stage compression chamber 12 of the second compressor 2. Compressed air is supplied from the chamber 22 through an exhaust valve 25 .

また、第二の圧縮機2の第2段圧縮室2:3内の圧縮空
気は、排気弁27が開いて圧縮空気が図示しないタンク
等地の装置に吐出される。
Further, the exhaust valve 27 opens and the compressed air in the second stage compression chamber 2:3 of the second compressor 2 is discharged to a device such as a tank (not shown).

続いて、第一の圧縮機1のピストン10が圧縮行程にあ
るとき、第二の圧縮機2のピストン20が吸入行程を行
う。第一の圧縮機1の第1段圧縮室12が圧縮されて排
気弁15が開き、冷却機18を含む管路内に第1段圧縮
室12内の圧縮空気が排出されると同時に、第2段圧縮
室13の圧縮空気は排気弁17、冷却機17及び吸気弁
26を通り第二の圧縮機2の第2段圧縮室23に供給さ
れる。
Subsequently, when the piston 10 of the first compressor 1 is in the compression stroke, the piston 20 of the second compressor 2 performs the suction stroke. The first stage compression chamber 12 of the first compressor 1 is compressed, the exhaust valve 15 opens, and the compressed air in the first stage compression chamber 12 is discharged into the pipe line including the cooler 18. The compressed air in the two-stage compression chamber 13 passes through the exhaust valve 17, the cooler 17, and the intake valve 26, and is supplied to the second-stage compression chamber 23 of the second compressor 2.

考 が解 しようとする課題 − 一 しかしながら、第2図に示す3段式圧縮機では、第一の
圧縮機1と第二の圧縮機2の2つの圧縮機が必要となり
、圧縮機を小形化できないのみならず部品数も多い。ま
た、冷却機18を含む管路内に圧縮空気を一時的に保持
しなければならないため、冷却機18を含む管路内の発
熱量が多く、また容量設定が困難となる。この管路を適
切な容量に設定しないと、第2段圧縮室13に所定値の
圧縮空気を供給できない欠点がある。
Problems to be Solved by the Consideration - 1 However, the three-stage compressor shown in Figure 2 requires two compressors, the first compressor 1 and the second compressor 2, and it is necessary to downsize the compressor. Not only is it impossible, but it also requires a large number of parts. Further, since compressed air must be temporarily held in the conduit including the cooler 18, the amount of heat generated in the conduit including the cooler 18 is large, and it is difficult to set the capacity. Unless this conduit is set to an appropriate capacity, there is a drawback that a predetermined amount of compressed air cannot be supplied to the second stage compression chamber 13.

本発明の目的は、小形の3段圧縮機を提供することにあ
る。
An object of the present invention is to provide a compact three-stage compressor.

皿I」」14も灸友J尺どF改 本発明による3段圧縮機は、第一のシリンダ面、第二の
シリンダ面及び第三のシリンダ面を有するシリンダブロ
ックと、それぞれシリンダブロックの第一のシリンダ面
、第二のシリンダ面及び第三のシリンダ面と共に第一の
圧縮室、第二の圧縮室及び第三の圧縮室を形成する第一
のピストン面、第二のピストン面及び第三のピストン面
を有するピストンブロックとを含む。第一の圧縮室又は
第三の圧縮室内で圧縮される気体は第二の圧縮室内で圧
縮された後、更に第三の圧縮室内で圧縮される。例えば
、第一の圧縮室で圧縮された気体は第二の圧縮室で圧縮
された後、更に第三の圧縮室又は第一の圧縮室で圧縮さ
れる。
A three-stage compressor according to the present invention includes a cylinder block having a first cylinder surface, a second cylinder surface, and a third cylinder surface, and a cylinder block having a first cylinder surface, a second cylinder surface, and a third cylinder surface. The first piston surface, the second piston surface and the first piston surface form together with the first cylinder surface, the second cylinder surface and the third cylinder surface a first compression chamber, a second compression chamber and a third compression chamber. and a piston block having three piston faces. The gas compressed in the first compression chamber or the third compression chamber is compressed in the second compression chamber, and then further compressed in the third compression chamber. For example, the gas compressed in the first compression chamber is compressed in the second compression chamber, and then further compressed in the third compression chamber or the first compression chamber.

第一の圧縮室は第三の圧縮室の周囲にかつ同軸上に形成
される。第一の圧縮室又は第三の圧縮室及び第二の圧縮
室内で圧縮された気体は冷却機により冷却された後、第
三の圧縮室又は第一の圧縮室に供給される。第一の圧縮
室及び第三の圧縮室が同時に圧縮行程又は吸入行程を行
うとき、第二の圧縮室は吸入行程又は圧縮行程を行う。
The first compression chamber is formed around and coaxially with the third compression chamber. The gas compressed in the first compression chamber or the third compression chamber and the second compression chamber is cooled by the cooler and then supplied to the third compression chamber or the first compression chamber. When the first compression chamber and the third compression chamber simultaneously perform a compression stroke or a suction stroke, the second compression chamber performs a suction stroke or a compression stroke.

第一の圧縮室及び第三の圧縮室はピストンブロックの一
端に形成され、第二の圧縮室はビス1〜ンブロツクの一
端から他端に向かって離れた位置に形成された段部に形
成される。第一の圧縮室はピストンブロックの一端に形
成された第一のシリンダ面により形成され、第三の圧縮
室はピストンブロックの一端から突出する第三のシリン
ダ面により形成される。
The first compression chamber and the third compression chamber are formed at one end of the piston block, and the second compression chamber is formed at a step formed at a position away from one end of the screw block toward the other end. Ru. The first compression chamber is defined by a first cylinder surface formed at one end of the piston block, and the third compression chamber is defined by a third cylinder surface protruding from one end of the piston block.

作□J1 ピストンブロックがシリンダブロック内で往復運動を行
うときに、第一の圧縮室及び第三の圧縮室が同時に圧縮
行程及び吸入行程を行うと同時に、回転角度が180°
ずれた状態で第二の圧縮室が吸入行程及び圧縮行程を行
う。従って、各圧縮室の容積を適宜設定すると共に、第
一の圧縮室又は第三の圧縮室で第1段圧縮された気体を
第二の圧縮室に供給して第2段圧縮し、更に第二の圧縮
室から第三の圧縮室又は第一の圧縮室に気体を供給して
第3段圧縮を行うことができる。
Operation □J1 When the piston block performs reciprocating motion within the cylinder block, the first compression chamber and the third compression chamber simultaneously perform the compression stroke and suction stroke, and at the same time, the rotation angle is 180°.
The second compression chamber performs a suction stroke and a compression stroke in the shifted state. Therefore, while setting the volume of each compression chamber appropriately, the gas compressed in the first stage in the first compression chamber or the third compression chamber is supplied to the second compression chamber to be compressed in the second stage, and then the gas is compressed in the second stage. Third-stage compression can be performed by supplying gas from the second compression chamber to the third compression chamber or the first compression chamber.

この場合に吸入行程及び圧縮行程を行う第一の圧縮室又
は第三の圧縮室から排出される気体は同期して圧縮行程
及び吸入行程を行う第二の圧縮室に供給される。また、
吸入行程及び圧縮行程を行う第二の圧縮室から排出され
る気体は同期して圧縮行程及び吸入行程を行う第一の圧
縮室又は第三の圧縮室に供給される。従って、単一のピ
ストンブロックが単一のシリンダブロック内で往復運動
を行うとき、第一の圧縮室、第二の圧縮室及び第三の圧
縮室が同期して吸入行程及び圧縮行程を行う。このため
、シリンダブロックが1行程分移動する間に3段圧縮が
可能となり、各段の吸入及び吐出のタイミングが完全に
一致する。従って、小形の3段圧縮機が得られると同時
に、管路中に圧縮気体を保持する必要がないから、高効
率で気体の圧縮を行うことが可能となる。
In this case, the gas discharged from the first compression chamber or the third compression chamber that performs the suction stroke and compression stroke is synchronously supplied to the second compression chamber that performs the compression stroke and suction stroke. Also,
Gas discharged from the second compression chamber, which performs the suction stroke and the compression stroke, is supplied to the first compression chamber or the third compression chamber, which performs the compression stroke and the suction stroke synchronously. Therefore, when a single piston block performs reciprocating motion within a single cylinder block, the first compression chamber, the second compression chamber, and the third compression chamber perform the suction stroke and the compression stroke in synchronization. Therefore, three stages of compression are possible while the cylinder block moves one stroke, and the suction and discharge timings of each stage are perfectly matched. Therefore, a small three-stage compressor can be obtained, and at the same time, since there is no need to hold compressed gas in the pipe line, it is possible to compress the gas with high efficiency.

ズ施−■ 以下、本発明による3段圧縮機の実施例を第1図につい
て説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a three-stage compressor according to the present invention will be described below with reference to FIG.

図示のようしこ、本発明トこよる3段圧縮機30は第一
のシリンダ面35、第二のシリンダ面36及び第三のシ
リンダ面37を有するシリンダブロック31と、それぞ
れ第一のシリンダ面35、第二のシリンダ面36及び第
三のシリンダ面37と共に第一の圧縮室41、第二の圧
縮室42及び第三の圧縮室43を形成する第一のピスト
ン面51、第二のビス1−ン面52及び第三のビス1〜
ン面53を有するピストンブロック32とを含む。第三
の圧縮室43は第一の圧縮室41の周囲にかつ同軸一 上に形成される。第一の圧縮室41及び第三の圧縮室4
3はピストンブロック32の一端に形成され、第二の圧
縮室42はピストンブロック32の一端から他端に向か
って離れた位置に形成された段部44に形成される。第
一の圧縮室41はピストンブロック32の一端に形成さ
れた第一のシリンダ面35により形成され、第三の圧縮
室43はピストンブロック32の一端から突出する第三
のシリンダ面37により形成される。
As illustrated, a three-stage compressor 30 according to the present invention includes a cylinder block 31 having a first cylinder surface 35, a second cylinder surface 36, and a third cylinder surface 37, and a cylinder block 31 having a first cylinder surface 35, a second cylinder surface 36, and a third cylinder surface 37, respectively. 35, a first piston surface 51 that forms a first compression chamber 41, a second compression chamber 42, and a third compression chamber 43 together with the second cylinder surface 36 and the third cylinder surface 37; 1-plane 52 and third screw 1~
The piston block 32 includes a piston block 32 having a bearing surface 53. The third compression chamber 43 is formed around and coaxially with the first compression chamber 41 . First compression chamber 41 and third compression chamber 4
3 is formed at one end of the piston block 32, and the second compression chamber 42 is formed in a stepped portion 44 formed at a position away from one end of the piston block 32 toward the other end. The first compression chamber 41 is formed by a first cylinder surface 35 formed at one end of the piston block 32, and the third compression chamber 43 is formed by a third cylinder surface 37 protruding from one end of the piston block 32. Ru.

シリンダブロック31はベース33に連結される。ベー
ス33は空洞60と、空洞60に連絡する貫通孔61を
有する。貫通孔61にはクランクシャツ1−64を支持
する一対の軸受62.63が固定される。クランクシャ
フト64の一端は図示しない減速機を介してモータ等の
駆動装置に接続される。クランクシャフト64の他端は
ベース33に取付けられたカバー65の貫通孔65aを
通り空洞60の外部に突出しかつファン66が取付けら
れる。クランクシャフト64には軸受67を介してコン
ロッド68の一端が固定される。コンロンドロ8の他端
にはシャフト74を支持する軸受75が固定される。
Cylinder block 31 is connected to base 33. The base 33 has a cavity 60 and a through hole 61 communicating with the cavity 60. A pair of bearings 62 and 63 that support the crank shirt 1-64 are fixed to the through hole 61. One end of the crankshaft 64 is connected to a drive device such as a motor via a reduction gear (not shown). The other end of the crankshaft 64 passes through a through hole 65a of a cover 65 attached to the base 33 and projects to the outside of the cavity 60, and a fan 66 is attached thereto. One end of a connecting rod 68 is fixed to the crankshaft 64 via a bearing 67. A bearing 75 that supports a shaft 74 is fixed to the other end of the rotor 8.

ピストンブロック32はピストンリンク70.71.7
2が装着された第一のビス1〜ンブロソク33と、ピス
トンリング73が装着された第二のピストンブロック3
4とを有する。本実施例では、無潤滑式の圧縮機として
構成するとき、各ピストンリング70〜73は合成樹脂
で形成される。第二のビス1〜ンブロツク34はシャツ
l〜74の両端を支持する貫通孔76が形成される。貫
通孔76の端部はリテーナ77.78により閉鎖される
The piston block 32 is a piston link 70.71.7
2 are attached to the first screw 1 to block 33, and the second piston block 3 is attached with the piston ring 73.
4. In this embodiment, when configured as a non-lubricated compressor, each piston ring 70 to 73 is made of synthetic resin. The second screws 1 to 34 are formed with through holes 76 that support both ends of the shirts 1 to 74. The ends of the through hole 76 are closed by retainers 77,78.

第二のビス1〜ンブロツク34の端部には第一のピスト
ンブロック33の一端に形成された四部80に同軸に嵌
合される突出部81が形成される。第一のビス1〜ンブ
ロツク33と第二のビス1〜ンブロツク34は互いに固
定され一体に往復運動を行う。
A protrusion 81 is formed at the end of the second screw 1 to block 34 and is coaxially fitted into a four-part 80 formed at one end of the first piston block 33. The first screw 1-block 33 and the second screw 1-block 34 are fixed to each other and reciprocate together.

もちろん、第一のピストンブロック33と第二のピスト
ンブロック34とを一体構造で形成してもよい。
Of course, the first piston block 33 and the second piston block 34 may be integrally formed.

第一のピストンブロック33の一端には突起部38が形
成される。突起部38の根底部の周囲には第一のビス1
〜ン面51が形成され、突起部38の先端部には第三の
ピストン面53が形成される。
A protrusion 38 is formed at one end of the first piston block 33 . A first screw 1 is installed around the base of the protrusion 38.
A third piston surface 51 is formed at the tip of the protrusion 38 .

第一のビス1〜2面51はシリンダブロック31と共に
第一の圧縮室41を形成する。突起部38はシリンダフ
ロック31に設けられた凹部39内に嵌合される。凹部
39と第三のビス1〜ン面53は第三の圧縮室43を形
成する。
The first screws 1 and 2 surfaces 51 together with the cylinder block 31 form a first compression chamber 41 . The protrusion 38 is fitted into a recess 39 provided in the cylinder flock 31. The recess 39 and the third screw surface 53 form a third compression chamber 43.

シリンダフロック31の下部には段部44が設けられる
。段部44の内面44 aと、第一のピストンブロック
33の他端と第二のピストンブロック34の側壁は第二
の圧縮室42を形成する。
A step portion 44 is provided at the bottom of the cylinder flock 31. The inner surface 44 a of the stepped portion 44 , the other end of the first piston block 33 , and the side wall of the second piston block 34 form a second compression chamber 42 .

第一の圧縮室41にはフィルタ90及び吸気弁91を通
る管路92を介して大気に接続される。
The first compression chamber 41 is connected to the atmosphere via a pipe 92 passing through a filter 90 and an intake valve 91 .

また、排気弁93、冷却機94及び吸気弁95を通る管
路96により第一の圧縮室41は第二の圧縮室42に接
続される。更に、排気弁97、冷却機98及び吸気弁9
9を通る管路100により第二の圧縮室42は第三の圧
縮室43に接続される。
Further, the first compression chamber 41 is connected to the second compression chamber 42 by a conduit 96 passing through the exhaust valve 93, the cooler 94, and the intake valve 95. Furthermore, an exhaust valve 97, a cooler 98 and an intake valve 9
The second compression chamber 42 is connected to the third compression chamber 43 by a conduit 100 passing through 9 .

第三の圧縮室43は排気弁101を通る管路102によ
り図示しないタンク等地の装置に接続される。第一の圧
縮室41又は第三の圧縮室4;3及び第二の圧縮室42
内で圧縮された気体は冷却機により冷却された後、第三
の圧縮室423又は第一の圧縮室41に供給される。
The third compression chamber 43 is connected to a device such as a tank (not shown) through a conduit 102 passing through an exhaust valve 101. First compression chamber 41 or third compression chamber 4;3 and second compression chamber 42
After the gas compressed therein is cooled by a cooler, it is supplied to the third compression chamber 423 or the first compression chamber 41.

上記の構成において、ビス1〜ンブロンク32かシリン
ダブロック31内で往復運動を行うときに、第一のピス
トンブロック33と第二のピストンブロック34とは一
体に往復運動を行う。第一の圧縮室41及び第三の圧縮
室43か同時に圧縮行程又は吸入行程を行うとき、第二
の圧縮室42は吸入行程又は圧縮行程を行う。ピストン
ブロック34が上昇するとき、第一の圧縮室41内の空
気は排気弁93、冷却機94及び吸気弁95を通り第二
の圧縮室42に供給され、1段圧縮が行われる。。
In the above configuration, when the screws 1 to 32 reciprocate within the cylinder block 31, the first piston block 33 and the second piston block 34 reciprocate integrally. When the first compression chamber 41 and the third compression chamber 43 simultaneously perform a compression stroke or a suction stroke, the second compression chamber 42 performs a suction stroke or a compression stroke. When the piston block 34 moves up, the air in the first compression chamber 41 passes through the exhaust valve 93, the cooler 94, and the intake valve 95, and is supplied to the second compression chamber 42, where one-stage compression is performed. .

同時に、第三の圧縮室43内の圧縮空気は管路102及
び排気弁101を通り排出され、3段圧縮が行われる。
At the same time, the compressed air in the third compression chamber 43 is discharged through the pipe line 102 and the exhaust valve 101, and three-stage compression is performed.

次に、ピストンブロック34が下降するとき、管路92
、コック90及び吸気弁91を通り大気が第一の圧縮室
41内に供給される。
Next, when the piston block 34 descends, the pipe line 92
, the air is supplied into the first compression chamber 41 through the cock 90 and the intake valve 91 .

1 2 これと同時に、管路100、排気弁97及び冷却機98
を通り第二の圧縮室42の圧縮空気が第三の圧縮室43
に供給され、2段圧縮が行われる。
1 2 At the same time, the pipe line 100, the exhaust valve 97 and the cooler 98
The compressed air in the second compression chamber 42 passes through the third compression chamber 43.
, and two-stage compression is performed.

このように、第一の圧縮室41及び第三の圧縮室43が
同時に圧縮行程及び吸入行程を行うと同時に、回転角度
が180°ずれた状態で第二の圧縮室42が吸入行程及
び圧縮行程を行う。
In this way, the first compression chamber 41 and the third compression chamber 43 simultaneously perform the compression stroke and the suction stroke, and at the same time, the second compression chamber 42 performs the suction stroke and the compression stroke with the rotation angle shifted by 180 degrees. I do.

この場合に吸入行程及び圧縮行程を行う第一の圧縮室4
1から排出される気体は同期して圧縮行程及び吸入行程
を行う第二の圧縮室42に供給される。また、吸入行程
及び圧縮行程を行う第二の圧縮室42から排出される気
体は同期して圧縮行程及び吸入行程を行う第三の圧縮室
43に供給される。従って、単一のビス1〜ンブロツク
が単一のシリンダブロック内で往復運動を行うとき、第
一の圧縮室41、第二の圧縮室42及び第三の圧縮室4
3が同期して吸入行程及び圧縮行程を行う。
In this case, the first compression chamber 4 performs the suction stroke and the compression stroke.
The gas discharged from the second compression chamber 42 is supplied to a second compression chamber 42 which performs a compression stroke and a suction stroke synchronously. Further, the gas discharged from the second compression chamber 42 that performs the suction stroke and the compression stroke is synchronously supplied to the third compression chamber 43 that performs the compression stroke and the suction stroke. Therefore, when a single screw 1 to block performs reciprocating motion within a single cylinder block, the first compression chamber 41, the second compression chamber 42, and the third compression chamber 4
3 performs the suction stroke and compression stroke in synchronization.

このため、シリンダブロック32が1行程分移動する間
に3段圧縮が可能となり、各段の吸入及び吐出のタイミ
ングが完全に一致する。小形の3段圧縮機が得られると
同時に、管路中に圧縮気体を保持する必要がないから、
高効率で気体の圧縮を行うことが可能となる。
Therefore, three stages of compression are possible while the cylinder block 32 moves one stroke, and the suction and discharge timings of each stage are perfectly matched. At the same time, it is possible to obtain a compact three-stage compressor, and at the same time, there is no need to hold compressed gas in the pipeline.
It becomes possible to compress gas with high efficiency.

本発明の上記実施例は種々の変更か可能である。Various modifications can be made to the above-described embodiments of the invention.

例えば、上記の実施例では第一の圧縮室41、第二の圧
縮室42及び第三の圧縮室43においてそれぞれ1段圧
縮、2段圧縮及び3段圧縮を行う例を示したが、各圧縮
室の容積を適宜設定することにより、第三の圧縮室43
、第二の圧縮室42及び第一の圧縮室41においてそれ
ぞれ1段圧縮、2段圧縮及び3段圧縮を行うことも可能
である。
For example, in the above embodiment, an example was shown in which one-stage compression, two-stage compression, and three-stage compression are performed in the first compression chamber 41, the second compression chamber 42, and the third compression chamber 43, respectively. By appropriately setting the volume of the chamber, the third compression chamber 43
It is also possible to perform one-stage compression, two-stage compression, and three-stage compression in the second compression chamber 42 and the first compression chamber 41, respectively.

この場合は管路92.96.100及び102の流れが
逆に管路102.100.96及び92と逆になり、ま
た吸入弁91.95及び99と排気弁93.97及び1
0]が入れ替えられる。この場合に吸入行程及び圧縮行
程を行う第三の圧縮室43から排出される気体は同期し
て圧縮行程及び吸入行程を行う第二の圧縮室42に供給
される。
In this case, the flow in lines 92.96.100 and 102 is reversed to that in lines 102.100.96 and 92, and also in the intake valves 91.95 and 99 and the exhaust valves 93.97 and 1.
0] are replaced. In this case, the gas discharged from the third compression chamber 43 that performs the suction stroke and the compression stroke is synchronously supplied to the second compression chamber 42 that performs the compression stroke and the suction stroke.

また、吸入行程及び圧縮行程を行う第二の圧縮室42か
ら排出される気体は同期して圧縮行程及び吸入行程を行
う第一の圧縮室41に供給される。
Furthermore, gas discharged from the second compression chamber 42 that performs the suction stroke and compression stroke is synchronously supplied to the first compression chamber 41 that performs the compression stroke and suction stroke.

このように、従って、各圧縮室の容積を適宜設定すると
共に、第一の圧縮室又は第三の圧縮室で第1段圧縮され
た気体を第二の圧縮室に供給して第2段圧縮し、更に第
二の圧縮室から第三の圧縮室又は第一の圧縮室に気体を
供給して第3段圧縮を行うことができることは明白であ
る。
In this way, the volume of each compression chamber is set appropriately, and the gas compressed in the first stage in the first compression chamber or the third compression chamber is supplied to the second compression chamber to be compressed in the second stage. However, it is clear that the third compression stage can be performed by further supplying gas from the second compression chamber to the third compression chamber or the first compression chamber.

また、3段に限らす、更に圧縮室を増加することにより
4段以上の圧縮機を構成することも可能であることは理
解されよう。更に、上記の実施例では空気を圧縮する場
合について説明したが、空気以外の他の気体又は混合ガ
スについても本発明を実施できることは自明である。本
発明の3段圧縮機2機併用することもできる。
Furthermore, it will be understood that the number of stages is not limited to three, but it is also possible to configure a compressor with four or more stages by further increasing the number of compression chambers. Further, in the above embodiments, the case where air is compressed has been described, but it is obvious that the present invention can be practiced with other gases or mixed gases other than air. Two three-stage compressors of the present invention can also be used together.

溌−哩ガ紘來 以上説明したように、本発明による3段圧縮機では、r
lt−のシリンダブロック内に単一のビス1〜ンブロツ
クを配置して構成できるので、小型に製造することがで
き、管路中に圧縮気体を保持する必要がないから、高効
率で気体の圧縮を行うことが可能となる。
As explained above, in the three-stage compressor according to the present invention, r
Since it can be constructed by arranging a single screw block in the cylinder block of lt-, it can be manufactured in a small size, and there is no need to hold compressed gas in the pipe, so it can compress gas with high efficiency. It becomes possible to do this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による3段圧縮機の断面図、第2図は
従来の23段圧縮機の断面図を示す。 30、.3段圧縮機、310.シリンタブロック、32
0.ビス1〜ンブロソク、350.第一のシリンダ面、
361.第二のシリンダ面、37.。 第三のシリンダ面、410.第一の圧縮室、42゜、第
二の圧縮室、/1.、3 、 、第三の圧縮室、44.
。 段部、511.第一のビス1〜ン面、520.第一。 のビス1−ン面、531.第三のビス1〜ン面、91.
95.998.吸気弁、93.97.101゛排気弁、
94.980.冷却機、
FIG. 1 shows a sectional view of a three-stage compressor according to the present invention, and FIG. 2 shows a sectional view of a conventional 23-stage compressor. 30,. 3-stage compressor, 310. Cylinder block, 32
0. Bis 1 ~ Mburosoku, 350. first cylinder surface,
361. second cylinder surface, 37. . third cylinder surface, 410. First compression chamber, 42°, second compression chamber, /1. ,3, ,Third compression chamber, 44.
. Danbe, 511. First screw surface, 520. first. Bis 1-plane, 531. Third screw surface, 91.
95.998. Intake valve, 93.97.101゛Exhaust valve,
94.980. cooling machine,

Claims (7)

【特許請求の範囲】[Claims] (1)第一のシリンダ面、第二のシリンダ面及び第三の
シリンダ面を有するシリンダブロックと、それぞれシリ
ンダブロックの第一のシリンダ面、第二のシリンダ面及
び第三のシリンダ面と共に第一の圧縮室、第二の圧縮室
及び第三の圧縮室を形成する第一のピストン面、第二の
ピストン面及び第三のピストン面を有するピストンブロ
ックとを含み、第一の圧縮室又は第三の圧縮室内で圧縮
される気体を第二の圧縮室内で圧縮した後、更に第三の
圧縮室内又は第一の圧縮室内で圧縮することを特徴とす
る3段圧縮機。
(1) A cylinder block having a first cylinder surface, a second cylinder surface and a third cylinder surface, and a cylinder block having a first cylinder surface, a second cylinder surface and a third cylinder surface, respectively. a piston block having a first piston surface, a second piston surface and a third piston surface forming a compression chamber, a second compression chamber and a third compression chamber; A three-stage compressor characterized in that the gas compressed in three compression chambers is compressed in a second compression chamber and then further compressed in a third compression chamber or a first compression chamber.
(2)第一の圧縮室で圧縮された気体を第二の圧縮室で
圧縮した後、更に第三の圧縮室で圧縮する請求項(1)
に記載の3段圧縮機。
(2) Claim (1) in which the gas compressed in the first compression chamber is compressed in the second compression chamber and then further compressed in the third compression chamber.
The three-stage compressor described in .
(3)第一の圧縮室は第三の圧縮室の周囲にかつ同軸上
に形成される請求項(1)に記載の3段圧縮機。
(3) The three-stage compressor according to claim (1), wherein the first compression chamber is formed around and coaxially with the third compression chamber.
(4)第一の圧縮室又は第三の圧縮室及び第二の圧縮室
内で圧縮された気体は冷却機により冷却された後、第三
の圧縮室又は第一の圧縮室に供給される請求項(1)に
記載の3段圧縮機。
(4) A claim in which the gas compressed in the first compression chamber or the third compression chamber and the second compression chamber is cooled by a cooler and then supplied to the third compression chamber or the first compression chamber. The three-stage compressor according to item (1).
(5)第一の圧縮室及び第三の圧縮室が同時に圧縮行程
又は吸入行程を行うとき、第二の圧縮室は吸入行程又は
圧縮行程を行う請求項(1)に記載の3段圧縮機。
(5) The three-stage compressor according to claim (1), wherein when the first compression chamber and the third compression chamber simultaneously perform a compression stroke or a suction stroke, the second compression chamber performs a suction stroke or a compression stroke. .
(6)第一の圧縮室及び第三の圧縮室はピストンブロッ
クの一端に形成され、第二の圧縮室はピストンブロック
の一端から他端に向かって離れた位置に形成された段部
に形成される請求項(1)に記載の3段圧縮機。
(6) The first compression chamber and the third compression chamber are formed at one end of the piston block, and the second compression chamber is formed at a step part formed at a position away from one end of the piston block toward the other end. The three-stage compressor according to claim (1).
(7)第一の圧縮室はピストンブロックの一端に形成さ
れた第一のシリンダ面により形成され、第三の圧縮室は
ピストンブロックの一端から突出する第三のシリンダ面
により形成される請求項(3)又は(6)に記載の3段
圧縮機。
(7) The first compression chamber is formed by a first cylinder surface formed at one end of the piston block, and the third compression chamber is formed by a third cylinder surface protruding from one end of the piston block. The three-stage compressor according to (3) or (6).
JP14204089A 1989-06-06 1989-06-06 Three-stage compressor Pending JPH039088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14204089A JPH039088A (en) 1989-06-06 1989-06-06 Three-stage compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14204089A JPH039088A (en) 1989-06-06 1989-06-06 Three-stage compressor

Publications (1)

Publication Number Publication Date
JPH039088A true JPH039088A (en) 1991-01-16

Family

ID=15305986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14204089A Pending JPH039088A (en) 1989-06-06 1989-06-06 Three-stage compressor

Country Status (1)

Country Link
JP (1) JPH039088A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482443A (en) * 1992-12-21 1996-01-09 Commonwealth Scientific And Industrial Research Organization Multistage vacuum pump
US5941163A (en) * 1996-04-13 1999-08-24 Kwangju Electronics Co., Ltd Brewed coffee vending machine
JP2006037759A (en) * 2004-07-23 2006-02-09 Tatsuno Corp Compressor
JP2006169991A (en) * 2004-12-13 2006-06-29 Mitsubishi Heavy Ind Ltd Booster pump for low temperature fluid
JP2008223751A (en) * 2007-03-12 2008-09-25 Mitsuharu Umagami High pressure generating device
JP2019094791A (en) * 2017-11-20 2019-06-20 株式会社神戸製鋼所 Compressor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482443A (en) * 1992-12-21 1996-01-09 Commonwealth Scientific And Industrial Research Organization Multistage vacuum pump
US5632605A (en) * 1992-12-21 1997-05-27 Commonwealth Scientific And Industrial Research Organisation Multistage vacuum pump
US5941163A (en) * 1996-04-13 1999-08-24 Kwangju Electronics Co., Ltd Brewed coffee vending machine
JP2006037759A (en) * 2004-07-23 2006-02-09 Tatsuno Corp Compressor
JP2006169991A (en) * 2004-12-13 2006-06-29 Mitsubishi Heavy Ind Ltd Booster pump for low temperature fluid
JP2008223751A (en) * 2007-03-12 2008-09-25 Mitsuharu Umagami High pressure generating device
WO2008120539A1 (en) * 2007-03-12 2008-10-09 Mituharu Magami High-pressure generation device
JP2019094791A (en) * 2017-11-20 2019-06-20 株式会社神戸製鋼所 Compressor

Similar Documents

Publication Publication Date Title
US5288212A (en) Cylinder head of hermetic reciprocating compressor
KR100269951B1 (en) Sucking muffler of a compressor
JPH01219366A (en) Multistage vacuum pump
KR20060089088A (en) 2-stage reciprocating compressor and refrigerator with this
JPH07293440A (en) Compressor
US4615259A (en) Reciprocating gas compressor
JPH08226719A (en) Gas cycle refrigerating machine
JPH039088A (en) Three-stage compressor
KR20080101735A (en) Multi-stage gas compressing apparatus
CN114542417A (en) Air-intake complementary oil-free synergistic compressor
CN114320820A (en) Two-stage compression oilless air compressor
US3458114A (en) Compressor
US2899130A (en) Compressor
US2610785A (en) Internal-combustion engine driven compressor unit
CN211924398U (en) Two-stage refrigeration refrigerator compressor
JP4327019B2 (en) Reciprocating compressor
CN220248309U (en) Oil-free oxygen compressor
US20240060483A1 (en) Four-cylinder compressor
JP2999945B2 (en) Dry piston type vacuum pump
KR100833378B1 (en) Outlet-port for diffusion shear layer of reciprocating compressor
CN216111264U (en) Single-cylinder double-suction exhaust compressor pump body and compressor
CN209959416U (en) A kind of compressor
CN213016732U (en) Diaphragm compressor
CN210660504U (en) One-way valve of air compressor, air compressor and single-cylinder diesel engine
CN212202411U (en) Two-stage air-cooled high-pressure air pump