JPH036912A - Surface acoustic wave element - Google Patents

Surface acoustic wave element

Info

Publication number
JPH036912A
JPH036912A JP14183289A JP14183289A JPH036912A JP H036912 A JPH036912 A JP H036912A JP 14183289 A JP14183289 A JP 14183289A JP 14183289 A JP14183289 A JP 14183289A JP H036912 A JPH036912 A JP H036912A
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
piezoelectric substrate
comb
air gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14183289A
Other languages
Japanese (ja)
Inventor
Yoshio Sato
良夫 佐藤
Keiichi Betsui
圭一 別井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP14183289A priority Critical patent/JPH036912A/en
Publication of JPH036912A publication Critical patent/JPH036912A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To improve the in-band ripple characteristic and the insertion loss characteristic or the like by inserting an air gap between a piezoelectric substrate and an interdigital electrode. CONSTITUTION:Leadout parts 31, 32 are fixed directly onto a piezoelectric substrate 1, while interdigital electrodes 3a, 3b are fixed onto a rear side of an insulator bridge 4 in a pending way to form an air gap 2 with the piezoelectric substrate 1. Then a surface acoustic wave on the piezoelectric substrate 1 is excited or received via the above-mentioned air gap.

Description

【発明の詳細な説明】 〔概要〕 弾性表面波素子の構造に関し、 弾性表面波素子の電極の質量効果をなくし、帯域内特性
やスプリアス特性を向上させることを目的とし、 圧電体基板と、前記圧電体基板の上方に、エアギャップ
を介して配設された櫛形!極と、前記櫛形電極を支持す
る非圧電体からなる絶縁体ブリッジとを少なくとも備え
、前記櫛形電極により、前記エアギャップを介して前記
圧電体基板における弾性表面波の励振あるいは受信を行
なうように弾性表面波素子を構成する。
[Detailed Description of the Invention] [Summary] Regarding the structure of a surface acoustic wave device, the purpose is to eliminate the mass effect of the electrodes of the surface acoustic wave device and improve the in-band characteristics and spurious characteristics, and the present invention includes a piezoelectric substrate and the above-mentioned. A comb shape placed above the piezoelectric substrate through an air gap! and an insulator bridge made of a non-piezoelectric material that supports the comb-shaped electrode, the comb-shaped electrode is configured to excite or receive surface acoustic waves in the piezoelectric substrate via the air gap. Configure a surface wave element.

〔産業上の利用分野〕[Industrial application field]

本発明は弾性表面波素子、とくに、その励振および受信
電極の構成に関する。
The present invention relates to a surface acoustic wave device, and in particular to configurations of excitation and reception electrodes thereof.

近年、情報処理機器や通信機器の高速化にともなって、
搬送波や信号波の周波数帯は益々高周波域にシフトして
きており、それに対応して高周波における安定度の高い
基準信号の発生や1位相同期用の素子、あるいは、フィ
ルタなどが必要となり、最近はこれらの用途に弾性表面
波素子、たとえば、弾性表面波フィルタや弾性表面波共
振子が使用されるようになってきた。
In recent years, with the increase in speed of information processing equipment and communication equipment,
The frequency bands of carrier waves and signal waves are increasingly shifting to higher frequencies, and correspondingly, it is necessary to generate highly stable reference signals at high frequencies, elements for single-phase synchronization, filters, etc. Surface acoustic wave devices, such as surface acoustic wave filters and surface acoustic wave resonators, have come to be used for applications such as surface acoustic wave filters and surface acoustic wave resonators.

今後、その小形、安価という特徴を生かして、自動車電
話、携帯電話などの移動体無線への展開が期待されてお
り、より一層の高周波化と帯域特性や電力特性の優れた
弾性表面波素子の開発が求められている。
In the future, by taking advantage of its small size and low cost, it is expected that it will be used in mobile radio applications such as car phones and mobile phones. development is required.

〔従来の技術〕[Conventional technology]

弾性表面波素子、たとえば、弾性表面波フィルタは、電
気−機械結合係数が大きく、しかも周波数の温度係数が
比較的小さい基板、たとえば、36゜回転VカットーX
伝播LiTaO5(36°Y −X LiTa0s)単
結晶基板の上に、励振および受信用の櫛型電極を設けた
3端子あるいは4端子型素子である。
A surface acoustic wave element, for example, a surface acoustic wave filter, uses a substrate having a large electro-mechanical coupling coefficient and a relatively small temperature coefficient of frequency, for example, a 36° rotation V cut-X.
It is a three-terminal or four-terminal device in which comb-shaped electrodes for excitation and reception are provided on a propagation LiTaO5 (36° Y −X LiTa0s) single crystal substrate.

櫛型電極の櫛歯の巾(L)、櫛歯間のスペース(S)。The width of the comb teeth (L) of the comb-shaped electrode, and the space between the comb teeth (S).

櫛歯ビ、ツチ(P)は表面波の波長をλとすると、通常
、L =S−λ/4.P=λ/2といった設計値のもの
が多い、たとえば、中心周波数835MHzを得るため
には、前記基板1のX伝播表面波の音速4090m/s
からλ=4.9μmが算出され、電極ピッチは2.45
μm、電極巾および電極間隔は1.23μmとなる。
When the wavelength of the surface wave of a comb-teeth (P) is λ, usually L = S - λ/4. There are many design values such as P=λ/2. For example, in order to obtain a center frequency of 835 MHz, the sound velocity of the X-propagating surface wave of the substrate 1 is 4090 m/s.
λ = 4.9 μm is calculated, and the electrode pitch is 2.45
μm, electrode width and electrode spacing are 1.23 μm.

第3図は従来の弾性表面波素子の構成の2つの例を示す
図で、同図(イ)は従来例の斜視図、同図(ロ)は従来
例のA−A’断面図、同図(ハ)は他の従来例の^−^
°断面図である。図中、100”は圧電体基板で、たと
えば、36’ Y −X LiTa0n板である。11
0は励振用櫛形電極、111および112はそのリード
導出部、120は受信用櫛形電極、121および122
はそのリード導出部である。
FIG. 3 is a diagram showing two examples of the configuration of a conventional surface acoustic wave element, in which (a) is a perspective view of the conventional example, and (b) is a sectional view taken along line A-A' of the conventional example; Figure (c) is another conventional example ^-^
It is a sectional view. In the figure, 100" is a piezoelectric substrate, for example, a 36' Y-X LiTa0n plate. 11
0 is a comb-shaped electrode for excitation, 111 and 112 are lead-out portions thereof, 120 is a comb-shaped electrode for reception, 121 and 122
is its lead derivation part.

これら電極の材料にはAuのような電気抵抗の小さい金
属が好ましいが、密度の高い金属は表面波振動に対する
質量効果によって、帯域内リップル特性や挿入損失特性
への悪影響が生じる。このため通常は軽いAf(あるい
はAf金合金を用い、なおかつ、100〜150nmと
薄い膜を蒸着などにより被着している。
As the material for these electrodes, metals with low electrical resistance such as Au are preferable, but metals with high density have an adverse effect on the in-band ripple characteristics and insertion loss characteristics due to the mass effect on surface wave vibration. For this reason, a light film of Af (or Af gold alloy) is usually used, and a thin film of 100 to 150 nm is deposited by vapor deposition or the like.

同図(ロ)の断面図に示した従来例は、圧電体基板10
0の表面に櫛型電極110および120を直接に密着形
成した最も一般的な表面波フィルタの電極構成法である
In the conventional example shown in the cross-sectional view of FIG.
This is the most common electrode construction method for surface wave filters, in which comb-shaped electrodes 110 and 120 are directly and tightly formed on the surface of a surface wave filter.

一方、同図(ハ)の断面図に示した他の従来例は、圧電
体基板100の表面と櫛型電極110および120の間
に非圧電体からなる絶縁層101を介在させた電極構成
をとっている。このような構成の例として最もよく知ら
れている辺は、LiTa0=を圧電体基板100として
用いた場合の絶縁層101として厚さ数μmの二酸化シ
リコン(Sing)膜を介在させた例で、Sin、膜の
表面波伝播速度の温度係数がLiTa0zのそれと寺逆
符号であり、周波数温度特性の改善を行なうために提案
された素子構成である(たとえばIEELI975 U
ltrasonics SycsposiutsPro
ceedings、pp 503〜5Q7.5ept、
、1975参照)。
On the other hand, another conventional example shown in the cross-sectional view of FIG. I'm taking it. The most well-known example of such a configuration is an example in which a silicon dioxide (Sing) film with a thickness of several μm is interposed as the insulating layer 101 when LiTa0= is used as the piezoelectric substrate 100. The temperature coefficient of the surface wave propagation velocity of the film is of the opposite sign to that of LiTa0z, and this is an element configuration proposed to improve the frequency-temperature characteristics (for example, IEELI975 U
ltrasonics SycsposiutsPro
ceedings, pp 503-5Q7.5ept,
, 1975).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記従来例では、軽いAIlとはいえ櫛形電極
の重量が、直接あるいは5i02膜を介して、圧電体表
面にかかっており、質量効果は影響している。とくに、
最近のGHz帯近傍で使用する表面波素子では、その影
響がますます問題となっており、その解決が必要であっ
た。
However, in the conventional example described above, although the AII is light, the weight of the comb-shaped electrode is applied to the surface of the piezoelectric body either directly or through the 5i02 film, and the mass effect has an influence. especially,
In recent surface wave devices used in the vicinity of the GHz band, this influence has increasingly become a problem, and a solution to this problem was needed.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題は、圧電体基板1と、前記圧電体基Filの
上方に、エアギャップ2を介して配設された櫛形電極3
と、前記櫛形電極3を支持する非圧電体からなる絶縁体
ブリッジ4とを少なくとも備え、前記櫛形電極3により
、前記エアギャップを介して前記圧電体基板lにおける
弾性表面波の励振あるいは受信を行なうことを特徴とし
た弾性表面波素子によって解決することができる。
The above problem is solved by a piezoelectric substrate 1 and a comb-shaped electrode 3 disposed above the piezoelectric substrate Fil with an air gap 2 in between.
and an insulator bridge 4 made of a non-piezoelectric material that supports the comb-shaped electrode 3, and the comb-shaped electrode 3 excites or receives surface acoustic waves in the piezoelectric substrate l via the air gap. This problem can be solved by a surface acoustic wave element characterized by the following.

〔作用〕[Effect]

本発明の弾性表面波素子は、圧電体基板lと櫛形電極3
との間にエアギャップ2を介在させているので、直接的
にも、また、間接的にも電極の質量が前記圧電体基板1
の表面に伝播する弾性表面波に、何ら影響を与えること
がなく、また、エアギャップ2を設けたため電極材料や
電極厚さに制約がなくなり、を極抵抗を充分小さくする
ことができ、帯域内リップル特性や挿入損失特性などが
改善できるとともに、素子に入力できる電力も増加させ
ることが可能となる。
The surface acoustic wave element of the present invention includes a piezoelectric substrate l and a comb-shaped electrode 3.
Since the air gap 2 is interposed between the piezoelectric substrate 1 and the piezoelectric substrate 1, the mass of the electrode is directly and indirectly
In addition, since the air gap 2 is provided, there are no restrictions on the electrode material or electrode thickness, and the polar resistance can be made sufficiently small. Ripple characteristics, insertion loss characteristics, etc. can be improved, and the power that can be input to the element can also be increased.

〔実施例] 第1図は本発明の実施例の構成を示す図で、同図(イ)
は斜視図、同図(ロ)はA−A“断面図、同図(ハ)は
x−x’矢視図である。
[Embodiment] FIG. 1 is a diagram showing the configuration of an embodiment of the present invention, and FIG.
1 is a perspective view, (b) is a sectional view taken along line A-A, and (c) is a view taken along line xx'.

図中、1は圧電帯基板で、たとえば、36°Y −X 
LiTaO3板である。2はエアギャップ、3a、3b
はそれぞれ励振用および受信用の櫛形電極、3L32は
それぞれのリード導出部、4は絶縁体ブリッジ、5は絶
縁体ブリッジ4に明けられた開口部である。
In the figure, 1 is a piezoelectric band substrate, for example, 36°Y −X
It is a LiTaO3 plate. 2 is air gap, 3a, 3b
are comb-shaped electrodes for excitation and reception, respectively, 3L32 is a lead lead-out portion, 4 is an insulator bridge, and 5 is an opening made in the insulator bridge 4.

図かられかるように、リード導出部31.32は圧電体
基Fi1の上に直接固着されており、これに対して櫛形
電i3a、3bの部分は絶縁体ブリッジ4の裏面に懸垂
されるごとくに固着され、圧電体基Fi1との間にエア
ギャップ2を形成している。
As can be seen from the figure, the lead lead-out portions 31 and 32 are directly fixed on the piezoelectric base Fi1, whereas the comb-shaped electrodes i3a and 3b are suspended on the back surface of the insulator bridge 4. The air gap 2 is formed between the piezoelectric substrate Fi1 and the piezoelectric substrate Fi1.

次に、上記実施例装置を構成するための製造工程の具体
例を工程を追って説明する。
Next, a specific example of the manufacturing process for constructing the above embodiment device will be explained step by step.

第2図は本発明の弾性表面波素子の製造工程の実施例を
示す図である。
FIG. 2 is a diagram showing an embodiment of the manufacturing process of the surface acoustic wave device of the present invention.

工程(1):厚さ0.35mmの36°’l −X L
iTa0.板の表面を平滑に研磨する。
Process (1): 36°'l-XL with a thickness of 0.35mm
iTa0. Polish the surface of the board smooth.

工程(2):前記処理済基板の表面にスペース材6を厚
さS/10.すなわち、λ/40前後に、たとえば、中
心周波数835MHzの表面波フィルタの場合には、約
50〜150nm程度に、弾性表面波の伝播領域をカバ
ーするように被着する。その材料はあとで選択エツチン
グにより除去できるように、たとえば、ポリシリコンを
スパッタリングあるいはCVD法などで膜形成し、ホト
エツチング法で領域形成を行なう。
Step (2): Spread a spacer material 6 on the surface of the treated substrate to a thickness of S/10. That is, it is deposited around λ/40, for example, in the case of a surface acoustic wave filter with a center frequency of 835 MHz, about 50 to 150 nm to cover the propagation region of surface acoustic waves. For example, a film of polysilicon is formed by sputtering or CVD, and a region is formed by photoetching so that the material can be removed later by selective etching.

工程(3):前記処理済基板の上に電極金属膜30゜た
とえば、厚さ2μmの^Uを電子ビーム蒸着法で被着す
る。
Step (3): An electrode metal film 30°, for example, 2 μm thick, is deposited on the treated substrate by electron beam evaporation.

工程(4):前記処理済基板の電極金属膜30を公知の
ホトエツチング法、あるいは、イオンエツチング法によ
り、櫛形電極3a、3b 、リード導出部31.32な
どをパターン形成する。
Step (4): Patterning of the comb-shaped electrodes 3a, 3b, lead lead-out portions 31, 32, etc. is performed on the electrode metal film 30 of the treated substrate by a known photoetching method or ion etching method.

工程(5):前記処理済基板の櫛形電極3a、3bの全
てと、リード導出部31.32の一部を覆うように絶縁
膜40を、たとえば、前記ポリシリコン膜の選択エツチ
ング液に強い530g膜を約5μmの厚さに蒸着する。
Step (5): Cover all of the comb-shaped electrodes 3a, 3b of the processed substrate and part of the lead lead-out portions 31, 32 with an insulating film 40 of, for example, a 530 g film that is resistant to the selective etching solution for the polysilicon film. The film is deposited to a thickness of approximately 5 μm.

工程(6):前記処理済基板の櫛形電極3aと3bの中
間のStagからなる絶縁膜40に、電極部にかからな
い程度の適度の大きさの開口部5を、たとえば、CF4
の中でイオンエツチングにより形成する。
Step (6): An opening 5 of an appropriate size that does not cover the electrode part is formed in the insulating film 40 made of Stag between the comb-shaped electrodes 3a and 3b of the processed substrate, for example, with CF4.
It is formed by ion etching in a chamber.

工程(カニ前記処理済基板の開口部5および両側の側面
部のスペース材6の露出部分から、選択エツチング、た
とえば、EPW液(エチレンジアミン+ピテカロール士
水)または80’CのKOH溶液の中で、ポリシリコン
のスペース材6だけを選択的に溶解除去する。
Process (selective etching from the exposed parts of the opening 5 and the spacer 6 on both sides of the treated substrate, for example, in an EPW solution (ethylenediamine + pitecarol water) or a KOH solution at 80'C, Only the polysilicon space material 6 is selectively dissolved and removed.

かくして、ポリシリコンのスペース材6の部分が厚さ約
50〜150nmのエアギャップ2として残り、櫛形電
極3a、3bは空中に浮いた状、態となり、圧電体基板
lには全(質量効果を及ぼさない本発明の弾性表面波素
子が形成される。
In this way, the polysilicon space material 6 remains as an air gap 2 with a thickness of about 50 to 150 nm, the comb-shaped electrodes 3a and 3b are suspended in the air, and the piezoelectric substrate 1 has a total (mass effect). A surface acoustic wave element of the present invention is formed which has no effect on the surface acoustic wave.

なお、本発明におけるエアギャップ2は、等角写像法に
よる電界分布の計算から、λ/40程度であれば、弾性
表面波の励振電力が充分に入力でき、また、同様に受信
電極から電気信号への変換が可能である。
It should be noted that if the air gap 2 in the present invention is about λ/40 from the calculation of the electric field distribution using the conformal mapping method, the excitation power of the surface acoustic wave can be inputted sufficiently, and the electric signal from the receiving electrode can also be inputted into the air gap 2. It is possible to convert to

以上の製造工程は一実施例を示したもので、他の材料、
あるいはそれらの組み合わせ、また、膜形成技術につい
ても他の方法を適宜用いて、同様に本発明の弾性表面波
素子を構成してもよいことは勿論である。
The above manufacturing process shows one example, and other materials,
It goes without saying that the surface acoustic wave device of the present invention may be similarly constructed by using a combination thereof or using other film forming techniques as appropriate.

また、上記実施例では弾性表面波フィルタの場合を示し
たが、その他表面波共振子や遅延素子なども、本発明が
同様に適用できることはいうまでもない。
Furthermore, although the above-described embodiments show the case of a surface acoustic wave filter, it goes without saying that the present invention can be similarly applied to other surface acoustic wave resonators, delay elements, and the like.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明による弾性表面波素子は、圧
電体基板1と櫛形電極3との間にエアギャップ2を介在
させであるので、直接的にも、また、間接的にも電極の
質量が前記圧電体基板10表面に伝播する弾性表面波に
、何ら影響を与えることがなく、また、エアギャップ2
を設けたため電極材料や電極厚さに制約がなくなり、電
極抵抗を充分小さくすることができ、帯域内リップル特
性や挿入損失特性、あるいは耐電力性など弾性表面波素
子の性能2品質の向上に寄与するところが極めて大きい
As described above, in the surface acoustic wave element according to the present invention, since the air gap 2 is interposed between the piezoelectric substrate 1 and the comb-shaped electrode 3, the air gap 2 is interposed between the piezoelectric substrate 1 and the comb-shaped electrode 3. The mass does not have any influence on the surface acoustic waves propagating to the surface of the piezoelectric substrate 10, and the air gap 2
This eliminates restrictions on electrode materials and electrode thickness, making it possible to sufficiently reduce electrode resistance and contributing to improvements in the performance and quality of surface acoustic wave devices, such as in-band ripple characteristics, insertion loss characteristics, and power durability. There is a huge amount to do.

31.32 はリート導出部である。31.32 is the REET derivation part.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の構成を示す図、第2図は本発
明の弾性表面波素子の製造工程の実施例を示す図、 第3図は従来の弾性表面波素子の構成の2つの例を示す
図である。 図において、 1は圧電体基板、 2はエアギャップ% 3 (3a、3b)は櫛形電極、 4は絶縁体ブリッジ、 5は開口部、 6はポリシリコン膜、 c口)A−A〜所所動0 国lす×−X′矢視図 牽売幌/)デ施例を精A’!示ず図 11 旧
FIG. 1 is a diagram showing the configuration of an embodiment of the present invention, FIG. 2 is a diagram showing an embodiment of the manufacturing process of the surface acoustic wave device of the present invention, and FIG. 3 is a diagram showing the configuration of a conventional surface acoustic wave device. FIG. 2 is a diagram showing two examples. In the figure, 1 is a piezoelectric substrate, 2 is an air gap %, 3 (3a, 3b) is a comb-shaped electrode, 4 is an insulator bridge, 5 is an opening, 6 is a polysilicon film, c) A-A ~ location Motion 0 Country lsu ×- Figure 11 Old

Claims (1)

【特許請求の範囲】  圧電体基板(1)と、 前記圧電体基板(1)の上方に、エアギャップ(2)を
介して配設された櫛形電極(3)と、 前記櫛形電極(3)を支持する非圧電体からなる絶縁体
ブリッジ(4)とを少なくとも備え、前記櫛形電極(3
)により、前記エアギャップ(2)を介して前記圧電体
基板(1)における弾性表面波の励振あるいは受信を行
なうことを特徴とした弾性表面波素子。
[Claims] A piezoelectric substrate (1), a comb-shaped electrode (3) disposed above the piezoelectric substrate (1) with an air gap (2) in between, and the comb-shaped electrode (3). and an insulator bridge (4) made of a non-piezoelectric material supporting the comb-shaped electrode (3).
), a surface acoustic wave element is characterized in that surface acoustic waves are excited or received in the piezoelectric substrate (1) via the air gap (2).
JP14183289A 1989-06-02 1989-06-02 Surface acoustic wave element Pending JPH036912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14183289A JPH036912A (en) 1989-06-02 1989-06-02 Surface acoustic wave element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14183289A JPH036912A (en) 1989-06-02 1989-06-02 Surface acoustic wave element

Publications (1)

Publication Number Publication Date
JPH036912A true JPH036912A (en) 1991-01-14

Family

ID=15301174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14183289A Pending JPH036912A (en) 1989-06-02 1989-06-02 Surface acoustic wave element

Country Status (1)

Country Link
JP (1) JPH036912A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5453652A (en) * 1992-12-17 1995-09-26 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave device with interdigital transducers formed on a holding substrate thereof and a method of producing the same
US5548178A (en) * 1992-07-08 1996-08-20 Matsushita Electric Industrial Co., Ltd. Piezoelectric vibrator and manufacturing method thereof
US5668057A (en) * 1991-03-13 1997-09-16 Matsushita Electric Industrial Co., Ltd. Methods of manufacture for electronic components having high-frequency elements
US5747857A (en) * 1991-03-13 1998-05-05 Matsushita Electric Industrial Co., Ltd. Electronic components having high-frequency elements and methods of manufacture therefor
US7535152B2 (en) 2005-10-19 2009-05-19 Murata Manufacturing Co., Ltd. Lamb wave device
US7642882B2 (en) * 2006-07-27 2010-01-05 Samsung Electronics Co., Ltd. Multi-band filter module and method of fabricating the same
WO2013134077A1 (en) * 2012-03-06 2013-09-12 Qualcomm Mems Technologies, Inc. Piezoelectric resonator with airgap
CN103614937A (en) * 2013-11-13 2014-03-05 贵州钢绳股份有限公司 Method for preliminarily forming strands of triangular strand ropes
DE112017000383B4 (en) 2016-01-14 2019-10-10 Topy Kogyo Kabushiki Kaisha Pushing device and pressing method
WO2023160905A1 (en) * 2022-02-23 2023-08-31 Rf360 Singapore Pte. Ltd. Suspending an electrode structure using a dielectric

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5668057A (en) * 1991-03-13 1997-09-16 Matsushita Electric Industrial Co., Ltd. Methods of manufacture for electronic components having high-frequency elements
US5747857A (en) * 1991-03-13 1998-05-05 Matsushita Electric Industrial Co., Ltd. Electronic components having high-frequency elements and methods of manufacture therefor
US5548178A (en) * 1992-07-08 1996-08-20 Matsushita Electric Industrial Co., Ltd. Piezoelectric vibrator and manufacturing method thereof
EP0797300B1 (en) * 1992-07-08 2001-07-25 Matsushita Electric Industrial Co., Ltd. Piezoelectric vibrator and manufacturing method thereof
US5453652A (en) * 1992-12-17 1995-09-26 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave device with interdigital transducers formed on a holding substrate thereof and a method of producing the same
US7535152B2 (en) 2005-10-19 2009-05-19 Murata Manufacturing Co., Ltd. Lamb wave device
US7642882B2 (en) * 2006-07-27 2010-01-05 Samsung Electronics Co., Ltd. Multi-band filter module and method of fabricating the same
US9628048B2 (en) 2006-07-27 2017-04-18 Samsung Electronics Co., Ltd. Multi-band filter module and electronic device comprising the same
WO2013134077A1 (en) * 2012-03-06 2013-09-12 Qualcomm Mems Technologies, Inc. Piezoelectric resonator with airgap
CN103614937A (en) * 2013-11-13 2014-03-05 贵州钢绳股份有限公司 Method for preliminarily forming strands of triangular strand ropes
DE112017000383B4 (en) 2016-01-14 2019-10-10 Topy Kogyo Kabushiki Kaisha Pushing device and pressing method
WO2023160905A1 (en) * 2022-02-23 2023-08-31 Rf360 Singapore Pte. Ltd. Suspending an electrode structure using a dielectric

Similar Documents

Publication Publication Date Title
TWI762832B (en) Surface acoustic wave device
US11309861B2 (en) Guided surface acoustic wave device providing spurious mode rejection
CN111697943B (en) High-frequency high-coupling coefficient piezoelectric film bulk acoustic resonator
JP2004064786A (en) Resonator having seed layer
US7843285B2 (en) Piezoelectric thin-film filter
JP2004064785A (en) Resonator having protecting layer
JP2019021997A (en) Acoustic wave element, splitter, and communication device
JPH036912A (en) Surface acoustic wave element
JPH09298446A (en) Surface acoustic wave device and its design method
WO1991019352A1 (en) Ultra thin quartz crystal filter element of multiple mode
JP2000183681A (en) Surface acoustic wave device
CN111971897A (en) TF-SAW resonator with improved quality factor, RF filter and method for manufacturing TF-SAW resonator
JPH11191720A (en) Surface acoustic wave device and surface accosting wave filter
JPH1084245A (en) Surface acoustic wave element
JPH02295211A (en) Energy shut-up type surface acoustic wave element
JPH0211043B2 (en)
JP2001332953A (en) Surface acoustic wave device
US3544926A (en) Monolithic crystal filter having mass loading electrode pairs having at least one electrically nonconductive electrode
JPH1022765A (en) Surface acoustic wave resonator and resonator type filter
JPH11186867A (en) Surface acoustic wave device
JPH0832397A (en) Surface acoustic wave device
JP2002141768A (en) Surface acoustic wave element
JP2009147818A (en) Elastic wave device, filter device, communication module and communication apparatus
US20210044273A1 (en) Transducer structure for source suppression in saw filter devices
JP4513150B2 (en) High frequency piezoelectric vibrator