JPH0389583A - Algainp visible light semiconductor laser - Google Patents

Algainp visible light semiconductor laser

Info

Publication number
JPH0389583A
JPH0389583A JP22693989A JP22693989A JPH0389583A JP H0389583 A JPH0389583 A JP H0389583A JP 22693989 A JP22693989 A JP 22693989A JP 22693989 A JP22693989 A JP 22693989A JP H0389583 A JPH0389583 A JP H0389583A
Authority
JP
Japan
Prior art keywords
active layer
raw material
element raw
crystal
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22693989A
Other languages
Japanese (ja)
Inventor
Kenichi Kobayashi
健一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP22693989A priority Critical patent/JPH0389583A/en
Publication of JPH0389583A publication Critical patent/JPH0389583A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32325Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm red laser based on InGaP

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To reduce the electrons sensitive to a boundary and suppress the decrease of carrier lifetime in a semiconductor by growing a crystal without interruption with the ratio of V group element raw material and III group element raw material being made higher in the central part of an active layer. CONSTITUTION:In an active layer, the forbidden band width is smaller in the central part. This because the natural superlattice formation depends on the V/III ratio in AlGaInP or GaInP grown by MOVPE process and the forbidden band with is made smaller as the V/III ratio is increased. Therefore, there are four boundaries at which the energy is discontinuous. The MOVPE process is crystal growing process controlled by the III group element raw material, and the supplied amount of the V group element raw material has no influence on the crystal composition and irregularity of the supply of the V group element raw material has no influence on the crystal lattice. Therefore, the crystal property at the boundary 1 is scarcely different from the crystal property of the active layer as the bulk as long as the growth is not interrupted at the interface.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はAj!GaI 関する。[Detailed description of the invention] (Industrial application field) The present invention is Aj! GaI related.

nP可視光半導体レーザに (従来の技術) 半導体レーザは一般に活性層をクラッド層で挾み込んだ
ダブルヘテロ構造を有する。活性層とクラッド層とでは
結晶組成が異なるから、結晶成長において、活性層とク
ラッド層との間に成長中断時のなんらかの不連続性が存
在し、それが界面に影響を与え、活性層に注入されたキ
ャリアの非発光再結合やキャリア寿命の短縮等を生じさ
せ、レーザ特性を悪化させるとよく言われている。
nP visible light semiconductor laser (prior art) A semiconductor laser generally has a double heterostructure in which an active layer is sandwiched between cladding layers. Since the active layer and the cladding layer have different crystal compositions, there is some kind of discontinuity between the active layer and the cladding layer when the growth is interrupted during crystal growth, which affects the interface and causes implantation into the active layer. It is often said that this causes non-radiative recombination of released carriers, shortens carrier lifetime, etc., and deteriorates laser characteristics.

(発明が解決しようとする課題) 本発明は有機金属分解気相成長法(以下MOVPE法と
略記する)により作成されるAlGaInP可視光半導
体レーザにおいて、クラッド層と活性層との界面におけ
る結晶のなんらかの不連続性に起因するキャリアの非発
光再結合あるいはキャリア寿命の短縮を改善しようとす
るものである、本発明ではMOVPE法により成長され
るAlGaInP結晶の性質を大いに活用する。
(Problems to be Solved by the Invention) The present invention provides an AlGaInP visible-light semiconductor laser manufactured by metal organic vapor phase epitaxy (hereinafter abbreviated as MOVPE), in which some of the crystals at the interface between the cladding layer and the active layer The present invention, which aims to improve non-radiative recombination of carriers or shortening of carrier lifetime caused by discontinuities, makes full use of the properties of AlGaInP crystal grown by MOVPE.

(課題を解決するための手段) 上記の課題を解決するために本発明が提供する手段は、
活性層となるGaInPまたはAlGaInP結晶をM
OVPE法で成長してなるAlGaInP可視光半導体
レーザであって、該活性層の中央部がV族元素原料と■
族元素原料との比(以下V1m比と略記する)を、結晶
の成長を中断することなく高くして成長させであること
特徴とする。
(Means for Solving the Problems) Means provided by the present invention to solve the above problems are as follows:
GaInP or AlGaInP crystal that becomes the active layer is M
An AlGaInP visible light semiconductor laser grown by the OVPE method, in which the central part of the active layer is made of a group V element raw material.
The crystal is grown by increasing the ratio (hereinafter abbreviated as V1m ratio) to the group element raw material without interrupting crystal growth.

(作用) 以下、本発明の作用を図面を用いて説明する。(effect) Hereinafter, the operation of the present invention will be explained using the drawings.

第1図に本発明のA4GaInP可視光半導体レーザの
バンド図を示す、第1図は活性層の導電型がP型で順方
向にバイアスした発光状態のバンド図である。活性層で
は中央部で禁制帯幅が小さくなっている。これはMOV
PE法により結晶成長されるAIG@InPあるいはG
aInPでは自然超格子の形成がv/■比に依存し、禁
制帯幅がV/I比を増大することにより小さくなるから
である。よってエネルギーが不連続となる面は4つ存在
することになる。活性層内部に生ずる不連続面を界面1
、活性層とクラッド層の界面を、界面2とする。最初に
界面1と界面2の違いを結晶成長の観点から説明する。
FIG. 1 shows a band diagram of the A4GaInP visible light semiconductor laser of the present invention. FIG. 1 is a band diagram in a light emitting state in which the conductivity type of the active layer is P type and the semiconductor laser is forward biased. In the active layer, the forbidden band width becomes small in the central part. This is MOV
AIG@InP or G crystal grown by PE method
This is because in aInP, the formation of a natural superlattice depends on the v/■ ratio, and the forbidden band width becomes smaller as the V/I ratio increases. Therefore, there are four planes where the energy is discontinuous. The discontinuous surface that occurs inside the active layer is called interface 1.
, the interface between the active layer and the cladding layer is defined as interface 2. First, the difference between interface 1 and interface 2 will be explained from the viewpoint of crystal growth.

MOVPE法は■族元素原料に律則される結晶成長法で
、V族元素原料の供給量は結晶組成に影響はなくv族元
素原料の供給の不規則さはV族空孔は別として結晶格子
に影響は与えない、よって、界面1における結晶性はそ
の界面で成長中断しないかぎり活性層のバルクとしての
結晶性と比べほとんど変わりないものとなる。
The MOVPE method is a crystal growth method that is governed by group V element raw materials, and the supply amount of group V element raw materials does not affect the crystal composition, and irregularities in the supply of group V element raw materials, apart from group V vacancies, affect the crystal composition. There is no effect on the lattice, so the crystallinity at the interface 1 is almost the same as the bulk crystallinity of the active layer unless growth is interrupted at that interface.

一方、界面2は活性層とクラッド層の界面であり、■族
供給量を変化させた界面である。その際に結晶成長中断
を必要とすれば、その界面にはバルクに比べ多くの不純
物が混入したり、また■族元素原料の供給量を切り替え
た直後の■族元素原料の供給の不規則さはMOVPE法
が■族元素の供給律則であるためにそのまま界面での結
晶性に反映し結晶性を悪化させたりする。この供給の不
規則さは切り替えに伴う供給配管等の圧力変動により容
易に起こり得るものである。よって界面2での結晶性を
バルクと同様に保つことは難しい。
On the other hand, interface 2 is an interface between the active layer and the cladding layer, and is an interface where the amount of group (2) supplied is varied. If it is necessary to interrupt the crystal growth at that time, more impurities than in the bulk may be mixed in at the interface, or irregularity in the supply of the group III element raw material immediately after switching the supply amount of the group III element raw material. Since the MOVPE method is based on the supply rule of group (Ⅰ) elements, this is directly reflected in the crystallinity at the interface and may worsen the crystallinity. This irregularity in supply can easily occur due to pressure fluctuations in the supply piping etc. due to switching. Therefore, it is difficult to maintain the same crystallinity at the interface 2 as in the bulk.

エピタキシ勺ル成長で発生する貫通転位は界面2と同等
な界面より発生することが大半である0本発明では2種
の界面が存在するがそのうちの1つである界面2につい
てのみキャリアの非発光再結合を論ずればよいことにな
る。
Most threading dislocations that occur during epitaxial growth occur from an interface equivalent to interface 2. In the present invention, there are two types of interfaces, but only one of them, interface 2, causes non-emission of carriers. All we have to do is discuss recombination.

次に界面での単位時間あたりのキャリアの非発光再結合
について述べる。
Next, we will discuss the non-radiative recombination of carriers per unit time at the interface.

界面での非発光再結合速度はその界面に接する活性層中
のキャリア密度に比例する。その非発光再結合速度をR
とすると Roenn:キャリア濃度 となる。
The rate of non-radiative recombination at an interface is proportional to the carrier density in the active layer in contact with the interface. Its non-radiative recombination rate is R
Then, Roen: carrier concentration.

本発明によるAj!G@InP可視光半導体レーザでの
キャリア密度nは次の式で与えられる。ここでは電子に
ついてのみ説明する。
Aj! according to the present invention! The carrier density n in a G@InP visible light semiconductor laser is given by the following equation. Only electrons will be explained here.

ここでρC(E)は伝導帯中の状態密度、f、(E)は
フェルミ・デイラック分布関数、ECは伝導帯の底のエ
ネルギーである。ΔE、と△E、はそれぞれの半導体層
のフェルミレベルと伝導帯及び価電子帯のバンド不連続
量等によって決まる量である。一方、活性層を一様のV
/I比で結晶成長した従来のAj!GaInP可視光半
導体レーザでのキャリア密度は で与えられ、本発明の場合の方がそのキャリア密度は小
さい、tR単に述べると、Ee+△E1以上のエネルギ
ーを有する電子のみが界面2での再結合に寄与すること
になる。よって、本発明のAlGaInP可視光半導体
レーザでは活性層とクラ、ラド層界面での非発光再結合
が低減されることになる。
Here, ρC(E) is the density of states in the conduction band, f, (E) is the Fermi-Dirac distribution function, and EC is the energy at the bottom of the conduction band. ΔE and ΔE are quantities determined by the Fermi level of each semiconductor layer and the amount of band discontinuity in the conduction band and valence band. On the other hand, the active layer has a uniform V
Conventional Aj with crystal growth at /I ratio! The carrier density in a GaInP visible light semiconductor laser is given by, and in the case of the present invention, the carrier density is smaller, tR Simply stated, only electrons with energy greater than Ee + △E1 are recombined at the interface 2. It will contribute. Therefore, in the AlGaInP visible light semiconductor laser of the present invention, non-radiative recombination at the interface between the active layer and the CLA and RAD layers is reduced.

(実施例) 次に実施例を挙げて本発明を一層具体的に説明する。(Example) Next, the present invention will be explained in more detail with reference to Examples.

作成したDHレーザは(AN *、aG a *、s 
) *、sIns、iP結晶をクラッド層とし、厚さ0
.1μmのGaB、iI n*、iPを活性層とするダ
ブルヘテロ構造を有するものである。実施例においては
活性層中央部0.06μmの成長時P Hs流量を40
0sccmとし、活性層成長開始後と活性層成長終了前
0.02μm厚さの活性層成長では、pH5t量は70
sccmとした一PHs流量70sccmでのGaIn
PのPLピークエネルギーは1.89eVでPH8流量
400sccmでのGstInPのPLピークエネルギ
ーは1.84eVでその差は約50 m e Vである
。実際にレーザ発振させると閾値電流60mA程度で発
振した一PHs流量400sccm一定で形成した同層
厚の活性層を有する従来のものでは70mA程度であっ
た。この発振閾値の差は(作用)の欄で説明した効果だ
と断定できないが、効果の1つとして考えられる。
The created DH laser is (AN *, aG a *, s
) *, sIns, iP crystal as cladding layer, thickness 0
.. It has a double heterostructure with active layers of 1 μm of GaB, iIn*, and iP. In the example, the P Hs flow rate during growth of 0.06 μm at the center of the active layer was set to 40 μm.
When the active layer is grown to a thickness of 0.02 μm after the start of active layer growth and before the end of active layer growth, the pH5t amount is 70 sccm.
GaIn at a PHs flow rate of 70 sccm
The PL peak energy of P is 1.89 eV, and the PL peak energy of GstInP at a PH8 flow rate of 400 sccm is 1.84 eV, and the difference therebetween is about 50 m e V. When the laser was actually oscillated, it oscillated at a threshold current of about 60 mA, which was about 70 mA in a conventional device having an active layer of the same thickness formed at a constant flow rate of 400 sccm per PHs. Although it cannot be concluded that this difference in oscillation threshold is the effect explained in the (effect) column, it is considered as one of the effects.

(発明の効果) 前に(作用)の欄で説明したように、非発光再結合等の
問題がある界面を感受する(電子の波動関数が界面に達
する)電子を減することができ、半導体レーザのキ勺リ
ア寿命時間の減少を押さえることができる。
(Effects of the invention) As explained in the (effect) section, it is possible to reduce the number of electrons that sense interfaces that have problems such as non-radiative recombination (electron wave function reaches the interface), It is possible to suppress the decrease in laser power life time.

また実施例においては、V族元素原料の供給を階段上に
増減させているが、徐々に変化させてもよい、この場合
は活性層内にはっきり区別される界面(界面1に相当)
は存在しなくなる。この点でも(作用)の欄で説明した
界面1と界面2の本質的な違いははっきりする。
In addition, in the examples, the supply of the group V element raw material is increased and decreased stepwise, but it may also be changed gradually.In this case, a clearly distinguished interface (corresponding to interface 1) in the active layer is used.
ceases to exist. In this respect as well, the essential difference between Interface 1 and Interface 2 explained in the (Operation) section becomes clear.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は発光時における本発明の半導体レーザのバンド
図である。
FIG. 1 is a band diagram of the semiconductor laser of the present invention when emitting light.

Claims (1)

【特許請求の範囲】[Claims] 有機金属分解気相成長方法により形成されたGaInP
又はAlGaInP半導体でなる活性層を前記活性層よ
り禁制帯幅が大きいAlGaInP半導体でなるクラッ
ド層により挾み込んだダブルヘテロ構造を有し、前記活
性層となる半導体薄膜がその結晶成長過程において一定
のIII族元素原料の供給のもとでV族元素原料の供給量
をその薄膜の中央成長時に多くして形成されていること
を特徴とするAlGaInP可視光半導体レーザ。
GaInP formed by organometallic decomposition vapor phase growth method
Alternatively, it has a double heterostructure in which an active layer made of an AlGaInP semiconductor is sandwiched between cladding layers made of an AlGaInP semiconductor having a larger forbidden band width than the active layer, and the semiconductor thin film serving as the active layer has a certain level during its crystal growth process. 1. An AlGaInP visible light semiconductor laser, characterized in that the amount of Group V element raw material supplied is increased during central growth of the thin film while supplying Group III element raw material.
JP22693989A 1989-08-31 1989-08-31 Algainp visible light semiconductor laser Pending JPH0389583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22693989A JPH0389583A (en) 1989-08-31 1989-08-31 Algainp visible light semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22693989A JPH0389583A (en) 1989-08-31 1989-08-31 Algainp visible light semiconductor laser

Publications (1)

Publication Number Publication Date
JPH0389583A true JPH0389583A (en) 1991-04-15

Family

ID=16852979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22693989A Pending JPH0389583A (en) 1989-08-31 1989-08-31 Algainp visible light semiconductor laser

Country Status (1)

Country Link
JP (1) JPH0389583A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9901492B2 (en) 2003-07-18 2018-02-27 Kimberly-Clark Worldwide, Inc. Absorbent article with high quality ink jet image produced at line speed

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9901492B2 (en) 2003-07-18 2018-02-27 Kimberly-Clark Worldwide, Inc. Absorbent article with high quality ink jet image produced at line speed

Similar Documents

Publication Publication Date Title
US6060335A (en) Semiconductor light emitting device and method of manufacturing the same
US5496767A (en) Semiconductor laser and manufacturing method of the same
US4716129A (en) Method for the production of semiconductor devices
JPH0389583A (en) Algainp visible light semiconductor laser
JPH09214045A (en) Semiconductor laser and its fabrication method
JP2956619B2 (en) Method for growing III-V compound semiconductor crystal
JPH01286487A (en) Manufacture of semiconductor laser
JP2728672B2 (en) Semiconductor laser device, double hetero wafer, and method of manufacturing the same
JP2659872B2 (en) Strained quantum well semiconductor laser device and method of fabricating strained quantum well structure
JPS603176A (en) Manufacture of semiconductor laser
JPH11261155A (en) Semiconductor laser element
JP3608976B2 (en) Manufacturing method of semiconductor device
KR940011272B1 (en) Visuable light semiconductor laser manufacturing method
JP3005998B2 (en) Manufacturing method of semiconductor laser
JP2933163B2 (en) Visible light emitting element
JPH09260787A (en) Inp-based semiconductor element
JPH02122682A (en) Superlattice element and manufacture thereof
JPH03171789A (en) Semiconductor laser device
JPH09167875A (en) Semiconductor device and semiconductor laser
JP2810254B2 (en) Method for manufacturing semiconductor laser device
JP2001156399A (en) Method for fabricating semiconductor laser
JPH07249575A (en) Manufacture of semiconductor optical element
JPH10223987A (en) Strained multiple quantum well structure and its growing method
JPH01286480A (en) Visible light emitting element
Narui Metalorganic vapor deposition growth of AlGaAs on a ridged GaAs (100) substrate for a low threshold current laser