JPH0371109B2 - - Google Patents

Info

Publication number
JPH0371109B2
JPH0371109B2 JP56132483A JP13248381A JPH0371109B2 JP H0371109 B2 JPH0371109 B2 JP H0371109B2 JP 56132483 A JP56132483 A JP 56132483A JP 13248381 A JP13248381 A JP 13248381A JP H0371109 B2 JPH0371109 B2 JP H0371109B2
Authority
JP
Japan
Prior art keywords
group
oligoribonucleotides
hydrogen atom
reaction
oligoribonucleotide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56132483A
Other languages
Japanese (ja)
Other versions
JPS5836396A (en
Inventor
Hideaki Tanaka
Isao Uchida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Mitsubishi Kasei Corp filed Critical Agency of Industrial Science and Technology
Priority to JP13248381A priority Critical patent/JPS5836396A/en
Publication of JPS5836396A publication Critical patent/JPS5836396A/en
Publication of JPH0371109B2 publication Critical patent/JPH0371109B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】 本発明はオリゴリボヌクレオチドの製造法に関
する。きまつた塩基配列のオリゴリボヌクレオチ
ドが得られるならば、特定の遺伝子やメツセンジ
ヤーアール・エヌ・エーの調製、アール・エヌ・
エーを基質とする酵素の調整および反応機構の解
析、タンパク質とヌクレオチド類の相互作用の研
究などに利用できる。このようなオリゴリボヌク
レオチドは有機化学的方法によつても調製される
が、酵素を用いる方法によつても比較的簡単に収
率よく調製することができる。現在、酵素を用い
る方法としては、有機化学的方法または酵素的方
法によつてリボヌクレオチドのトリマー以上のも
のを調製し、それらの素材相互間をアール・エ
ヌ・エーリガーゼで連結する方法がある。しかし
アール・エヌ・エーリガーゼのリン供与体および
リン受容体の塩基配列に対する特異性、反応機構
などはまだ明確ではなく、従来の方法では、目的
の塩基配列のオリゴリボヌクレオチドが得られな
い場合があつた。そこで、本発明者等は、オリゴ
リボヌクレオチドの調製を一定の素材を用いて単
純な一定の方法で收率よく正確に行わせる方法を
開発すべく検討した結果、本発明を達成した。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing oligoribonucleotides. If oligoribonucleotides with specific nucleotide sequences can be obtained, it is possible to prepare specific genes or
It can be used to adjust enzymes that use A as a substrate, analyze reaction mechanisms, and study interactions between proteins and nucleotides. Such oligoribonucleotides can be prepared by organic chemical methods, but they can also be prepared relatively easily and with good yield by methods using enzymes. Currently, as a method using an enzyme, there is a method in which ribonucleotide trimers or more are prepared by an organic chemical method or an enzymatic method, and the materials are linked together using RNE ligase. However, the specificity and reaction mechanism of RN eligase for the phosphorus donor and phosphorus acceptor base sequences are not yet clear, and conventional methods may not be able to obtain oligoribonucleotides with the desired base sequences. Ta. Therefore, the present inventors conducted studies to develop a method for preparing oligoribonucleotides efficiently and accurately using a certain material using a certain simple method, and as a result, the present invention was achieved.

本発明の要旨は、2種のオリゴリボヌクレオチ
ドをアール・エヌ・エリガーゼを用いて連結して
オリゴリボヌクレオチドを製造するに際し、2種
のオリゴリボヌクレオチドとして、 (A) 5′末端のヒドロキシル基の水素原子が次の一
般式()で示される基 [式中、R1はフエニル基を、R2は水素原子
を夫々表わすか、又はR1とR2はNと共にモル
ホリン環を形成する基を表す] で置換されているリン酸受容体となるオリゴリ
ボヌクレオチドプライマーと、 (B) 2′末端のヒドロキシル基の水素原子が次の一
般式() [式中、R3は水素原子又はアルキ基を示す]
で示される基で置換されているリン供与体とな
るオリゴリボヌクレオチドとを使用することを
特徴とするオリゴリボヌクレオチドの製造法に
存する。
The gist of the present invention is that when producing an oligoribonucleotide by linking two types of oligoribonucleotides using RN eligase, (A) the 5'-terminal hydroxyl group is A group whose hydrogen atom is represented by the following general formula () [In the formula, R 1 represents a phenyl group, R 2 represents a hydrogen atom, or R 1 and R 2 represent a group forming a morpholine ring together with N] It becomes a phosphate acceptor substituted with The oligoribonucleotide primer and (B) the hydrogen atom of the 2′-terminal hydroxyl group have the following general formula () [In the formula, R 3 represents a hydrogen atom or an alkyl group]
A method for producing an oligoribonucleotide, characterized in that it uses an oligoribonucleotide that is a phosphorus donor and is substituted with a group represented by the following.

本発明を詳細に説明するに、触媒として用いら
れるアール・エヌ・エーリガーゼ(以下におい
て、これをRNAリガーゼと記す)としては、ビ
オキミカ・エト・ビオフイジカ・アクタ第562巻
149〜161頁(1979年)に記載された方法に従い、
ほゞリボヌクレアーゼが存在しない程度に精製し
たものが用いられる。
To explain the present invention in detail, RN Eligase (hereinafter referred to as RNA ligase) used as a catalyst is Biochimica et Biofisica Acta Vol. 562.
Following the method described on pages 149-161 (1979),
It is used that has been purified to the extent that almost no ribonuclease is present.

具体的には、T4フアージを感染させた大腸菌
を破砕し、その破砕液から、硫安沈殿、カラムク
ロマトグフイーなどにより分離精製することによ
つて得られるT4RNAリガーゼが挙げられる。
Specifically, T4 RNA ligase can be obtained by disrupting E. coli infected with T4 phage and separating and purifying the disrupted solution by ammonium sulfate precipitation, column chromatography, or the like.

RNAリガーゼのリン受容体としては、5′末端
のヒドロキシル基の水素原子が、前記の一般式
()で示される基で置換されたオリゴリボヌク
レオチドが挙げられる。このようなオリゴリボヌ
クレオチドとしては三量体以上のものが用いられ
る。三量体について例示すれば、下記一般式
()のものが挙げられる。
Phosphorus receptors for RNA ligase include oligoribonucleotides in which the hydrogen atom of the 5'-terminal hydroxyl group is substituted with a group represented by the above general formula (). As such oligoribonucleotides, trimers or more are used. Examples of trimers include those represented by the following general formula ().

上記式中、R1はフエニル基を、R2は水素原子
を夫々表わすか、又はR1とR2はNと共にモルホ
リン環を形成する基を表わす。B1,B2およびB3
はそれぞれ独立してアデニル基、グアニル基、シ
トシル基またはウラシル基を表す。上記の例は三
量体であるが、対応する四量体ないし十量体が同
様に挙げられる。
In the above formula, R 1 represents a phenyl group, R 2 represents a hydrogen atom, or R 1 and R 2 represent a group that forms a morpholine ring together with N. B 1 , B 2 and B 3
each independently represents an adenyl group, a guanyl group, a cytosyl group or a uracil group. Although the above examples are trimers, corresponding tetramers to decamers can be mentioned as well.

一方、リン供与体としては、2′末端のヒドロキ
シル基の水素原子が、前記の一般式()で示さ
れる基で置換されているオリゴリボヌクレオチド
が挙げられる。このようなオリゴリボヌクレオチ
ドについて例示すれば下記一般式()の三量体
が挙げられる。
On the other hand, examples of the phosphorus donor include oligoribonucleotides in which the hydrogen atom of the hydroxyl group at the 2' end is substituted with a group represented by the above general formula (). Examples of such oligoribonucleotides include trimers of the following general formula ().

上記式中、B4,B5,およびB6はアデニル基、
グアニル基、シトシル基またはウラシル基を表わ
す。R3は水素またはアルキル基を表わす。もち
ろん対応する四量体以上のものであつてもよい。
In the above formula, B 4 , B 5 , and B 6 are adenyl groups,
Represents a guanyl group, cytosyl group or uracil group. R 3 represents hydrogen or an alkyl group. Of course, it may be a corresponding tetramer or more.

しかして、このようなリン受容体およびリン供
与体は、下記(イ)、(ロ)および(ハ)の反応により容易に
製造しうる。
Therefore, such a phosphorus acceptor and a phosphorus donor can be easily produced by the following reactions (a), (b), and (c).

(イ) リボヌレアーゼ(以下においてRNaseと略
す)の逆反応による二量体の製造 ジャーナル オブ バイオケミストリー
(Journal of Biochemistry)第81巻1237〜1246
頁(1977年)に記載の方法に準じ、下記反応式
()により製造される。
(a) Production of dimer by reverse reaction of ribonurease (hereinafter abbreviated as RNase) Journal of Biochemistry, Vol. 81, 1237-1246
It is produced according to the following reaction formula () according to the method described in Page (1977).

XpN>p+NRNase ――――――→ XpNpN …() 上記反応式中、Xはリボヌクレオチドの5′フオ
スフエートとリン酸アミデートを形成しているア
ミン残基を、pはフオスフエート、Nはリボヌク
レオシドを表わし、N>pはリボヌレオシドの
2′および3′位のヒドロキシル基が共に1個のリン
酸とエステルを形成しているcyclic p を表わ
す(以下においても同意義を示す)。
XpN>p+NRNase ――――――→ XpNpN … () In the above reaction formula, where N>p is the ribonureoside
Represents cyclic p in which the hydroxyl groups at the 2' and 3' positions together form an ester with one phosphoric acid (the same meaning is shown below).

(ロ) 三量体の製造 (イ)の反応により得られる二量体をプライマーと
して、ポリヌクレオチドホスホリラーゼ(以下に
おいてPNPaseと略す)を用いて、2位のヒドロ
キシル基の水素原子がオルトニトロベンジル基で
置換されたリボヌクレオシドジリン酸を一残基延
長して三量体を製造する。反応式は下記の通り。
(b) Production of trimer Using the dimer obtained by the reaction in (a) as a primer, polynucleotide phosphorylase (hereinafter abbreviated as PNPase) is used to convert the hydrogen atom of the hydroxyl group at the 2-position into an orthonitrobenzyl group. A trimer is produced by extending the substituted ribonucleoside diphosphate by one residue. The reaction formula is as follows.

XpNpN+PPNφ PNPase ―――――――→ XpNpNpNφ …() 上記反応式中、φはリボヌクレオチドの2′−
OHの水素と置換されているオルトニトロベンジ
ル基を示す。
XpNpN+PPNφ PNPase ――――――→ XpNpNpNφ …() In the above reaction formula, φ is the 2′- of the ribonucleotide
Indicates an orthonitrobenzyl group substituted with the hydrogen of OH.

(ハ) リン供与体およびリン受容体の製造 (ロ)の反応により得られる三量体を(A)酸で処
理して5′フオスフエートの保護基−N(R1R2)基
を脱保護してリン供与体を得るか、(B)光照射
して2′位のオルトニトロベンジル基を脱離して、
リン受容体とする。反応式は下記の通り。
(c) Production of phosphorus donor and phosphorus acceptor The trimer obtained by the reaction in (b) is treated with (A) acid to deprotect the protecting group -N(R 1 R 2 ) of 5' phosphate. (B) to remove the orthonitrobenzyl group at the 2' position by irradiation with light,
Phosphorus receptor. The reaction formula is as follows.

XpNpNpNφH+ ――→ pNpNpNφ(リン供与体) …() XpNpNpNφ光 → XpNpNpN(リン受容体) …() 上記(ハ)の方法においては、三量体について記載
されているが、四量体以上についても、同様な方
法により製造しうる。
XpNpNpNφH+ ---→ pNpNpNφ (phosphorus donor) ...() , can be produced by a similar method.

本発明方法においては、前記リン受容体および
リン供与体を素材としてRNAリガーゼを用いて
オリゴリボヌクレオチドを調整する。
In the method of the present invention, oligoribonucleotides are prepared using RNA ligase using the phosphorus acceptor and phosphorus donor as raw materials.

反応は、リン供与体およびリン受容体を、
RNAリガーゼ、アデノシン三リン酸、Mgcl2
ジチオスレイトールおよび場合により牛血清アル
ブミンを含む緩衝液に加え、4℃程度に1日以上
保温することによりおこなわれる。
The reaction involves a phosphorus donor and a phosphorus acceptor,
RNA ligase, adenosine triphosphate, Mgcl 2 ,
This is done by adding to a buffer solution containing dithiothreitol and optionally bovine serum albumin, and keeping it warm at about 4°C for one day or more.

反応後、反応物をDEAE−セフアデツクス(商
標)のようなイオン交換体のカラムに加え、カラ
ムクロマトグフイーをおこなうことにより容易に
反応物のオリゴリボヌクレオチドを得ることがで
きる。生成したオリゴリボヌクレオチドは5′末端
と2′末端に置換基を有するので、これを素材とし
て、前記方法と同様にリン供与体、リン受容体を
得、次いでRNAリガーゼにより連結して、さら
に長鎖のオリゴリボヌクレオチドを製造すること
ができる。
After the reaction, oligoribonucleotides of the reaction product can be easily obtained by adding the reaction product to an ion exchanger column such as DEAE-Sephadex (trademark) and performing column chromatography. The generated oligoribonucleotide has substituents at the 5' and 2' ends, so using this as a material, a phosphorus donor and a phosphorus acceptor are obtained in the same manner as in the above method, and then ligated with RNA ligase to further lengthen the oligoribonucleotide. A chain of oligoribonucleotides can be produced.

以上のような本発明方法によれば、次のような
プロセスにて容易にオリゴリボヌクレオチドを製
造することができる。
According to the method of the present invention as described above, oligoribonucleotides can be easily produced by the following process.

() 適当な固体支持体にリン酸アミデート法
でpNpをリガンドとしてつけ、3′末端のフオス
フエートを環状リン酸体とする。
() Attach pNp as a ligand to a suitable solid support using the phosphoamidate method, and convert the 3'-terminal phosphate into a cyclic phosphate.

() RNaseと高濃度リボヌクレオシド中に
この支持体を浸漬して反応させ、反応後遠心し
て支持体のみを取り出す。
() The support is immersed in RNase and high-concentration ribonucleoside to react, and after the reaction, the support is removed by centrifugation.

() 次にPNPaseとppNφ中に浸漬して反応
させ、反応物支持体のみを取り出す。
() Next, it is immersed in PNPase and ppNφ to react, and only the reactant support is taken out.

RNase反応でヌクレオシドをつけることが
できなかつたりリガンドは単量体のまゝである
ので、この反応のプライマーとはなりえない。
Since nucleosides cannot be attached in the RNase reaction and the ligand remains monomeric, it cannot serve as a primer for this reaction.

() この支持体を光照射し末端のφ基をはず
したものをRNAリガーゼとpNpNpNφの溶液
中につけて反応させる。
() This support is irradiated with light to remove the terminal φ group, and then placed in a solution of RNA ligase and pNpNpNφ to react.

()の反応物を遠心して得られる支持体を
含むリガンドは、pNpと最終塩基がφで保護さ
れた三量体と六量体である。もう一度同じ反応
を繰返せばさらに九量体を含むことになる。必
要なだけ連結した後に弱酸溶液中に支持体を浸
漬すれば、これらの合成物質が溶液中に回収さ
れる。生成物は単量体+3(n+1)量体(n
はRNAリガーゼ反応の回数)であるから、分
離精製は極めて容易である。
The support-containing ligands obtained by centrifuging the reaction product in () are trimers and hexamers in which pNp and the final base are protected by φ. If the same reaction is repeated again, more nonamers will be included. After the required number of connections, the support is immersed in a weak acid solution and these synthetic materials are recovered in solution. The product is monomer+3(n+1)mer(n
is the number of RNA ligase reactions), separation and purification is extremely easy.

以上のような本発明方法によれば、合成素材を
種々の塩基配列について調整しておき、希望に応
じて画一的な反応系で、容易に所望の塩基配列の
オリゴリボヌクレオチドを調製しうる利点があ
る。
According to the method of the present invention as described above, synthetic materials are prepared for various base sequences, and oligoribonucleotides with desired base sequences can be easily prepared using a uniform reaction system as desired. There are advantages.

以下、本発明方法を実施例によりさらに詳細に
説明する。
Hereinafter, the method of the present invention will be explained in more detail with reference to Examples.

以下の実施例において、C、A及びUは何れも
リボヌクレオシドで、Cは塩基がシトシン、Aは
塩基がアデニン、Uは塩基がウラシルであるもの
を表わす。aniはリン酸アミデートを形成したと
きのアニリン残基を示す。pはフオフエートで、
>pはリボヌクレオシドの2′および3′位のヒロド
ロキシ基とエステルを形成しているcyclic Pを
表わす。
In the following examples, C, A and U all represent ribonucleosides, C represents cytosine as a base, A represents adenine as a base, and U represents uracil as a base. ani indicates the aniline residue when forming phosphoramidate. p is phophate;
>p represents cyclic P forming an ester with the 2' and 3' hydroxyl groups of the ribonucleoside.

φはリボヌクレオチドの2′−OHの水素と置換
されているオルトニトロベンジル基を表わす。
φ represents an orthonitrobenzyl group substituted for the 2'-OH hydrogen of the ribonucleotide.

PPはジフオスフエートを示す。PP stands for diphosphate.

例えば、anipApUpCφは()式においてR1
がフエニル基、R2が水素原子、B1がアデニル基、
B2がウラシル基およびB3がシトシル基である化
合物を意味する。
For example, anipApUpCφ is R 1 in equation ()
is a phenyl group, R 2 is a hydrogen atom, B 1 is an adenyl group,
It means a compound in which B 2 is a uracil group and B 3 is a cytosyl group.

実施例 1 (1) ani pApUpCφ、pApUpCφおよびani
pApUpCの調製 (イ) PPCφの調製 Cφ300mg(0.8mmol)にpocl30.2ml
(2.18mmol)とpo(OCH332.5mlを加え、4℃で
2時間反応させて、pcφを得た。pcφにトリエチ
ルアミンを加えて塩とし、これにt−ブタノール
8ml、H2O8ml、モルフオリン0.4mlとジシクロヘ
キシルカルボジイミド0.8g/tブタノール16mlを
加えて1時間還流下反応させ、さらにモルフオリ
ン0.4mlとジシクロヘキシルカルボジイミド0.8g
をくわえて反応させて、pcφモルフオリデートを
得た。
Example 1 (1) ani pApUpCφ, pApUpCφ and ani
Preparation of pApUpC (a) Preparation of PPCφ Add pocl 3 0.2ml to Cφ300mg (0.8mmol)
(2.18 mmol) and 2.5 ml of po(OCH 3 ) 3 were added and reacted at 4° C. for 2 hours to obtain pcφ. Add triethylamine to pcφ to make a salt, add 8 ml of t-butanol, 8 ml of H 2 O, 0.4 ml of morpholin and 0.8 g of dicyclohexylcarbodiimide/16 ml of t-butanol, react under reflux for 1 hour, and then add 0.4 ml of morpholin and 0.8 ml of dicyclohexylcarbodiimide. g
was added and reacted to obtain pcφ morpholidate.

別途、リン酸160μと(n−c4H93N600μ
とをビリジン2mlにくわえ乾固したものにビリジ
ン2ml、pcφモルフオリデートを加え、37℃で一
夜反応させて、ppcφを得た。収率は30%であつ
た。
Separately, phosphoric acid 160μ and (n-c 4 H 9 ) 3 N600μ
was added to 2 ml of viridine and dried, 2 ml of viridine and pcφ morpholidate were added, and the mixture was reacted overnight at 37°C to obtain ppcφ. The yield was 30%.

(ロ) anipA>pの調製 pAp Ba塩とDowex 50×2(100〜200メツシ
ユ)アニリン塩と水50mlを混合し、室温で一夜放
置し過して、pApアニリン塩を得た。
(B) Preparation of anipA>p pAp Ba salt, Dowex 50×2 (100 to 200 mesh) aniline salt, and 50 ml of water were mixed and allowed to stand at room temperature overnight to obtain pAp aniline salt.

pApアニリン塩0.89mmol、水10ml、t−ブタ
ノール25ml、アニリン1ml、ジシクロヘキシルカ
ルボジイミド2.06gを混合し、3時間還流して反
応させて、anipA>を得た。収率29%であつた。
0.89 mmol of pAp aniline salt, 10 ml of water, 25 ml of t-butanol, 1 ml of aniline, and 2.06 g of dicyclohexylcarbodiimide were mixed and reacted under reflux for 3 hours to obtain anipA>. The yield was 29%.

(ハ) ani pApUの調製 ジヤーナルオブバイオケミストリー第81巻1237
〜1246頁(1977年)に記載の方法に準じて、R
Nase U2を用いて調製した。
(c) Preparation of ani pApU Journal of Biochemistry Vol. 81 1237
~1246 (1977), R.
Prepared using Nase U 2 .

R Nase U21500単位とウリジン800μmolとを
含有する0.1M酢酸Na酢酸緩衝液pH4.5を0℃〜
1℃で一夜放置して、ani pApuを得た。収率41
%。
A 0.1 M Na acetate acetate buffer pH 4.5 containing 1500 units of R Nase U 2 and 800 μmol of uridine was added at 0°C to
Ani pApu was obtained by standing overnight at 1°C. Yield 41
%.

(ニ) ani pApUpCφの調製 ビオキミカ・ビオフイジカ・アクタ565巻
(1979年)192〜198頁に記載の方法に準じ、
ppCφ11.2mM、ani pApU2.5mM、トリル塩酸
pH8.5 0.1M、Mncl2 2mM およびマイクロコ
ツカスリゾデイクチカス由来のPNPase(シグマ
社製)50単位をかつ色びんに入れ、37℃で一夜放
置した。
(d) Preparation of ani pApUpCφ According to the method described in Biochimica Biofijica Acta Vol. 565 (1979) pp. 192-198,
ppCφ11.2mM, ani pApU2.5mM, tolyl hydrochloride
0.1M of pH 8.5, 2mM of Mncl 2 and 50 units of PNPase derived from Micrococcus rhizodeicticus (manufactured by Sigma) were placed in a colored bottle and left overnight at 37°C.

高速液体クロマトグライフイーによる分取 〔8mm径、充填剤としてμBONDPAKC13(ウオ
ーター社販売)を使用。流量4ml/min。
Preparative separation using high performance liquid chromatography [8 mm diameter, μBONDPAKC 13 (sold by Water Co., Ltd.) was used as the packing material. Flow rate 4ml/min.

20%のCH3OH含有NH4HCO30.05Mで展開〕で、
収率23.2%でani pApUpCφを得た。生成物の同
定は、R Nase T2で分解し、ani pApとUpと
Cpが1:1:1の比で生成することを、別途に
合成した標品にて確認することによりおこなつ
た。
Developed with 0.05M NH 4 HCO 3 containing 20% CH 3 OH].
ani pApUpCφ was obtained with a yield of 23.2%. Product identification was determined by digestion with R Nase T 2 and ani pAp and Up.
It was confirmed that Cp was produced in a ratio of 1:1:1 by using a separately synthesized sample.

(ホ) ani pApUpCの調製 ani pApUpCφ50mlと水50mlをドーナツ型光照
射フラスコに入れ100W超高圧水銀灯で光照射
(>290nm)した。水道水冷却下で12時間照射し
た。
(e) Preparation of ani pApUpC 50 ml of ani pApUpC and 50 ml of water were placed in a donut-shaped light irradiation flask and irradiated with light (>290 nm) using a 100 W ultra-high pressure mercury lamp. Irradiation was performed for 12 hours under cooling with tap water.

ジエチルアミノエチルセルロース
(DEAEA25)のカラム(0.7×10cm)に加え、
NH4HCO3OM→1Mの勾配にて展開し、ani
pApUpCを得た。収率56%。
In addition to a diethylaminoethyl cellulose (DEAEA25) column (0.7 x 10 cm),
NH 4 HCO 3 OM → 1M gradient, and ani
pApUpC was obtained. Yield 56%.

(ヘ) pApUpCφの調製 ani pApUpCφの12%メタノール含有0.05M
NH4HCO3100μと1NHC10μを加えて
pH1.5として37℃で24時間置いた。高速液体クト
マトグラフイーによる分取〔8mm径、充填剤とし
てμBONDPAKC13(ウオーター社販売)を使用。
流用1ml/minで、25%のメタノール含有
0.05MNH4HCO3で展開〕で、収率73%で
pApUpCφを得た。
(f) Preparation of pApUpCφ ani pApUpCφ containing 12% methanol 0.05M
Add 100μ of NH 4 HCO 3 and 10μ of 1NHC
It was kept at 37°C for 24 hours at pH 1.5. Preparative separation using high-speed liquid chromatography [8 mm diameter, μBONDPAKC 13 (sold by Water Co., Ltd.) was used as the packing material.
Contains 25% methanol at a flow rate of 1ml/min
Developed with 0.05MNH 4 HCO 3 ] with a yield of 73%.
pApUpCφ was obtained.

(2) T4RNAリガーゼによる反応 ani pApUpC0.1mM(5nmol),
pApUpCφ0.2mM(10nmol),トリス塩酸pH8.0
50mM,MgCl210mM,ジチオスレイトール
10mM,アデノシン三リン酸0.1mMを含む反応
液45μlにT4RNAリガーゼ5単位を加え、4℃で
3日間反応させた。
(2) Reaction using T4RNA ligase ani pApUpC0.1mM (5nmol),
pApUpCφ0.2mM (10nmol), Tris-HCl pH8.0
50mM, MgCl 2 10mM, dithiothreitol
5 units of T4 RNA ligase was added to 45 μl of a reaction solution containing 10 mM adenosine triphosphate and 0.1 mM adenosine triphosphate, and the mixture was allowed to react at 4° C. for 3 days.

反応液を分子量4万の限外過器(ミリポア製
ウルトラフリー)を用いて酵素を除き、高速液体
クトマトグラフイー〔4mm径、充填剤半井薬品
COSMOSIL C18を用い、20%メタノール0.05M
NH4HCO3で展開〕で分取し、収率75%でani
pApUpCpApUpCφを得た。
The enzyme was removed from the reaction solution using an ultrafilter with a molecular weight of 40,000 (Ultrafree, manufactured by Millipore), and the enzyme was removed using high-performance liquid chromatography [4 mm diameter, packing material: Hanui Pharmaceutical Co., Ltd.]
Using COSMOSIL C18, 20% methanol 0.05M
[developed with NH 4 HCO 3 ], and the yield was 75%.
pApUpCpApUpCφ was obtained.

得られた六量体の同定はRNase T2で分解し
て、分解物がani pApとUpとCpとCφがそれぞれ
1:2:1:1:1であることを別途合成した標
品にて確認することによりおこなつた。
The obtained hexamer was identified by decomposing it with RNase T 2 and using separately synthesized preparations to confirm that the decomposition products contained ani pAp, Up, Cp, and Cφ in a ratio of 1:2:1:1:1, respectively. This was done by checking.

Claims (1)

【特許請求の範囲】 1 2種のオリゴリボヌクレオチドをアール・エ
ヌー・エーリガーゼを用いて連結してオリゴリボ
ヌクレオチドを製造するに際し、2種のオリゴリ
ボヌクレオチドとして、 (A) 5′末端のヒドロキシル基の水素原子が、次の
一般式()で示される基 [式中、R1はフエニル基を、R2は水素原子
を夫々表わすか、又はR1とR2はNと共にモル
ホリン環を形成する基を表す] で置換されているリン酸受容体となるオリゴリ
ボヌクレオチドプライマーと、 (B) 2′末端のヒドロキシル基の水素原子が、次の
一般式() [式中、R3は水素原子又はアルキル基を示す]
で示される基で置換されているリン酸供与体と
なるオリゴリボヌクレオチドとを使用すること
を特徴とするオリゴリボヌクレオチドの製造
法。
[Claims] 1. When producing an oligoribonucleotide by linking two types of oligoribonucleotides using R.N. Eligase, as the two types of oligoribonucleotides, (A) a 5'-terminal hydroxyl group; hydrogen atom is a group represented by the following general formula () [In the formula, R 1 represents a phenyl group, R 2 represents a hydrogen atom, or R 1 and R 2 represent a group forming a morpholine ring together with N] It becomes a phosphate acceptor substituted with The oligoribonucleotide primer and (B) the hydrogen atom of the 2′-terminal hydroxyl group have the following general formula () [In the formula, R 3 represents a hydrogen atom or an alkyl group]
1. A method for producing an oligoribonucleotide, which comprises using an oligoribonucleotide as a phosphate donor substituted with a group represented by the following.
JP13248381A 1981-08-24 1981-08-24 Preparation of oligoribonucleotide Granted JPS5836396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13248381A JPS5836396A (en) 1981-08-24 1981-08-24 Preparation of oligoribonucleotide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13248381A JPS5836396A (en) 1981-08-24 1981-08-24 Preparation of oligoribonucleotide

Publications (2)

Publication Number Publication Date
JPS5836396A JPS5836396A (en) 1983-03-03
JPH0371109B2 true JPH0371109B2 (en) 1991-11-12

Family

ID=15082424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13248381A Granted JPS5836396A (en) 1981-08-24 1981-08-24 Preparation of oligoribonucleotide

Country Status (1)

Country Link
JP (1) JPS5836396A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2569491A1 (en) * 2004-06-02 2005-12-15 Asm Scientific, Inc. 2'-nitrobenzyl-modified ribonucleotides
JP2011055719A (en) * 2009-09-07 2011-03-24 Masami Moriyama Method for synthesizing polynucleotide

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NUCLEIC ACIDS RESEARCH=1977 *
NUCLEIL ACIDS RESEARCH=1976 *
PROC.NAT.ACAD.SCI=1975US *

Also Published As

Publication number Publication date
JPS5836396A (en) 1983-03-03

Similar Documents

Publication Publication Date Title
Kierzek et al. Polymer-supported RNA synthesis and its application to test the nearest-neighbor model for duplex stability
US5512668A (en) Solid phase oligonucleotide synthesis using phospholane intermediates
AU710074B2 (en) Novel method of preparation of known and novel 2'-modified nucleosides by intramolecular nucleophilic displacement
US5252723A (en) Method and reagent for sulfurization of organophosphorous compounds
US5883237A (en) Oligonucleotides having Rp and Sp linkages at predetermined locations
US5856464A (en) Selective capping solution phase oligonucleotide synthesis
US5646267A (en) Method of making oligonucleotides and oligonucleotide analogs using phospholanes and enantiomerically resolved phospholane analogues
US5869696A (en) Universal solid supports and methods for their use
EP0090789A1 (en) Chemical DNA synthesis
US20090286247A1 (en) Novel nucleic acid base pair
JPH06511492A (en) Oligonucleotides with chiral phosphorus bonds
JPH0631305B2 (en) Nucleoside derivative
JP2001520501A (en) Compositions for enzyme-catalyzed template-independent production of phosphodiester linkages using protected nucleotides
JPH03501128A (en) Nucleoside and polynucleotide thiophosphoramidite and phosphorodithioate compounds and methods
JP2005089441A (en) Manufacturing method of highly stereoregular phosphorus atom-modified nucleotide analogue
JP2011088935A (en) Optically-active nucleoside 3'-phosphoroamidite for production of phosphorus atom modified nucleotide analog
JPH10195098A (en) New nucleotide analogue
EP0948514B1 (en) Method for the synthesis of nucleotide or oligonucleotide phosphoramidites
EP0002322A2 (en) Improved Triester process for the synthesis of oligonucleotides
US5420330A (en) Lipo-phosphoramidites
KR100458979B1 (en) Method of Synthesizing Phosphorothioate Oligonucleotides
WO1996007663A1 (en) Solid phase synthesis of oligonucleotides with stereospecific substituted phosphonate linkages by pentavalent grignard coupling
JPH0371109B2 (en)
JPH07188278A (en) Nucleoside for synthesizing oligonucleoside, and nucleoside derivative with protective group enzymatically cuttable
US20020142307A1 (en) Building blocks for the solution phase synthesis of oligonucleotides