JPH0372298A - Manufacture of multilayer film reflecting mirror - Google Patents

Manufacture of multilayer film reflecting mirror

Info

Publication number
JPH0372298A
JPH0372298A JP1207939A JP20793989A JPH0372298A JP H0372298 A JPH0372298 A JP H0372298A JP 1207939 A JP1207939 A JP 1207939A JP 20793989 A JP20793989 A JP 20793989A JP H0372298 A JPH0372298 A JP H0372298A
Authority
JP
Japan
Prior art keywords
multilayer film
film thickness
place
heat treatment
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1207939A
Other languages
Japanese (ja)
Inventor
Katsuhiko Murakami
勝彦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP1207939A priority Critical patent/JPH0372298A/en
Publication of JPH0372298A publication Critical patent/JPH0372298A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE:To make it possible to secure a high reflectance on the whole reflecting surface of a reflector by a method wherein a multilayer film formed on a curved surface is subjected to heat treatment for a heating time being different for each place and thereby a film thickness cycle is varied so that the condition of Bragg diffraction be met in each place. CONSTITUTION:A base 1 of which a reflecting surface is a spheroid is formed. The base 1 is disposed so that a sputtering target 4 and the rotational axis 6 of the spheroid are parallel to each other and is swung around an axis 7 being parallel to the axis 6, and substances 2 and 3 being different in a difference from a refractive index in vacuum are deposited in layers alternately so that a film thickness distribution in the direction intersecting the axis 6 perpendicularly be uniform. Subsequently, irreversible heat treatment is conducted for a heting time being different for each place, since a variation in a film thickness cycle is dependent on a temperature and the heating time, and thereby a control is made so that the condition of Bragg diffraction be met in each place of a curved surface.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、X線リソグラフィー、X線顕微鏡、X線望遠
鏡、各ffIX線分析装置などにおいて、X線領域での
反射光学系に用いられる多層膜反射鏡に関するものであ
る。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a multilayer optical system used in a reflective optical system in the X-ray region in X-ray lithography, X-ray microscopes, X-ray telescopes, various ffI This relates to a membrane reflector.

[従来の技術] X線領域で物質の屈折率は n=1−δ−4k(δ、に:実数)  ・(1)と表わ
され、δ、にとちに1に比べて非常に小さい。即ち、屈
折率がほぼ1に近く、X線はほとんと屈折しないので、
可視光領域のような屈折を利用したレンズは使用できな
い。そこで反射を利用した光学系が用いられるが、その
ような反射鏡には、全反射臨界角θC(波長25人で6
°)以下ノ斜入射で用いる全反射鏡と、反射面を多数設
けた多層膜反射鏡とがある。前者は、斜入射のため光学
系の寸法が大きくなることと、収差が大きいという欠点
があり、この点で多層膜反射鏡の方が優れている。
[Prior art] The refractive index of a substance in the X-ray region is expressed as n = 1-δ-4k (δ: real number) (1), and δ is very small compared to 1. . In other words, the refractive index is close to 1, and X-rays are hardly refracted.
Lenses that utilize refraction such as those in the visible light region cannot be used. Therefore, an optical system using reflection is used, but such a reflecting mirror has a critical angle of total reflection θC (wavelength 25 for 6 people).
°) Below, there are total reflection mirrors used for oblique incidence, and multilayer film reflection mirrors with a large number of reflection surfaces. The former has disadvantages in that the dimensions of the optical system become large due to oblique incidence and large aberrations, and in this respect a multilayer film reflecting mirror is superior.

多層膜反射鏡は使用する波長域で前記(1)式のδの大
きい物質と小さい物質を交互に順次積層し、各界面での
反射波の位相をそろえて全体として高い反射率を得るも
ので、タングステン(W)/炭素(C)やモリブデン(
MO)/シリコン(Si)などの組合せのものが従来か
ら知られている。このような多層膜反射鏡はスパッタリ
ングや真空蒸着、CV D (Chemical Va
por Deposition 気相反応法)等の方法
によって形成されるが、例えばX線の集光に用いるよう
な場合には、多層膜は球面、回転楕円面、回転放物面、
回転双曲面などの曲面形状の基材上に形成される。
A multilayer film reflector is one in which materials with large and small δ in equation (1) are alternately laminated in the wavelength range used, and the phases of the reflected waves at each interface are aligned to obtain a high reflectance as a whole. , tungsten (W)/carbon (C) and molybdenum (
Combinations such as MO)/silicon (Si) have been known. Such a multilayer film reflector can be manufactured by sputtering, vacuum deposition, CVD (Chemical Vapor
For example, when used for focusing X-rays, the multilayer film has a spherical surface, an ellipsoid of revolution, a paraboloid of revolution,
It is formed on a base material having a curved surface shape such as a hyperboloid of rotation.

[発明が解決しようとする課題] 上記の如き従来の技術において、多層膜の膜厚の周期d
は、各界面での反射波の位相をそろえるために、(2)
式のブラッグ回折条件を満足しなければならない。
[Problem to be solved by the invention] In the conventional technology as described above, the period d of the thickness of the multilayer film
In order to align the phases of the reflected waves at each interface, (2)
The Bragg diffraction condition of the formula must be satisfied.

2dSinθ=nλ  ・(2) なお、θは入射角、λはX線の波長、nは整数で回折の
次数である。
2dSinθ=nλ (2) where θ is the incident angle, λ is the wavelength of the X-ray, and n is an integer and the order of diffraction.

第2図に回転楕円面を用いた反射鏡の例を示す。楕円の
一つの焦点flに点光源を置くと、そこから出た光はも
う一つの焦点f2へ集光される。このとき反射面上の異
なる位置(p+、Q+)(P2.Q2)での入射角θ0
.θ2は等しくない。
Figure 2 shows an example of a reflecting mirror using an ellipsoid of revolution. When a point light source is placed at one focal point fl of the ellipse, the light emitted from it is condensed to the other focal point f2. At this time, the incident angle θ0 at different positions (p+, Q+) (P2.Q2) on the reflecting surface
.. θ2 are not equal.

従って、各位置でブラッグの条件(2)式を満足するた
めには、場所毎に多層膜の周期dを変化させる必要があ
る。これは回転楕円面以外の一般の曲面においても同様
である。
Therefore, in order to satisfy Bragg's condition (2) at each location, it is necessary to change the period d of the multilayer film at each location. This also applies to general curved surfaces other than spheroidal surfaces.

ここで、曲面の各場所によって多層膜の周期を変えるこ
とは特開昭60−98399号公報に示されている。し
かし、この公報には膜厚周期が場所毎に異なる多層膜を
形成する手段については何等記載されておらず、敢えて
推察すれば成膜時に生じる膜厚分布を利用するものと考
えられる。
Here, changing the period of the multilayer film depending on each location on the curved surface is disclosed in Japanese Patent Laid-Open No. 60-98399. However, this publication does not describe any means for forming a multilayer film in which the film thickness period differs from place to place, and if I had to guess, it would be considered to utilize the film thickness distribution that occurs during film formation.

しかしながら、成膜時に膜厚分布を任意に制御すること
は非常に田無であり、成膜条件によって曲面の各場所で
ブラッグの回折条件を満たずような膜厚分布とすること
は、仮にできたとしても歩留りが極めて悪く、事実上不
可能である。このため、従来の多層膜反射鏡では反射面
上のごく一部でしかブラッグの条件を満足することがで
きず、効率が非常に悪いという問題点があった。
However, it is very difficult to arbitrarily control the film thickness distribution during film formation, and it is possible to create a film thickness distribution that does not satisfy Bragg's diffraction conditions at each location on the curved surface depending on the film formation conditions. However, the yield is extremely poor and it is virtually impossible. For this reason, conventional multilayer film reflecting mirrors have the problem of being able to satisfy the Bragg condition only in a small portion of the reflecting surface, resulting in very poor efficiency.

本発明はこの様な従来の問題点に鑑みてさなれたもので
、曲面の各場所でブラッグの回折条件を満たす多層膜反
射鏡の製造方法を提供することを目的とするものである
The present invention was developed in view of these conventional problems, and it is an object of the present invention to provide a method for manufacturing a multilayer reflector that satisfies Bragg's diffraction conditions at each location on a curved surface.

[課題を解決するための手段] 本発明においては、曲面上に、ほぼ均一な膜厚周期の多
層膜を形成した後、場所毎に異なる加熱時間で処理する
ことにより、多層膜の膜厚周期をX線のブラッグ回折条
件を満たすように場所毎に変えることによって、上記の
課題を達成している。
[Means for Solving the Problems] In the present invention, after forming a multilayer film with a substantially uniform film thickness period on a curved surface, the film thickness period of the multilayer film is changed by processing with different heating times for each location. The above-mentioned problem is achieved by changing the position at each location so as to satisfy the X-ray Bragg diffraction conditions.

[作 用ゴ 本発明者らは、多層膜反射鏡の耐熱性を評価する実験を
行なう中で、加熱処理によって多層膜の膜厚周期dが増
加するとともに、反射率も増加する現象を見出した。第
3図は、W/C多層膜反射鏡を真空中で熱処理した場合
の熱処理温度と膜厚周期dの増加率の関係を示すグラフ
であり、600〜900℃の温度で温度に依存して多層
膜の周期dが徐々に増加(数%)するとともに、同じ温
度でも加熱時間によって周期dの増加率が異なる(第3
図の例では加熱時間1時間の場合と10時間の場合では
増加率が3上程度異なっている)ことがわかる。この加
熱処理による膜厚周期の増加現象は非可逆的であり、多
層膜の断面のTEM (透過型電子顕微鏡)像を観察し
たところ、熱処理後のW層中には微結晶化が生じている
ことがわかった。
[Function] While conducting experiments to evaluate the heat resistance of multilayer reflective mirrors, the present inventors discovered a phenomenon in which heat treatment increases the film thickness period d of the multilayer film and also increases the reflectance. . Figure 3 is a graph showing the relationship between the heat treatment temperature and the rate of increase in the film thickness period d when a W/C multilayer film reflector is heat treated in vacuum. The period d of the multilayer film gradually increases (several percent), and even at the same temperature, the rate of increase in the period d differs depending on the heating time (third
In the example shown in the figure, it can be seen that the increase rate differs by about 3 or more between the heating time of 1 hour and the heating time of 10 hours. This phenomenon of increase in film thickness period due to heat treatment is irreversible, and observation of a TEM (transmission electron microscope) image of a cross section of the multilayer film reveals that microcrystalization has occurred in the W layer after heat treatment. I understand.

そこで、本発明者らは、鋭意検討の結果、加熱処理によ
る膜厚の非可逆的な増加現象を利用して曲面上に形成し
た多層膜の膜厚分布を制御することを可能にし、本発明
を成すに至った。
Therefore, as a result of intensive studies, the present inventors have made it possible to control the film thickness distribution of a multilayer film formed on a curved surface by utilizing the phenomenon of irreversible increase in film thickness due to heat treatment. We have achieved this.

即ち、膜厚周期dの変化は第3図に示したように温度及
び加熱時間に対して依存性があるので、場所毎に異なる
温度で加熱処理することによって場所毎に膜厚周期を変
えることができるとともに、場所毎に加熱時間を変える
ことによっても曲面の各場所でブラッグ回折条件を満た
すように多層膜の膜厚分布を制御することができる。本
発明における膜厚分布の制御は、加熱温度をほぼ一定に
して加熱時間だけを場所毎に変えて行なっても良いし、
場合によっては加熱時間と加熱温度の両方を変化させて
行なっても良いものである。
That is, since the change in the film thickness period d is dependent on temperature and heating time as shown in Figure 3, it is possible to change the film thickness period at each location by heat-treating at a different temperature for each location. In addition, by changing the heating time for each location, the thickness distribution of the multilayer film can be controlled so that the Bragg diffraction conditions are satisfied at each location on the curved surface. The film thickness distribution in the present invention may be controlled by keeping the heating temperature almost constant and changing only the heating time from place to place, or by changing the heating time from place to place.
Depending on the case, both the heating time and the heating temperature may be changed.

第1図は本発明による製造方法によって得られた多層膜
反射鏡の模式的な断面図である。図において、基材1の
曲面上には、例えばタングステン等の真空の屈折率との
差が大きい物質2と例えば炭素等の真空の屈折率との差
が小さい物質3が交互に積層されており、物質2及び3
の膜厚周期は場所毎に異なる加熱時間で加熱処理される
ことにより曲面の各場所でブラッグの回折条件を満足す
るように制御(この場合断面中心部はど厚く、端部はと
薄くなっている)されている。この際、周期dの変化に
伴い、多層膜の結晶化の状態も変化しており、長い時間
加熱処理したところほど微結晶化が進行している。
FIG. 1 is a schematic cross-sectional view of a multilayer reflective mirror obtained by the manufacturing method according to the present invention. In the figure, on the curved surface of a base material 1, a material 2 such as tungsten, which has a large difference in refractive index from the vacuum, and a material 3, such as carbon, which has a small difference in the refractive index from the vacuum, are alternately laminated. , substances 2 and 3
The film thickness period is controlled so that the Bragg diffraction conditions are satisfied at each location on the curved surface by heat treatment with different heating times for each location (in this case, the center of the cross section is thicker and the edges are thinner). have been). At this time, as the period d changes, the crystallization state of the multilayer film also changes, and the longer the heat treatment is performed, the more microcrystallization progresses.

なお、本発明において多層膜を熱処理する方法は特に限
定されるものではなく、ヒータ等の熱源を所定の位置に
配置しても良いし、レーザ光をスポット状に集光して場
所毎に走査速度を変えながら多層膜表面を照射すること
によって行なっても良い。
Note that the method of heat-treating the multilayer film in the present invention is not particularly limited, and a heat source such as a heater may be placed at a predetermined position, or a laser beam may be focused into a spot and scanned at each location. This may be carried out by irradiating the surface of the multilayer film while changing the speed.

[実施例] 実施例=1 まず、ガラスを用いて第4図(図aは平面図。[Example] Example=1 First, using glass, Figure 4 (Figure a is a plan view).

図すは長軸方向の側面図1図Cは短軸方向の側面図)に
示されるように回転楕円面を反射面とする多層膜反射鏡
の基材1を作製した。この基材1の反射面は長袖半径5
0mm、短軸半径20+nmの楕円を長軸を回転中心軸
として回転させることによってできる回転楕円面の一部
を、長軸半径20mm、短軸半径8mmの楕円の断面で
切断することにより形成されたものである。
As shown in FIG. 1 (FIG. 1 is a side view in the long axis direction) and FIG. C is a side view in the short axis direction (Fig. The reflective surface of this base material 1 has a long sleeve radius of 5
It was formed by cutting a part of an ellipsoid of revolution, which is created by rotating an ellipse with a diameter of 0 mm and a minor axis radius of 20+nm around the major axis as the center of rotation, with a cross section of an ellipse with a major axis radius of 20 mm and a minor axis radius of 8 mm. It is something.

このような反射面においては、第4図すに示されるよう
に回転楕円面の一方の焦点f、の位置に点光源を置くと
、そこから出た光はもう一方の焦点f2の位置に集光さ
れる。ここで、入射角は反射面の中心で θ、 =23
.8’ 、長軸方向の端部で02 =25.5°である
ので、使用するX線の波長を25λとすると、ブラッグ
の条件を満足する多層膜の膜厚周期dは、反射面の中心
でd、=31.3人長軸方向の端部で29.1入となり
、その膜厚差は7.5零となる。
In such a reflective surface, when a point light source is placed at one focal point f of the spheroid as shown in Figure 4, the light emitted from it is focused at the other focal point f2. be illuminated. Here, the incident angle is θ, = 23 at the center of the reflecting surface.
.. 8', 02 = 25.5° at the end in the long axis direction, so if the wavelength of the X-ray used is 25λ, the film thickness period d of the multilayer film that satisfies Bragg's condition is the center of the reflective surface. Then, d,=31.3, is 29.1 at the end in the longitudinal direction, and the difference in film thickness is 7.5.

次に、かかる反射面上にrfマグネトロンスパッタリン
グにより、厚さ13人のW層と厚さ16入の0層を交互
に50層ずつ積層した。第5図に示すようにスパッタリ
ングターゲット4と、回転楕円体の回転軸6とが平行に
なるように基材1を配置し、成膜中は回転中心軸6と平
行な!X1lI17の周りに基材1を揺動して、回転中
心軸6に直交する方向の膜厚分布は均一となるようにし
た。
Next, 50 13-thick W layers and 16-thick 0 layers were alternately laminated on the reflective surface by RF magnetron sputtering. As shown in FIG. 5, the base material 1 is arranged so that the sputtering target 4 and the rotation axis 6 of the spheroid are parallel to each other, and during film formation, the sputtering target 4 is parallel to the rotation axis 6! The base material 1 was oscillated around X1lI17 so that the film thickness distribution in the direction orthogonal to the rotation center axis 6 was made uniform.

一方、楕円の長袖方向は、面の傾きが異るため端部と中
心部では膜厚の差が生じる。この際の膜厚差は反射面の
中心と長軸方向の端部で1.5零である。従って、反射
面のすべての位置でブラッグの条件を満足するためには
、最大7.5*−1,5%F= 6.帖だけ膜厚周期d
を調整しなければならないことになる。なお、基材1及
びその保持治具は真空中で異なるターゲット4上へ移動
することができるような構成とし、これらをWとCのタ
ーゲット上へ交互に移動することによりW層と0層を順
次積層した。
On the other hand, in the long sleeve direction of the ellipse, since the slope of the plane is different, there is a difference in film thickness between the ends and the center. The difference in film thickness at this time is 1.5 zero between the center of the reflective surface and the ends in the long axis direction. Therefore, in order to satisfy Bragg's condition at all positions of the reflecting surface, the maximum must be 7.5*-1.5%F=6. Film thickness period d
will have to be adjusted. The base material 1 and its holding jig are configured so that they can be moved onto different targets 4 in a vacuum, and by moving them alternately onto W and C targets, the W layer and the 0 layer are separated. Laminated in sequence.

次にこのようにして作製した多層膜反射鏡を第6図に示
すような装置で熱処理した。図示したように、タングス
テンから成るストリップヒーター8を回転楕円面の断面
である楕円の短軸に平行に多層膜反射鏡の反射面9に近
接して配置した。このストリップヒーター8は楕円の長
袖方向に移動できるようになっており、ヒーター8に通
電しながら移動することによって反射面9全面を加熱処
理することができる。
Next, the multilayer film reflecting mirror thus produced was heat-treated using an apparatus as shown in FIG. As shown in the figure, a strip heater 8 made of tungsten was placed close to the reflective surface 9 of the multilayer mirror in parallel to the minor axis of the ellipse, which is the cross section of the spheroidal surface. The strip heater 8 is movable in the long direction of the ellipse, and by moving the heater 8 while energizing it, the entire surface of the reflective surface 9 can be heated.

このとき、ストリップヒーター8の移動速度を変化させ
ることにより、反射面9上の場所毎に具なる加熱時間で
熱処理を行なうことができる。即ち、第6図に示された
ような装置を用いてストリップヒーター8の長軸方向移
動速度を中心に近いほど遅く設定して加熱処理を行なえ
ば、楕円の短軸方向には加熱時間は一定となり、長袖方
向には中心に近いほど加熱時間が長くなる。その結果、
多層膜の膜厚周期dの増加率も短軸方向には一定で、長
軸方向には中心に近いほど大きくなる。
At this time, by changing the moving speed of the strip heater 8, heat treatment can be performed for each location on the reflective surface 9 for a specific heating time. In other words, if the heating process is performed by using the device shown in FIG. 6 and setting the moving speed of the strip heater 8 in the long axis direction slower toward the center, the heating time will be constant in the short axis direction of the ellipse. Therefore, in the direction of long sleeves, the closer to the center the longer the heating time. the result,
The rate of increase in the film thickness period d of the multilayer film is also constant in the short axis direction, and becomes larger closer to the center in the long axis direction.

本実施例では、約6零の膜厚周期dの変化を生しさせる
ために加熱された反射面9表面が900t:になるよう
にヒーター8に流す電流を設定し、反射面9全体の加熱
処理を約5時間で行なった。なお、これらの装置全体は
真空中に設置し、熱処理中にW/C多層膜及びストリッ
プヒーター8が酸化するのを防止した。
In this embodiment, the current flowing through the heater 8 is set so that the surface of the heated reflective surface 9 becomes 900 t: in order to produce a change in the film thickness period d of about 6 zero, and the current applied to the entire reflective surface 9 is heated. The treatment took about 5 hours. The entire apparatus was placed in a vacuum to prevent the W/C multilayer film and the strip heater 8 from being oxidized during the heat treatment.

上記のような装置で、反射面9の各場所でブラッグの回
折条件を満足するような膜厚周期の変化を生じさせるた
めにヒーター8の移動速度を最適化して多層膜反射鏡の
熱処理を行なった後、第7図に示すようにエキシマレー
ザ(波長249nm)10とグラファイトターゲット1
1を用いたレーザプラズマX線源を光源の位置が多層膜
反射鏡の一方の焦点flにくるように配置し、他方の焦
点f2にX線検出器12を配置して多層膜反射鏡13の
集光効率を測定した。本発明による熱処理を行なったも
のと、行なわなかったものとで集光効率を比較したとこ
ろ、熱処理を行なったものは集光率が約7倍に向上して
いた。
Using the above-mentioned apparatus, the multilayer reflector is heat-treated by optimizing the moving speed of the heater 8 in order to produce a change in the film thickness period that satisfies Bragg's diffraction conditions at each location on the reflecting surface 9. After that, as shown in Figure 7, an excimer laser (wavelength 249 nm) 10 and a graphite target 1 are used.
A laser plasma X-ray source using a laser plasma Light collection efficiency was measured. When the light collection efficiency was compared between those subjected to the heat treatment according to the present invention and those not subjected to the heat treatment, the light collection efficiency was improved by about seven times in the case of those subjected to the heat treatment.

実施例:2 実施例1と同様な回転楕円面形状の反射面を有するガラ
ス製の基材に、rfマグネトロンスパッタリング法によ
りW/C多層膜を形成した。
Example: 2 A W/C multilayer film was formed on a glass base material having a spheroidal reflective surface similar to that in Example 1 by RF magnetron sputtering.

この多層膜反射鏡を第8図に示すような装置を用いて、
YAGレーザ14(波長1.06μn+ )のレーザ光
をレンズ15でスポット状に集光して反射面を煕射し局
所的に熱処理を行なった。多層膜反射鏡13はX−Yス
テージ16上に乗せられており、X−Yステージ16を
レーザ光に対して相対移動させることにより反射面全体
をレーザ光で走査することができるようになっている。
Using a device as shown in Fig. 8, this multilayer film reflecting mirror is
Laser light from a YAG laser 14 (wavelength: 1.06 .mu.n+) was focused into a spot by a lens 15 and irradiated onto the reflective surface to perform local heat treatment. The multilayer film reflecting mirror 13 is mounted on an X-Y stage 16, and by moving the X-Y stage 16 relative to the laser beam, the entire reflecting surface can be scanned with the laser beam. There is.

かかる装置では、レーザ出力を一定に保持しながら走査
速度を変化させることにより、場所毎に異なる熱時間で
熱処理を行なうことができる。
With such an apparatus, by changing the scanning speed while keeping the laser output constant, heat treatment can be performed for different heat times at different locations.

具体的には第9図(a) に示すように楕円の短軸に平
行な方向に一定の走査速度でライン走査し、次に走査速
度を変えて次のラインを走査するという動作を繰り返し
反射面全体を熱処理した。この際の加熱時間は、短軸方
向(第9図(C))には一定で、長軸方向(第9図(b
))には中心に近いほど走査速度を遅くして加熱時間を
長くした。その結果、多層膜の膜厚周期dの増加率も短
軸方向には一定で、長袖方向には中心に近いはと゛大き
くなり最大6*増加した。
Specifically, as shown in Figure 9 (a), a line is scanned at a constant scanning speed in a direction parallel to the short axis of the ellipse, and then the scanning speed is changed and the next line is scanned, which is repeated and reflected. The entire surface was heat treated. The heating time at this time is constant in the short axis direction (Fig. 9(C)), and is constant in the long axis direction (Fig. 9(b)
)), the scanning speed was slowed down and the heating time was increased closer to the center. As a result, the rate of increase in the film thickness period d of the multilayer film was also constant in the short axis direction, but in the long sleeve direction, it became much larger near the center, increasing by up to 6*.

なお、これらの装置全体(YAGレーザ本体は除く)は
真空中に設置し、熱処理中にW/C多層膜が酸化するの
を防止した。
The entire apparatus (excluding the YAG laser body) was placed in a vacuum to prevent the W/C multilayer film from being oxidized during the heat treatment.

このようにして熱処理を行なった多層膜反射鏡の集光効
率を実施例1と同様に第7図に示す装置で評価したとこ
ろ、熱処理を行なわなかったものに対して約12倍に集
光効率が向上した。
When the light collection efficiency of the multilayer film reflector heat-treated in this way was evaluated using the apparatus shown in FIG. improved.

[発明の効果] 以上の様に本発明においては、曲面上に形成された多層
膜を場所毎に異なる加熱時間で熱処理して膜厚周期dを
各場所でブラッグ回折条件を満たずように変化させるこ
とにより、曲面状の多層膜反射鏡の反射面全面で高い反
射率を確保することができる。即ち、本発明は従来に比
べて著しく効率の高い多層膜反射鏡を歩留り良く製造す
ることができるという極めて優れた効果を有している。
[Effects of the Invention] As described above, in the present invention, a multilayer film formed on a curved surface is heat-treated with different heating times for each location, and the film thickness period d is changed at each location so as not to satisfy the Bragg diffraction condition. By doing so, a high reflectance can be ensured over the entire reflecting surface of the curved multilayer film reflecting mirror. That is, the present invention has an extremely excellent effect in that it is possible to manufacture a multilayer film reflecting mirror with significantly higher efficiency and higher yield than conventional methods.

また、本発明による加熱処理を行なうことによって、膜
厚周期の増加とともに物質の反射率自体も増加するので
、このことも多層膜反射鏡の効率向上に寄与する。
Further, by performing the heat treatment according to the present invention, the reflectance of the substance itself increases as the film thickness period increases, which also contributes to improving the efficiency of the multilayer mirror.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による多層膜反射鏡の模式的な断面図、
第2図は回転楕円面を用いた反射鏡を説明する説明図、
第3図は熱処理温度に対する多層膜周期dの増加を示す
グラフ、第4図は本発明実施例の多層膜反射鏡の形状を
説明する説明図、第5図は本発明実施例における多層膜
の形成法を説明する説明図、第6図は本発明実施例にお
ける熱処理方法を説明する説明図、第7図は多層膜反射
鏡の集光効率を評価した装置の構成図、第8図は本発明
の別の実施例における熱処理装置の構成図、第9図は第
8図に示された装置による熱処理方法を説明する説明図
である。 [主要部分の符号の説明コ ト・・基材 2・・・多層膜を形成する一方の物質 3・・・多層膜を形成するもう一方の物質4・・・スパ
ッタリングターゲット 6・・・回転中心軸 7・・・揺動の中心軸 8・・・ストリップヒーター 9・・・反射面 10・・・エキシマレーザ 1・・・グラファイトターゲット 2・・・X線検出器 3・・・多層膜反射鏡 4・・・YAGレーザ 6・・・X−Yステージ
FIG. 1 is a schematic cross-sectional view of a multilayer reflective mirror according to the present invention;
Figure 2 is an explanatory diagram explaining a reflecting mirror using an ellipsoid of revolution,
FIG. 3 is a graph showing the increase in the multilayer film period d with respect to the heat treatment temperature, FIG. 4 is an explanatory diagram illustrating the shape of the multilayer film reflector in the embodiment of the present invention, and FIG. 5 is a graph showing the increase in the multilayer film period d in the embodiment of the invention FIG. 6 is an explanatory diagram for explaining the formation method, FIG. 6 is an explanatory diagram for explaining the heat treatment method in the example of the present invention, FIG. 7 is a block diagram of the apparatus used to evaluate the light collection efficiency of the multilayer reflector, and FIG. FIG. 9 is a block diagram of a heat treatment apparatus according to another embodiment of the invention, and is an explanatory diagram illustrating a heat treatment method using the apparatus shown in FIG. 8. [Explanation of the symbols of the main parts...Base material 2...One substance forming the multilayer film 3...The other substance forming the multilayer film 4...Sputtering target 6...Rotation center axis 7... Central axis of oscillation 8... Strip heater 9... Reflecting surface 10... Excimer laser 1... Graphite target 2... X-ray detector 3... Multilayer film reflecting mirror 4 ...YAG laser 6...X-Y stage

Claims (1)

【特許請求の範囲】[Claims] 曲面上に、ほぼ均一な膜厚周期の多層膜を形成した後、
場所毎に異なる加熱時間で加熱処理することにより、多
層膜の膜厚周期をX線のブラッグ回折条件を満たすよう
に場所毎に変えることを特徴とする多層膜反射鏡の製造
方法。
After forming a multilayer film with a nearly uniform thickness period on a curved surface,
A method for manufacturing a multilayer film reflecting mirror, characterized in that the film thickness period of the multilayer film is changed from place to place so as to satisfy X-ray Bragg diffraction conditions by performing heat treatment at different heating times for each place.
JP1207939A 1989-08-14 1989-08-14 Manufacture of multilayer film reflecting mirror Pending JPH0372298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1207939A JPH0372298A (en) 1989-08-14 1989-08-14 Manufacture of multilayer film reflecting mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1207939A JPH0372298A (en) 1989-08-14 1989-08-14 Manufacture of multilayer film reflecting mirror

Publications (1)

Publication Number Publication Date
JPH0372298A true JPH0372298A (en) 1991-03-27

Family

ID=16548041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1207939A Pending JPH0372298A (en) 1989-08-14 1989-08-14 Manufacture of multilayer film reflecting mirror

Country Status (1)

Country Link
JP (1) JPH0372298A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310947A (en) * 2001-04-11 2002-10-23 Rigaku Corp Method and apparatus for measurement of small-angle scattering
JP2007011403A (en) * 1999-11-29 2007-01-18 X-Ray Optical Systems Inc Doubly curved optical device with graded atomic plane
WO2008133254A1 (en) * 2007-04-23 2008-11-06 Nikon Corporation Multilayer-film reflective mirror, exposure apparatus, device manufacturing method, and manufacturing method of multilayer-film reflective mirror
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007011403A (en) * 1999-11-29 2007-01-18 X-Ray Optical Systems Inc Doubly curved optical device with graded atomic plane
JP4514982B2 (en) * 2001-04-11 2010-07-28 株式会社リガク Small angle scattering measurement system
JP2002310947A (en) * 2001-04-11 2002-10-23 Rigaku Corp Method and apparatus for measurement of small-angle scattering
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8194322B2 (en) 2007-04-23 2012-06-05 Nikon Corporation Multilayer-film reflective mirror, exposure apparatus, device manufacturing method, and manufacturing method of multilayer-film reflective mirror
JP2008270808A (en) * 2007-04-23 2008-11-06 Nikon Corp Multilayer film reflecting mirror, exposure apparatus, manufacturing method of device, and manufacturing method of multilayer film reflecting mirror
WO2008133254A1 (en) * 2007-04-23 2008-11-06 Nikon Corporation Multilayer-film reflective mirror, exposure apparatus, device manufacturing method, and manufacturing method of multilayer-film reflective mirror
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method

Similar Documents

Publication Publication Date Title
US5003567A (en) Soft x-ray reduction camera for submicron lithography
JP4904287B2 (en) Thermally stable multilayer mirror for EUV spectral range
EP1234310B1 (en) Doubly curved optical device with graded atomic planes
JPH0372298A (en) Manufacture of multilayer film reflecting mirror
JP5631049B2 (en) Zone-optimized mirror and optical system using the same
JPH05326716A (en) Method and apparatus for cutting integrated circuit connecting pass using phase-plate adjusting type laser beam
KR20100014893A (en) Phase difference plate and its manufacturing method
WO2001046961A1 (en) X-ray system and method
CN106324711B (en) The micro- focusing WSi of hard X ray2/Al0.98Si0.02Multilayer film Laue lens
JPH01310291A (en) Specular furnace
US9082522B2 (en) Zone compensated multilayer laue lens and apparatus and method of fabricating the same
JP2569447B2 (en) Manufacturing method of multilayer mirror
JPH0341399A (en) Manufacture of multilayered film reflecting mirror
US7829245B2 (en) Mask for sequential lateral solidification and method of manufacturing the same
US5382342A (en) Fabrication process for a gradient index x-ray lens
JP2000147198A (en) Multi-layer film reflecting mirror and its manufacture
JP3141660B2 (en) X-ray irradiation device
JP2993261B2 (en) X-ray multilayer reflector
JPH04142030A (en) Manufacture of semiconductor film
JPH08262198A (en) X-ray multilayer film reflection mirror
JP2853164B2 (en) Manufacturing method of oxide superconducting film
JP3200959B2 (en) X-ray reflector
JP2003080389A (en) Device and method for laser beam machining and method for manufacturing product having laser beam machined work
JP2906485B2 (en) Thin film production equipment
JPH0368762A (en) Vapor-deposition device by laser