JPH0374994A - Measuring signal generator - Google Patents

Measuring signal generator

Info

Publication number
JPH0374994A
JPH0374994A JP1211037A JP21103789A JPH0374994A JP H0374994 A JPH0374994 A JP H0374994A JP 1211037 A JP1211037 A JP 1211037A JP 21103789 A JP21103789 A JP 21103789A JP H0374994 A JPH0374994 A JP H0374994A
Authority
JP
Japan
Prior art keywords
signal
luminance
color
level
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1211037A
Other languages
Japanese (ja)
Inventor
Tadashi Katayama
忠 片山
Kimitake Miyake
三宅 仁毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1211037A priority Critical patent/JPH0374994A/en
Publication of JPH0374994A publication Critical patent/JPH0374994A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

PURPOSE:To easily and accurately measure a delay time difference between a luminance signal and a chrominance signal by superimposing a chrominance signal comprising a complementary color pair onto an original signal for a 1st horizontal period and superimposing a luminance signal whose level is in matching with that of the chrominance signal and whose average luminance level is equal to that of the chrominance signal at each prescribed position for 2nd and 3rd horizontal periods so as to form a measuring signal. CONSTITUTION:A chrominance 19A signal comprising a pair of complementary colors 20, 21 is superimposed onto an original signal for a 1st horizontal period and a luminance signal 28A whose level is in matching with that of the chrominance signal and whose average luminance level is equal to that of the chrominance signal 19A at each prescribed position for 2nd and 3rd horizontal periods so as to form a measuring signal. As a result, the fluctuation of a trigger level between the luminance signal and the chrominance signal is suppressed and the measuring reference point of the luminance signal is easily specified as a cross point of the luminance signal for the 2nd and 3rd horizontal periods. Thus, the difference of the delay time between the luminance signal and the chrominance Signal is easily and accurately measured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えばビデオテープレコーダ(VTR)の記
録再生時における輝度信号と色信号との遅延時間の差を
定量的に測定する際に使用して好適な測定信号発生器に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is used, for example, to quantitatively measure the difference in delay time between a luminance signal and a color signal during recording and playback of a video tape recorder (VTR). The present invention relates to a suitable measurement signal generator.

〔発明の概要〕[Summary of the invention]

本発明は、例えばVTRの記録再生時の輝度信号の遅延
時間と急信′号の遅延時間との差を測定するための測定
信号を発生する測定信号発生器において、第1の水平周
期に補色対より成る色信号を重畳すると共に、第2及び
第3の水平周期に夫々所定位置でレベルが互に合致し且
つ平均輝度レベルがその色信号と等しい輝度信号を重畳
してその測定信号を形成することにより、それら輝度信
号と色信号との間メトリガーレベルの変動を抑制し、そ
の輝度信号のレベルが互いに合致するクロスポイントが
正確に読めるようにして、それら輝度信号と色信号との
間の遅延時間差が容易に且つ正確に測定できるようにし
たものでる。
The present invention provides a measurement signal generator that generates a measurement signal for measuring the difference between the delay time of a luminance signal and the delay time of a sudden signal during recording and reproduction of a VTR, for example, in which a complementary color is applied to the first horizontal period. The measurement signal is formed by superimposing a pair of color signals and superimposing a luminance signal whose levels match each other and whose average luminance level is equal to that of the color signal at a predetermined position in each of the second and third horizontal periods. By doing so, it is possible to suppress fluctuations in the meter trigger level between the luminance signal and the chrominance signal, and to make it possible to accurately read the cross points where the luminance signal levels match each other. The delay time difference can be easily and accurately measured.

〔従来の技術〕[Conventional technology]

輝度信号の帯域幅と色信号の帯域幅とは異なるため、V
TRのような伝送系においては輝度信号と色信号との間
の遅延時間の差が生じ、補正を行わない場合には再生画
像の輝度と色とがずれるおそれがある。特に、VTRに
あっては色信号は輝度信号と分離して低域変換されてビ
デオテープに記録されるため遅延時間の差を補正する必
要があり、そのためにはその遅延時間の差を正確に定量
的に測定する測定システムが必要となる。
Since the bandwidth of the luminance signal and the bandwidth of the chrominance signal are different, V
In a transmission system such as a TR, a difference in delay time occurs between a luminance signal and a color signal, and if no correction is performed, there is a risk that the luminance and color of a reproduced image will deviate. In particular, in VTRs, the color signal is separated from the luminance signal, converted to low frequencies, and recorded on videotape, so it is necessary to correct the difference in delay time. A measurement system for quantitative measurement is required.

第4図はそのような輝度信号と色信号との間の遅延時間
の差(Y/C遅延量)を測定するための従来の測定シス
テムを示し、この第4図において、(1)は測定信号発
生器であり、この測定信号発生器(1)は所定パターン
の画像に対応するビデオ信号としての測定信号をデジタ
ル信号列として生成する中央処理装置(CPU)(2)
、そのデジタルの測定信号を格納するR A M (3
)、このRA M (3)にデータ読出し用のクロック
パルス(CP)を供給するクロックパルス発生器(4)
及びそのRA M (3)より読出されたデジタルの測
定信号をアナログの測定信号R5に変換するデジタル/
アナログ変換器(5)より構成される。その測定信号R
3は供試V T R(6)の記録信号入力端子に供給さ
れ、この供試v T R(6)によって記録再生された
測定信号PSがオシロスコープ(7)の測定信号入力端
子及びモニタ〔8)のビデオ信号入力端子に供給される
。従って、オシロスコープ(7)の表示画面には記録再
生後の測定信号PSの波形が映出され、モニタ(8)の
画面にはその測定信号PSに対応するカラー画像が映出
される。
Figure 4 shows a conventional measurement system for measuring the delay time difference (Y/C delay amount) between the luminance signal and color signal. This measurement signal generator (1) is a central processing unit (CPU) (2) that generates a measurement signal as a video signal corresponding to an image of a predetermined pattern as a digital signal train.
, R A M (3
), a clock pulse generator (4) that supplies clock pulses (CP) for reading data to this RAM (3).
and its RAM (3), which converts the digital measurement signal read out into an analog measurement signal R5.
Consists of an analog converter (5). The measurement signal R
3 is supplied to the recording signal input terminal of the VTR under test (6), and the measurement signal PS recorded and reproduced by this VTR under test (6) is supplied to the measurement signal input terminal of the oscilloscope (7) and the monitor [8 ) is supplied to the video signal input terminal. Therefore, the waveform of the measurement signal PS after recording and reproduction is displayed on the display screen of the oscilloscope (7), and a color image corresponding to the measurement signal PS is displayed on the screen of the monitor (8).

その測定信号発生器(1)より出力される測定信号R3
のlフィールド期間には色信号に対応する水平走査信号
(第5図A)及び輝度信号に対応する水平走査信号〈第
5図B〉が同程度台まれている。
Measurement signal R3 output from the measurement signal generator (1)
During the 1-field period, the horizontal scanning signal (FIG. 5A) corresponding to the color signal and the horizontal scanning signal (FIG. 5B) corresponding to the luminance signal are boosted to the same extent.

その第5図への色信号に対応する1水平期間には、水平
周期パルス(9)及びカラーバースト(10)に続いて
互いに位相が180°異なり補色対の関係にあるグリー
ン信号(11)及びマゼンダ信号(12)が一定周期で
交互に4対形戊されている。それらグリーン信号(11
〉及びマゼンダ信号(12)の直流レベルはペデスタル
レベルからし、のレベルに在り、振幅が2L2 である
とすると例えば、L、=501RE、L2=401 R
Eに設定される。
In one horizontal period corresponding to the color signals shown in FIG. 5, following the horizontal periodic pulse (9) and color burst (10), the green signal (11) and The magenta signal (12) is alternately divided into four pairs at a constant period. Those green lights (11
〉 and magenta signal (12) are between the pedestal level and the DC level, and the amplitude is 2L2. For example, L, = 501RE, L2 = 401R.
It is set to E.

また、その第5図Bの輝度信号に対応する1水平期間に
は、水平同期パルス(9)及びカラーバース) (10
)に続いてパルス幅ΔTの三角波状の7個のパルス(以
下、「2Tパルス」と称スる。> (13^)〜(13
G) が形成されている。このパルス幅ΔTは5QQn
sec とされ、これら7個の2Tパルス(13^〉〜
(13G) の尖頭部は夫々色信号(第5図A)の位相
の変化点に対し、 ’ 3r  ’ 2+  ’ l+
 0+ rIn τ2+τ3だけ偏位する如くなされて
いる。例えば、τ1=5Qnsec、 r2=loon
sec、 rs=150necであり、それら2Tパル
ス(13^)〜(13G) の尖頭部の黒レベルからの
高さL3 は例えば301 REに設定される。
In addition, in one horizontal period corresponding to the luminance signal in FIG.
) followed by seven triangular wave-shaped pulses with a pulse width ΔT (hereinafter referred to as "2T pulses". > (13^) to (13
G) is formed. This pulse width ΔT is 5QQn
sec, and these seven 2T pulses (13^〉~
The peaks of (13G) are ' 3r ' 2+ ' l+ with respect to the phase change point of the color signal (Fig. 5A), respectively.
0+rIn τ2+τ3. For example, τ1=5Qnsec, r2=loon
sec, rs=150 nec, and the height L3 of the peaks of these 2T pulses (13^) to (13G) from the black level is set to, for example, 301 RE.

第5図A及びBで示される測定信号R3を供試V T 
R(6)に人力し、再生された測定信号PSをモニタ(
8)に供給すると、このモニタ(8)の画面には第6図
に示す如く、上半分の領域(14)にはグリーン部(1
5)とマゼンタ部(16)とが交互に表示され、下半分
の領域(17)には明るい白線(18)が7本表示され
る。この場合、領域(■4)の水平走査線(14a) 
 及び領域〈17)の水平走査線(17a)  が夫々
第5図A及びBの測定信号に対応している。そして、そ
の明るい白線(18)からグリーン部〈15〉とマゼン
タ部(16)との境界部までの距離lを各白線(18)
について読取ることにより、輝度信号と色信号との間の
遅延時間の差が定量的に測定できる。しかし、モニタ(
8)の画面では高精度な測定が困難であると共に、その
モニタ(8)自体のY/C遅延量が混入するおそれもあ
る。そこで、より正確にY/C遅延量を測定するには、
その供試V T R(6)より再生された測定信号PS
を水平同期パルスでトリガーしてオシロスコープ(7)
で観測する必要がある。
The measurement signal R3 shown in Fig. 5 A and B is the test signal V T
Manually input R(6) and monitor the regenerated measurement signal PS (
8), the screen of this monitor (8) shows a green area (14) in the upper half area (14), as shown in Figure 6.
5) and magenta portion (16) are displayed alternately, and seven bright white lines (18) are displayed in the lower half area (17). In this case, the horizontal scanning line (14a) of the area (■4)
and the horizontal scanning line (17a) of region <17) correspond to the measurement signals of FIGS. 5A and 5B, respectively. Then, calculate the distance l from the bright white line (18) to the boundary between the green part (15) and the magenta part (16) for each white line (18).
By reading the difference in delay time between the luminance signal and the color signal, it is possible to quantitatively measure the difference in delay time between the luminance signal and the color signal. However, the monitor (
It is difficult to measure with high precision on the screen of 8), and there is also a risk that the Y/C delay amount of the monitor (8) itself may be mixed in. Therefore, in order to measure the Y/C delay amount more accurately,
Measurement signal PS reproduced from the test VTR (6)
The oscilloscope (7) is triggered by a horizontal sync pulse.
It is necessary to observe it.

そのオシロスコープ(7)の表示画面には、第7図に示
す如く、色信号に対応する水平走査線<14a)の信号
と輝度信号に対応する水平走査線(17a)  の信号
rが重畳して表示され、色信号の位相が180゜変化す
る点の近傍では包路線(14b)  の振幅が略0に収
束するので、その位相の変化点を識別することが可能と
なる。このように位相の変化点で色信号の包路線(14
b)  の振幅が略0に収束するのは、VTRの記録再
生系の帯域が有限であることによる。そして、その位相
の変化点と輝度信号の2Tパルスの尖頭点との時間差r
を読取り、この時間差τを第5図Bの時間差−τ3〜τ
3と比較することによりY/C遅延量が定量的に求めら
れる。
As shown in FIG. 7, on the display screen of the oscilloscope (7), the signal of the horizontal scanning line <14a) corresponding to the color signal and the signal r of the horizontal scanning line (17a) corresponding to the luminance signal are superimposed. Since the amplitude of the envelope line (14b) converges to approximately 0 near the point where the phase of the color signal changes by 180°, it is possible to identify the point of phase change. In this way, the envelope line (14
The reason why the amplitude of b) converges to approximately 0 is because the band of the recording/reproducing system of the VTR is finite. Then, there is a time difference r between the phase change point and the peak point of the 2T pulse of the luminance signal.
and convert this time difference τ into the time difference -τ3~τ in Figure 5B.
3, the Y/C delay amount can be quantitatively determined.

C発明が解決しようとする課題〕 しかしながら、第5図例の測定信号R3を使用したので
はY/C遅延量が正確に測定できない場合がある不都合
があった。即ち、先ず第5図への信号の平均輝度レベル
(Average Picture Level。
C. Problem to be Solved by the Invention] However, using the measurement signal R3 of the example shown in FIG. 5 has the disadvantage that the Y/C delay amount may not be accurately measured. That is, first, the average luminance level (Average Picture Level) of the signal shown in FIG.

APL)はレベルAPL+  に対応した値となるのに
対して、第5図Bの信号のAPLはレベルAPL2に対
応した値となる。従って、例えば同期信号によって直流
レベルをクランプする前の再生信号のY/C遅延量を測
定するような場合には、第5図Aの信号の水平同期パル
ス(9)のトリガーレベルがレベル(9a)であるとす
ると、第5図Bの信号のトリカーレベルはレベル(9b
)となり)トリガーレベルが変化してしまう。一般に水
平同期パルス(9)の立下りは垂直ではないため、トリ
が一レベルが変化すると信号全体が時間軸方向に変動し
て正確な遅延時間の差の測定が困難となる。
APL) has a value corresponding to the level APL+, whereas the APL of the signal in FIG. 5B has a value corresponding to the level APL2. Therefore, for example, when measuring the Y/C delay amount of the reproduced signal before the DC level is clamped by the synchronization signal, the trigger level of the horizontal synchronization pulse (9) of the signal in FIG. ), the trigger level of the signal in FIG. 5B is level (9b
) and the trigger level changes. Generally, the falling edge of the horizontal synchronizing pulse (9) is not vertical, so when one level of the signal changes, the entire signal fluctuates in the time axis direction, making it difficult to accurately measure the difference in delay time.

更に、第5図Bの2Tパルス(13A)〜(13G> 
は、特に供試V T R(6)が一般家庭用のVTRの
場合にはノンリニアエンファシス、デイエンファシスに
よって波形歪みが生じ、尖頭の位置を正確に読取るのが
困難である不都合がある。
Furthermore, the 2T pulses (13A) to (13G> in FIG. 5B)
Particularly when the VTR under test (6) is a VTR for general home use, waveform distortion occurs due to nonlinear emphasis and de-emphasis, making it difficult to accurately read the position of the peak.

本発明は斯かる点に鑑み、輝度信号と色信号との間の遅
延時間の差をより正確且つ容易に測定できる測定信号を
生成する測定信号発生器を提案することを目的とする。
In view of the above, an object of the present invention is to propose a measurement signal generator that generates a measurement signal that can more accurately and easily measure the difference in delay time between a luminance signal and a chrominance signal.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による測定信号発生器は、例えば第1図に示す如
く、輝度信号の遅延時間と色信号の遅延時間との差を測
定するための測定信号を発生する測定信号発生器におい
て、第1の水平周期(第1図へ)に補色対(20)、 
(21) より戒る色信号を重畳すると共に、第2(第
1図E)及び第3(第1図F)の水平周期に夫々所定位
置でレベルが互いに合致し且つ平均輝度レベルがその色
信号と等しい輝度信号を重畳してその測定信号を懲戒す
るようにしたものである。
The measurement signal generator according to the present invention, as shown in FIG. Complementary color pairs (20) in the horizontal period (to Figure 1),
(21) In addition to superimposing a more sensitive color signal, the levels match each other at predetermined positions in the second (Fig. 1 E) and third (Fig. 1 F) horizontal periods, and the average luminance level is the same as that of the color. A luminance signal equal to the signal is superimposed to correct the measurement signal.

〔作用〕[Effect]

斯かる本発明によれば、色信号と輝度信号との平均輝度
レベルが等しいため色信号と輝度信号とのトリガーレベ
ルが等しくなり、トリガーレベルの変動に起因する測定
誤差が解消される。また、輝度信号はその第2の水平周
期の信号と第3の水平周期の信号とのクロスポイントを
以て測定基準点とすることができるため、測定基準点が
容易且つ正確に特定され色信号の測定基準点との差が容
易且つ正確に読取られる。
According to the present invention, since the average luminance levels of the chrominance signal and the luminance signal are equal, the trigger levels of the chrominance signal and the luminance signal are equal, and measurement errors caused by variations in the trigger level are eliminated. In addition, since the luminance signal can be used as a measurement reference point at the cross point of the second horizontal period signal and the third horizontal period signal, the measurement reference point can be easily and accurately identified and the color signal can be measured. The difference from the reference point can be easily and accurately read.

〔実施例〕〔Example〕

以下、本発明の一実施例につき第1図〜第3図を参照し
て説明しよう。本例の測定信号発生器の回路構成は第4
図例の測定信号発生器(1)と同じであり、RA M 
(3)に格納するビデオ信号より戊る測定信号のパター
ンだけが異なっている。
Hereinafter, one embodiment of the present invention will be described with reference to FIGS. 1 to 3. The circuit configuration of the measurement signal generator in this example is the fourth
It is the same as the measurement signal generator (1) in the example shown, and the RAM
(3) Only the pattern of the measurement signal differs from that of the video signal stored.

第1図A−Dは夫々本例の測定信号の異なる1水平周期
の色信号(19A)〜(19D)、第1図E及びFは夫
々本例の測定信号の異なる1水平周期の輝度信号(28
A)及び(28B)  を示し、本例の測定信号のlフ
レームは夫々60H(LHは■水平期間)の色信号(1
9A)〜(190)  及び夫々120Hの輝度信号(
28A)及び<288)  より構成する。そして、色
信号(19A)は第1図Aに示す如く、水平同期パルス
(9)及びカラーバースト(10)に続いて直流レベル
L。
1A to 1D are chrominance signals (19A) to (19D) of one horizontal period different from the measurement signal of this example, and FIGS. 1E and F are luminance signals of one horizontal period different from the measurement signal of this example, respectively. (28
A) and (28B), each frame of the measurement signal in this example is a color signal (1 frame) of 60H (LH is horizontal period).
9A) to (190) and 120H luminance signals (
28A) and <288). As shown in FIG. 1A, the color signal (19A) is at DC level L following the horizontal synchronizing pulse (9) and color burst (10).

で位相Ooの色信号(20)及び直流レベルL、で位相
180°の色信号(21)より戒る補色対を所定周期で
4対形戊することにより構成する。色信号(19B)。
It is constructed by forming four complementary color pairs at a predetermined period from a color signal (20) with a phase of Oo and a color signal (21) with a phase of 180 degrees at a DC level L. Color signal (19B).

(19C)及び(190) は夫々第1図B、C及びD
に示す如く色信号(19^)における補色対(2,0)
、 (21)  を位相が45°進んだ補色対(22)
、(23)  、位相が90゜進んだ補色対(24)、
 (25) 及び位相が135°進んだ補色対(26)
、 (27)  で置換えて構成する。
(19C) and (190) are respectively B, C and D in Figure 1.
Complementary color pair (2,0) in color signal (19^) as shown in
, (21) Complementary color pair whose phase is 45° advanced (22)
, (23) , Complementary color pair (24) whose phase is 90° advanced,
(25) and a complementary color pair with a phase lead of 135° (26)
, (27).

また、輝度信号(28^)は、第1図Eに示す如く、水
平同期パルス(9)及びカラーバース) (10)に続
いて4個の矩形パルスを懲戒して構成し・、輝度信号(
28B)  は、第1図Fに示す如く、輝度信号(28
A)の矩形パルスのレベルを反転して構成する。この場
合、輝度信号(28A)  の矩形パルスの振幅を色信
号(20)、 (21) 等の振幅と同一に設定すると
共に、輝度信号(28A>  の矩形パルスの直流レベ
ルを色信号(19A)  等と同じり、に設定する。こ
のレベル上4においてそれら輝度信号(28A) 及び
(28B)  は交差する。また、それら輝度信号(2
8A)  と(28B)  との7個のクロスポイント
(測定基準点)には、第1図Eに示す如く、色信号(1
9A)〜(190)  の位相が180°変化する7個
の変化点(測定基準点)に対して夫々−τ8+  ’S
+−τ4,0.τ4+r5+τeの時間差を設ける。例
えば、r 4 =50nsec 、τ、=100nse
c 、 r s = 150nsec に設定するが、
τ、=τ5=τ6−0に設定しても良い。また、輝度信
号(28^)及び(28B)  の矩形パルス部分のデ
ユーティ−比は全体として50%に設定する。従って、
輝度信号(28A>の直流レベルもL4  となり、輝
度信号(28A)。
In addition, the luminance signal (28^) is composed of four rectangular pulses following the horizontal synchronizing pulse (9) and the color verse (10), as shown in Fig. 1E.
28B) is the luminance signal (28B) as shown in FIG. 1F.
It is constructed by inverting the level of the rectangular pulse in A). In this case, the amplitude of the rectangular pulse of the luminance signal (28A) is set to be the same as the amplitude of the chrominance signal (20), (21), etc., and the DC level of the rectangular pulse of the luminance signal (28A>) is set to the same as the amplitude of the chrominance signal (28A). The brightness signals (28A) and (28B) intersect at this level 4. Also, the brightness signals (28A) and (28B) intersect.
At the seven cross points (measurement reference points) between (8A) and (28B), the color signal (1
-τ8+'S for each of the seven changing points (measurement reference points) where the phase of 9A) to (190) changes by 180°.
+-τ4,0. A time difference of τ4+r5+τe is provided. For example, r 4 =50nsec, τ, =100nsec
c , r s = 150 nsec, but
It is also possible to set τ,=τ5=τ6−0. Furthermore, the duty ratio of the rectangular pulse portions of the luminance signals (28^) and (28B) is set to 50% as a whole. Therefore,
The DC level of the brightness signal (28A) is also L4, and the brightness signal (28A).

(28B) の平均輝度レベル(AFL)及び色信号(
19A)〜(190)  の平均輝度レベルは共にレベ
ルAPL3 に対応する値となり一致する。
(28B) average luminance level (AFL) and color signal (
The average luminance levels of 19A) to (190) both correspond to the level APL3 and match.

第1図に示した色信号(19A)〜(190)及び輝度
信号(28A)、 (28B>  の組合せ方法の一例
につき第2図を参照して説明するに、それら信号(19
A)〜(190)  及び(28A)、 (28B) 
 より構成される測定信号をモニタに供給したときの再
生画像によってその組合せ方法を説明する。
An example of how to combine the color signals (19A) to (190) and the luminance signals (28A) and (28B> shown in FIG. 1 will be described with reference to FIG. 2.
A) - (190) and (28A), (28B)
The method of combining them will be explained using a reproduced image when measurement signals composed of the following are supplied to the monitor.

第2図はその測定信号を再生したモニタの画面を示し、
この第2図において、このモニタの1フレームの画面を
夫々が60本の水平走査線より成る領域(29)〜(3
6〉に8等分し、領域(29)、 (31)、 (33
)。
Figure 2 shows the monitor screen that reproduced the measurement signal.
In FIG. 2, one frame of the screen of this monitor is shown in areas (29) to (3) each consisting of 60 horizontal scanning lines.
Divide into 8 equal parts into areas (29), (31), (33
).

(35〉は夫々第1図の色信号(19^)、 (19B
)、 (19C)。
(35〉 are the color signals (19^) and (19B) in Figure 1, respectively.
), (19C).

(190)  に対応する水平走査線(29a)、 (
31a)、 (33a)。
(190) Horizontal scanning line (29a) corresponding to (
31a), (33a).

(35a) より構成し、領域(30)、 (32)、
 (33)、 (36)  は夫々第1図の輝度信号(
28A)及び(28B>  に夫々対応する水平走査線
(30a)及び(30b)  をIHずつ交互に並べて
構成する如くなす。この第2図のモニタ画面において、
領域(30)、 (32)、 (34)、 (36) 
 における白いパターンと黒いパターンとの切替りの点
と領域(29>、 (31)、 (33)、 (35)
  における色の切替りの点との偏位置を夫々読取るこ
とにより、輝度信号と色信号との間の遅延時間の差を定
量的に測定することができる。
(35a) Consists of areas (30), (32),
(33) and (36) are the luminance signals (
Horizontal scanning lines (30a) and (30b) corresponding to 28A) and (28B>, respectively, are arranged alternately for each IH. On the monitor screen in FIG. 2,
Area (30), (32), (34), (36)
The point and area of switching between the white pattern and the black pattern in (29>, (31), (33), (35)
The difference in delay time between the luminance signal and the color signal can be quantitatively measured by reading the offset position with respect to the color switching point.

この場合、本例では位相が45°ずつ異なる4種類の補
色対が設けられているために、オペレータの目の錯覚に
よる測定誤差を解消できる利益がある。また、輝度信号
の測定基準点も容易かつ正確に読取ることができる。
In this case, since four types of complementary color pairs having phases different by 45 degrees are provided in this example, there is an advantage that measurement errors caused by optical illusions of the operator can be eliminated. Furthermore, the measurement reference point of the luminance signal can be easily and accurately read.

また、より高精度にY/C遅延量を測定するために、第
1図例の測定信号をVTRに供給して、記録再生された
後の測定信号をオシロスコープで観察する場合について
第3図を参照して説明するに、再生された測定信号を水
平同期パルスで夫々トリガーして得られる観測波形の内
で、第1図例の色信号(19^)〜(190)  に対
応する波形の位相が180°変化する近傍は第3図Aに
示す如くなり、第1図例の輝度信号(28^)及び(2
8B)  に対応する波形のクロスポイントの近傍は第
3図Bに示す如くなる。そして、実際にオシロスコープ
の表示画面で観測される波形は第3図A及びBの波形が
重畳された波形であり、色信号(19A)〜(190)
 の包絡線(37)の振幅が最小の点(測定基準点)と
輝度信号(28^〉及び(28B>のクロスポイント(
測定基準点〉との時間差τを各クロスポイント毎に読取
ることにより、輝度信号と色信号との間の遅延時間の差
(Y/C遅延量)が定量的に測定される。
In addition, in order to measure the Y/C delay amount with higher accuracy, Figure 3 shows a case where the measurement signal shown in Figure 1 is supplied to a VTR and the measured signal after being recorded and played back is observed with an oscilloscope. To explain with reference, the phases of the waveforms corresponding to the color signals (19^) to (190) in the example in Figure 1 among the observed waveforms obtained by triggering the reproduced measurement signals with horizontal synchronization pulses respectively. The vicinity where 180° changes is shown in Figure 3A, and the luminance signals (28^) and (28^) of the example in Figure 1 are
The vicinity of the cross point of the waveform corresponding to 8B) is as shown in FIG. 3B. The waveform actually observed on the display screen of the oscilloscope is a waveform in which the waveforms A and B in Fig. 3 are superimposed, and the color signals (19A) to (190)
The point where the amplitude of the envelope (37) is minimum (measurement reference point) and the cross point of the luminance signal (28^> and (28B>)
By reading the time difference τ from the measurement reference point for each cross point, the difference in delay time (Y/C delay amount) between the luminance signal and the color signal is quantitatively measured.

この場合、本例では第1図に示す如く色信号(19^)
〜(19())  と輝度信号(28^)、 (28B
>  とは平均輝度レベルが同一でるあため、水平同期
パルス(9)のトリガーレベルは夫々同一レベルのレベ
ル(9c)となり、時間軸方向に相対的な変動が生じる
ことがない。従って、Y/C遅延量を正確に測定できる
利益がある。
In this case, in this example, the color signal (19^) is
~(19()) and luminance signal (28^), (28B
> Since the average luminance level is the same, the trigger levels of the horizontal synchronizing pulses (9) are the same level (9c), and no relative fluctuation occurs in the time axis direction. Therefore, there is an advantage that the amount of Y/C delay can be accurately measured.

更に、本例では輝度信号(28^)、 (28B )の
測定基準点は2つの矩形波のクロスポイントによって判
別する如くなしているが、VTRのノンリニアエンファ
シス及びデイエンファシスによる波形歪みは輝度信号(
28A)、 (28B)  の中程度のレベルで且つ単
調に増加又は減少する信号には生じないため、本例によ
れば供試VTRが一般家庭用のVTRであっても正確に
輝度信号の測定基準点を特定できる利益がある。
Furthermore, in this example, the measurement reference point of the luminance signals (28^) and (28B) is determined by the cross point of two rectangular waves, but the waveform distortion due to non-linear emphasis and de-emphasis of the VTR is
28A) and (28B) do not occur in signals that monotonically increase or decrease at a moderate level, so according to this example, even if the VTR under test is a general household VTR, the luminance signal can be measured accurately. There is the benefit of being able to identify reference points.

また、本例では色信号として夫々異なる補色対より戒る
4種類の色信号(19A)〜(190)  が使用され
ているため、第3図へに示す如く、オシロスコープの表
面画面上で色信号の包絡線(37)が明確となり、ひい
てはその包絡線(37〉の最小振幅点である測定基準点
もより明確となり、Y/C遅延量がより正確に測定でき
る利益がある。
In addition, in this example, four types of color signals (19A) to (190), each of which is a different complementary color pair, are used as color signals, so the color signals are displayed on the front screen of the oscilloscope as shown in Figure 3. The envelope (37) becomes clearer, and the measurement reference point, which is the minimum amplitude point of the envelope (37>), becomes clearer, and there is an advantage that the Y/C delay amount can be measured more accurately.

尚、上述実施例においては輝度信号(28^)、 (2
8B)は矩形パルスより形成したが、例えば位相が18
0 ’異なる正弦波を使用してもよい。このように本発
明は上述実施例に限定されず、本発明の要旨を逸脱しな
い範囲で種々の構成を採り得ることは勿論である。
In the above embodiment, the luminance signals (28^), (2
8B) was formed from a rectangular pulse, but for example, if the phase is 18
0' Different sine waves may be used. As described above, the present invention is not limited to the above-described embodiments, and it goes without saying that various configurations may be adopted without departing from the gist of the present invention.

るので、それら輝度信号と色信号との間の遅延時間の差
が容易に且つ正確に測定できる利益がある。
Therefore, there is an advantage that the difference in delay time between the luminance signal and the chrominance signal can be easily and accurately measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の測定信号を示す線図、第2
図は第1図例の測定信号をモニタで再生したときのモニ
タの画面を示す正面図、第3図は第1図例の測定信号を
オシロスコープで観測したときの観測波形を示す線図、
第4図は従来のY/C遅延量の測定システムを示す構成
図、第5図〜第7図は夫々従来の測定信号の説明に供す
る線図である。 (9)は水平同期パルス、(10)はカラーバースト、
(19A)〜(190)  は夫々色信号、(20)、
 (21)  は補色対、(28A)、 (28B) 
 は夫々輝度信号である。 〔発明の効果〕 本発明によれば、輝度信号と色信号との間のトリガーレ
ベルの変動が抑制されると共に、その輝度信号の測定基
準点が第2及び第3の水平周期の輝度信号のクロスポイ
ントとして容易に特定でき代  理  人 松  隈  秀  盛 第2図 第1図 実施イラリlln、tグロスコープの恒1カ第3図 従棄のオゾロスフ フ゛の−すの 第 図
FIG. 1 is a diagram showing a measurement signal of an embodiment of the present invention, and FIG.
The figure is a front view showing the monitor screen when the measurement signal in the example in Figure 1 is played back on the monitor, and Figure 3 is a diagram showing the observed waveform when the measurement signal in the example in Figure 1 is observed with an oscilloscope.
FIG. 4 is a block diagram showing a conventional Y/C delay measurement system, and FIGS. 5 to 7 are diagrams for explaining conventional measurement signals. (9) is horizontal sync pulse, (10) is color burst,
(19A) to (190) are color signals, (20),
(21) is a complementary color pair, (28A), (28B)
are each a luminance signal. [Effects of the Invention] According to the present invention, variations in the trigger level between the luminance signal and the color signal are suppressed, and the measurement reference point of the luminance signal is set to the luminance signal of the second and third horizontal periods. It can be easily identified as a cross point.

Claims (1)

【特許請求の範囲】 輝度信号の遅延時間と色信号の遅延時間との差を測定す
るための測定信号を発生する測定信号発生器において、 第1の水平周期に補色対より成る色信号を重畳すると共
に、第2及び第3の水平周期に夫々所定位置でレベルが
互いに合致し且つ平均輝度レベルが上記色信号と等しい
輝度信号を重畳して上記測定信号を形成するようにした
ことを特徴とする測定信号発生器。
[Claims] In a measurement signal generator that generates a measurement signal for measuring the difference between the delay time of a luminance signal and the delay time of a color signal, a color signal consisting of a complementary color pair is superimposed on a first horizontal period. In addition, the measurement signal is formed by superimposing luminance signals whose levels match each other and whose average luminance level is equal to the color signal at predetermined positions in the second and third horizontal periods, respectively. measurement signal generator.
JP1211037A 1989-08-16 1989-08-16 Measuring signal generator Pending JPH0374994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1211037A JPH0374994A (en) 1989-08-16 1989-08-16 Measuring signal generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1211037A JPH0374994A (en) 1989-08-16 1989-08-16 Measuring signal generator

Publications (1)

Publication Number Publication Date
JPH0374994A true JPH0374994A (en) 1991-03-29

Family

ID=16599325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1211037A Pending JPH0374994A (en) 1989-08-16 1989-08-16 Measuring signal generator

Country Status (1)

Country Link
JP (1) JPH0374994A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4639358B1 (en) * 2010-04-27 2011-02-23 ケイ・プロダクツ株式会社 Handrail for sliding door, sliding door device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4639358B1 (en) * 2010-04-27 2011-02-23 ケイ・プロダクツ株式会社 Handrail for sliding door, sliding door device
JP2011231513A (en) * 2010-04-27 2011-11-17 Kei Products Co Ltd Handrail for sliding door, sliding door device

Similar Documents

Publication Publication Date Title
JP3202613B2 (en) Color unevenness correction device
KR910002157B1 (en) Progresive scan television
JPH04271685A (en) Synchronous signal restoring circuit
JPH0374994A (en) Measuring signal generator
JP3518096B2 (en) Method of manufacturing video recording and playback equipment
US4852074A (en) Method of measurement of crosstalk noise in playback information signal
JPS6231293A (en) Picture reproducing device
JPS6288495A (en) Color difference line sequential circuit of magnetic recorder
JPS63274290A (en) Detecting method for jitter of vtr recording and reproducing video signal
JPH0477189A (en) Method for measuring skew distortion of magnetic recording medium and its measuring instrument
KR930004219B1 (en) Time base error correction standard signal recording and reproducing circuit
JPH07122648B2 (en) Spectrum analyzer
JPH01264492A (en) Jitter detector for vtr recording and reproducing video signal
JP3304106B2 (en) Color back generating device, recorded information reproducing device, and TV adjusting method
KR100768342B1 (en) Lipsync test method
JPH0666977B2 (en) Method and apparatus for measuring phase difference of color television signal
JPS6017991Y2 (en) Color unevenness measuring device for magnetically reproduced images
JP2006197332A (en) Video characteristics evaluation method, recording medium for video characteristics evaluation, video characteristic evaluation signal generator
JP2533114B2 (en) Image playback device
JPH0625103Y2 (en) FM modulator with external reset function
KR930004339B1 (en) Time base correction apparatus for video recording and reproducing system
JPS606911Y2 (en) Reversal phenomenon measuring device
JPS63210786A (en) Measuring instrument
JPS63100896A (en) Signal generator
JPS61283289A (en) Recording and reproducing device for video signal